1 |
DIMITROV K M , RAMEY A M , QIU X , et al. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus)[J]. Infect Gene Evolut, 2016, 39, 22- 34.
doi: 10.1016/j.meegid.2016.01.008
|
2 |
BUTT S L , MOURA V , SUSTA L , et al. Tropism of Newcastle disease virus strains for chicken neurons, astrocytes, oligodendrocytes, and microglia[J]. BMC Vet Res, 2019, 15 (1): 317.
doi: 10.1186/s12917-019-2053-z
|
3 |
AMARASINGHE G K , AYLLON M A , BAO Y , et al. Taxonomy of the order Mononegavirales: update 2019[J]. Arch Virol, 2019, 164 (7): 1967- 1980.
doi: 10.1007/s00705-019-04247-4
|
4 |
PANTUA H D , MCGINNES L W , PEEPLES M E , et al. Requirements for the assembly and release of Newcastle disease virus-like particles[J]. J Virol, 2006, 80 (22): 11062- 11073.
doi: 10.1128/JVI.00726-06
|
5 |
STEWARD M , VIPOND I B , MILLAR N S , et al. RNA editing in Newcastle disease virus[J]. J Gen Virol, 1993, 74 (Pt 12): 2539- 2547.
|
6 |
KARSUNKE J , HEIDEN S , MURR M , et al. W protein expression by Newcastle disease virus[J]. Virus Res, 2019, 263, 207- 216.
doi: 10.1016/j.virusres.2019.02.003
|
7 |
GOFF P H , GAO Q , PALESE P . A majority of infectious Newcastle disease virus particles contain a single genome, while a minority contain multiple genomes[J]. J Virol, 2012, 86 (19): 10852- 10856.
doi: 10.1128/JVI.01298-12
|
8 |
LONEY C , MOTTET-OSMAN G , ROUX L , et al. Paramyxovirus ultrastructure and genome packaging: cryo-electron tomography of sendai virus[J]. J Virol, 2009, 83 (16): 8191- 8197.
doi: 10.1128/JVI.00693-09
|
9 |
LIAO T , CHEN Y , GUO L , et al. The NP protein of Newcastle disease virus dictates its oncolytic activity by regulating viral mRNA translation efficiency[J]. PLoS Pathog, 2024, 20 (2): e1012027.
doi: 10.1371/journal.ppat.1012027
|
10 |
CHENG J H , SUN Y J , ZHANG F Q , et al. Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response[J]. Sci Rep, 2016, 6, 24721.
doi: 10.1038/srep24721
|
11 |
ROSENZWEIG R , NILLEGODA N B , MAYER M P , et al. The Hsp70 chaperone network[J]. Nat Rev Mol Cell Biol, 2019, 20 (11): 665- 680.
doi: 10.1038/s41580-019-0133-3
|
12 |
SU Y S , HSIEH P Y , LI J S , et al. The heat shock protein 70 family of chaperones regulates all phases of the enterovirus A71 life cycle[J]. Front Microbiol, 2020, 11, 1656.
doi: 10.3389/fmicb.2020.01656
|
13 |
MACEJAK D G , SARNOW P . Association of heat shock protein 70 with enterovirus capsid precursor P1 in infected human cells[J]. J Virol, 1992, 66 (3): 1520- 1527.
doi: 10.1128/jvi.66.3.1520-1527.1992
|
14 |
XU T , LIN Z , WANG C , et al. Heat shock protein 70 as a supplementary receptor facilitates enterovirus 71 infections in vitro[J]. Microb Pathog, 2019, 128, 106- 111.
|
15 |
HAN C , XIE Z , LV Y , et al. Direct interaction of the molecular chaperone GRP78/BiP with the Newcastle disease virus hemagglutinin-neuraminidase protein plays a vital role in viral attachment to and infection of culture cells[J]. Front Immunol, 2023, 14, 1259237.
doi: 10.3389/fimmu.2023.1259237
|
16 |
SHOKEEN K , SRIVATHSAN A , KUMAR S . Lithium chloride functions as Newcastle disease virus-induced ER-stress modulator and confers anti-viral effect[J]. Virus Res, 2021, 292, 198223.
doi: 10.1016/j.virusres.2020.198223
|
17 |
YE T , JIANG K , WEI L , et al. Oncolytic Newcastle disease virus induces autophagy-dependent immunogenic cell death in lung cancer cells[J]. Am J Cancer Res, 2018, 8 (8): 1514- 1527.
|
18 |
ZHANG D , DING Z , XU X . Pathologic mechanisms of the Newcastle disease virus[J]. Viruses, 2023, 15 (4): 864.
doi: 10.3390/v15040864
|
19 |
ZHAN Y , YU S , YANG S , et al. Newcastle disease virus infection activates PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways to benefit viral mRNA translation via interaction of the viral NP protein and host eIF4E[J]. PLoS Pathog, 2020, 16 (6): e1008610.
doi: 10.1371/journal.ppat.1008610
|
20 |
KAUR R , BATRA J , STUCHLIK O , et al. Heterogeneous ribonucleoprotein A1 (hnRNPA1) interacts with the nucleoprotein of the influenza A virus and impedes virus replication[J]. Viruses, 2022, 14 (2): 199.
doi: 10.3390/v14020199
|
21 |
OGLESBEE M J , LIU Z , KENNEY H , et al. The highly inducible member of the 70 ku family of heat shock proteins increases canine distemper virus polymerase activity[J]. J Gen Virol, 1996, 77 (Pt 9): 2125- 2135.
|
22 |
KUMSTA C , JAKOB U . Redox-regulated chaperones[J]. Biochemistry, 2009, 48 (22): 4666- 4676.
doi: 10.1021/bi9003556
|
23 |
AGOSTINI I , POPOV S , LI J , et al. Heat-shock protein 70 can replace viral protein R of HIV-1 during nuclear import of the viral preintegration complex[J]. Exp Cell Res, 2000, 259 (2): 398- 403.
doi: 10.1006/excr.2000.4992
|
24 |
TAKASHIMA K , OSHIUMI H , MATSUMOTO M , et al. DNAJB1/HSP40 suppresses melanoma differentiation-associated gene 5-mitochondrial antiviral signaling protein function in conjunction with HSP70[J]. J Innate Immun, 2018, 10 (1): 44- 55.
doi: 10.1159/000480740
|
25 |
SUN M , YU Z , MA J , et al. Down-regulating heat shock protein 27 is involved in porcine epidemic diarrhea virus escaping from host antiviral mechanism[J]. Vet Microbiol, 2017, 205, 6- 13.
doi: 10.1016/j.vetmic.2017.04.031
|
26 |
LE Y , JIA P , JIN Y , et al. The antiviral role of heat shock protein 27 against red spotted grouper nervous necrosis virus infection in sea perch[J]. Fish Shellfish Immunol, 2017, 70, 185- 194.
doi: 10.1016/j.fsi.2017.08.032
|
27 |
HAUSER H , SHEN L , GU Q L , et al. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines[J]. Gene Ther, 2004, 11 (11): 924- 932.
doi: 10.1038/sj.gt.3302160
|