畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2765-2777.doi: 10.11843/j.issn.0366-6964.2025.06.021
谷博1(), 王安琪2, 于鑫淼1, 郭俊彤1, 杨一1, 邓祎婕1, 姜怀志2,*(
)
收稿日期:
2024-11-25
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
姜怀志
E-mail:494024036@qq.com;jianghz6806@126.com
作者简介:
谷博(1986-),女,吉林省吉林市人,博士,讲师,主要从事绵山羊遗传育种与种质资源创新研究,E-mail:494024036@qq.com
基金资助:
GU Bo1(), WANG Anqi2, YU Xinmiao1, GUO Juntong1, YANG Yi1, DENG Yijie1, JIANG Huaizhi2,*(
)
Received:
2024-11-25
Online:
2025-06-23
Published:
2025-06-25
Contact:
JIANG Huaizhi
E-mail:494024036@qq.com;jianghz6806@126.com
摘要:
旨在解析非编码RNA (non-coding RNA, ncRNA)对绵羊卵巢发育过程的分子调控机制,筛选提高绵羊繁殖力的关键基因。本研究以多胎型(小尾寒羊)和单胎型(乌珠穆沁羊)绵羊为材料,选取健康成年母羊各3只,构建卵巢组织ncRNA及mRNA表达谱,筛选差异表达(differentially expressed, DE) lncRNAs、circRNAs、miRNAs及mRNAs,并对其进行靶基因预测以及功能和信号通路的富集分析,筛选出繁殖相关通路进一步构建ceRNA (lncRNA-miRNA-mRNA和circRNA-miRNA-mRNA)调控网络,最后总结调控网络中的关键miRNA。结果显示,乌珠穆沁羊和小尾寒羊卵巢组织共筛选出差异表达lncRNAs共1 579个,circRNA共561个,miRNAs共175个及mRNAs共3 095个。GO和KEGG富集分析结果显示,差异表达的靶基因显著富集于胚胎的形态发生、减数分裂的激活等生物过程及粘蛋白型O-聚糖生物合成、鞘糖脂生物合成、精氨酸鸟氨酸代谢等信号通路。筛选繁殖相关通路上富集到的差异表达基因,构建1个ceRNA网络(包含87个lncRNA,27个circiRNA,3个miRNA和3个mRNA),获得3个关键miRNAs (miR-140、miR-338及miR-423-5p)及对应的靶向调控ceRNA网络。采用qRT-PCR方法对随机选取的9个差异表达lncRNAs、circRNAs、miRNAs、mRNAs进行验证,结果证实了RNA-seq测序的准确性。本研究对DE ncRNAs与对应靶基因的协调调控机制进行分析,为阐明调控绵羊卵巢发育的关键基因及分子机制提供有效理论依据,进而充分了解绵羊的繁殖生物学特性,对于提高繁殖效率具有重要指导意义。
中图分类号:
谷博, 王安琪, 于鑫淼, 郭俊彤, 杨一, 邓祎婕, 姜怀志. 基于全转录组测序的2个不同品种绵羊卵巢ceRNA网络构建及关键miRNA的筛选[J]. 畜牧兽医学报, 2025, 56(6): 2765-2777.
GU Bo, WANG Anqi, YU Xinmiao, GUO Juntong, YANG Yi, DENG Yijie, JIANG Huaizhi. Construction of Ovarian ceRNA Networks and Screening of Key miRNA in Two Different Breeds of Sheep Based on Whole Transcription Sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2765-2777.
表 1
qRT-PCR引物序列信息"
目的基因 Gene name | 引物序列(5′→3′) Sequence information | 长度/bp Length | 退火温度/℃ Annealing temperature |
β-actin | F: GATCTGGCACCACACCTTCTA | 115 | 60 |
R: GATCTGGGTCATCTTCTCACG | |||
MSTRG.7755 | F: GCGTTGCTCTGTTCTTTATCTCCTG | 144 | 60 |
R: ACCTGTGCTGTCTGAGTCTTGTG | |||
MSTRG.25228 | F: CCTGATCTTGTCCATCGTCCTATCC | 123 | 60 |
R: GGGAACTGACCAAGGATGATAAGGG | |||
MSTRG.28959 | F: TGCTAAGCCTATGCCACTAGATGC | 128 | 60 |
R: CTCAAAGTCACCAGTTTCCCAAAGG | |||
circRNA4099 | F: TGGAGCCTGTAATAACATGTGAC | 259 | 60 |
R: AGTTCCGCTGTGTTTGCATC | |||
circRNA2195 | F: GGCTGGAGGTTTAAGAAGCG | 125 | 60 |
R: TTGAGGAAGGCAGACAGGTC | |||
circRNA15689 | F: GTGAGCAAATTGTGGAAGTTGGA | 102 | 60 |
R: GGCTTCAAATCTCATGCCCG | |||
CXCR1 | F: GCTGACCTGCTCTTCGCCATG | 160 | 60 |
R: GGTAGCGGTCCATGCTGATGC | |||
POLR2I | F: AGTGGCAGGACTGGAGTTCGG | 145 | 60 |
R: GGTCTTCGGTTCGCGGCAAC | |||
RPS20 | F: CCAGCCGCAACGTGAAGTCTC | 81 | 60 |
R: GCCGACCTCGCTCAGAACAAG | |||
oar-miR-433-3p | F: AACGGCATCATGATGGGCTCC | 65 | 60 |
R: ATCCAGTGCAGGGTCCGAGG | |||
oar-miR-200c | F: AAGCGCCTTAATACTGCCGGG | 65 | 60 |
R: ATCCAGTGCAGGGTCCGAGG | |||
oar-mir-221-p5 | F: CCTGCTGGACCTGGCATACAAT | 65 | 60 |
R: ATCCAGTGCAGGGTCCGAGG | |||
U6 | F: ATCCAGTGCAGGGTCCGAGG | 65 | 60 |
R: TGAAGCGTGCTCGCTTCGGC |
表 2
lncRNA和circRNA测序数据产出质量情况"
样本 Sample | 原始数据 Raw data | 有效数据 Valid data | 参考基因组比对率 Mapping rate | Q20/% | Q30/% | GC含量/% GC content |
Sad_1 | 94 092 386 | 91 107 390 | 86 158 306(94.57%) | 99.96 | 97.78 | 45.00 |
Sad_2 | 97 790 686 | 94 803 474 | 89 533 252(94.44%) | 99.96 | 97.71 | 45.00 |
Sad_3 | 89 825 602 | 86 701 034 | 80 875 819(93.28%) | 99.97 | 98.16 | 48.50 |
C_1 | 69 188 934 | 67 121 848 | 62 676 263(93.38%) | 99.84 | 97.85 | 46.00 |
C_2 | 75 845 456 | 73 401 010 | 67 841 183(92.43%) | 99.84 | 97.91 | 45.50 |
C_3 | 77 539 444 | 75 024 956 | 69 565 183(92.72%) | 99.82 | 97.81 | 46.00 |
表 3
sRNA测序数据产出质量情况"
样本 Sample | 原始数据 Raw data | 有效数据 Valid data | 参考基因组比对率 Mapping rate | Q20/% | Q30/% | GC含量/% GC content |
Sad_1 | 10 567 624 | 7 951 578 | 7 868 882 (98.96%) | 97.92 | 96.91 | 51.40 |
Sad_2 | 9 796 916 | 6 971 109 | 6 893 729(98.89%) | 97.92 | 96.96 | 51.22 |
Sad_3 | 10 036 758 | 6 868 427 | 6 794 248 (98.92%) | 97.29 | 96.07 | 51.11 |
C_1 | 11 418 221 | 5 627 660 | 5 587 704 (99.18%) | 99.29 | 97.37 | 51.24 |
C_2 | 9 754 842 | 5 237 938 | 5 189 225 (99.07%) | 99.30 | 97.44 | 51.07 |
C_3 | 10 715 275 | 7 225 151 | 7 142 062(98.85%) | 99.23 | 97.18 | 50.95 |
1 | MA N , TIE C , YU B , et al. Identifying lncRNA-miRNA-mRNA networks to investigate Alzheimer's disease pathogenesis and therapy strategy[J]. Aging (Albany NY), 2020, 12 (3): 2897- 2920. |
2 |
REN J , JIANG C , ZHANG H , et al. LncRNA-mediated ceRNA networks provide novel potential biomarkers for peanut drought tolerance[J]. Physiol Plant, 2022, 174 (1): e13610.
doi: 10.1111/ppl.13610 |
3 |
YANG T , QIU L , YONG J , et al. Identification, biogenesis, and function prediction of a novel circRNA3238 of chicken[J]. Anim Biotechnol, 2023, 34 (7): 2527- 2536.
doi: 10.1080/10495398.2022.2102504 |
4 | 牛熙. 香猪发情期卵巢lncRNA表达分析及调控网络研究[D]. 贵阳: 贵州大学, 2023. |
NIU X. Analysis of ovarian lncRNA expression and regulatory network in perfumed pigs during estrus[D]. Guiyang: Guizhou University, 2023. (in Chinese) | |
5 | 张珂, 张敏, 李添宝, 等. 广西麻鸡卵巢组织中差异lncRNA筛选及ceRNA网络构建[J]. 中国畜牧兽医, 2024, 51 (7): 2739- 2750. |
ZHANG K , ZHANG M , LI T B , et al. Screening of differential lncRNAs and construction of ceRNA network in ovary tissue of Guangxi Ma chicken[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (7): 2739- 2750. | |
6 | 孟朝轶, 王运路, 姚一龙, 等. lncRNA-MSTRG.7889.1竞争性结合bta-miR-146a靶向Smad4调控牦牛颗粒细胞的凋亡[J]. 中国农业科学, 2024, 57 (4): 797- 809. |
MENG C Y , WANG Y L , YAO Y L , et al. lncRNA-MSTRG.7889.1 competitively binds to bta-miR-146a targeting Smad4 to regulate apoptosis of yak granulosa cells[J]. Scientia Agricultura Sinica, 2024, 57 (4): 797- 809. | |
7 |
刘在霞, 刘永斌, 石彩霞, 等. 不同繁殖力绵羊卵巢转录组比较分析[J]. 中国农业大学学报, 2023, 28 (12): 132- 143.
doi: 10.11841/j.issn.1007-4333.2023.12.12 |
LIU Z X , LIU Y B , SHI C X , et al. Comparative analysis of ovary transcriptome of sheep with different fecundity[J]. Journal of China Agricultural University, 2023, 28 (12): 132- 143.
doi: 10.11841/j.issn.1007-4333.2023.12.12 |
|
8 |
SHARIATI GAZGAZAREH P , MASOUDI A , VAEZ TORSGIZI R , et al. Gene expression pattern and molecular mechanisms involved in Shal and Sangsari sheep fertility using RNA-Seq[J]. Reprod Domest Anim, 2023, 58 (4): 548- 559.
doi: 10.1111/rda.14325 |
9 |
WANG C , ZHAO Y , YUAN Z , et al. Genome-wide identification of mRNAs, lncRNAs, and proteins, and their relationship with sheep fecundity[J]. Front Genet, 2022, 12, 750947.
doi: 10.3389/fgene.2021.750947 |
10 | 马淑娇. 蒙古羊和乌珠穆沁羊LEPR基因的多态性及其与多胎性状的关联性分析[D]. 呼和浩特: 内蒙古大学, 2022. |
MA S J. Association between novel ploymorphisms in LEPR gene and litter size in mongolia and ujimoin sheep breeds[D]. Hohhot: Inner Mongolia Agricultural University, 2022. (in Chinese) | |
11 |
MARTIN M . Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet J, 2011, 17 (1): 10.
doi: 10.14806/ej.17.1.200 |
12 |
KIM D , PAGGI J M , PARK C , et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nat Biotechnol, 2019, 37 (8): 907- 915.
doi: 10.1038/s41587-019-0201-4 |
13 |
KIM D , LANGMEAD B , SALZBERG S L . HISAT: A fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12 (4): 357- 360.
doi: 10.1038/nmeth.3317 |
14 |
PERTEA M , KIM D , PERTEA G M , et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown[J]. Nat Protoc, 2016, 11 (9): 1650- 1667.
doi: 10.1038/nprot.2016.095 |
15 |
ZHANG X , DONG R , ZHANG Y , et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016, 26 (9): 1277- 1287.
doi: 10.1101/gr.202895.115 |
16 |
GAO Y , WANG J , ZHAO F . CIRI: An efficient and unbiased algorithm for de novo circular RNA identification[J]. Genome Biol, 2015, 16 (1): 4.
doi: 10.1186/s13059-014-0571-3 |
17 | ZHU L , LI N , SUN L , et al. Non-coding RNAs: The key detectors and regulators in cardiovascular disease[J]. Genomics, 2021, 113 (1 Pt 2): 1233- 1246. |
18 |
YANG D , WANG Y , ZHENG Y , et al. Silencing of lncRNA UCA1 inhibited the pathological progression in PCOS mice through the regulation of PI3K/AKT signaling pathway[J]. J Ovarian Res, 2021, 14 (1): 48.
doi: 10.1186/s13048-021-00792-2 |
19 |
SU T , YU H , LUO G , et al. The Interaction of lncRNA XLOC-2222497, AKR1C1, and Progesterone in Porcine Endometrium and Pregnancy[J]. Int J Mol Sci, 2020, 21 (9): 3232.
doi: 10.3390/ijms21093232 |
20 |
LI J , CAO Y , XU X , et al. Increased new lncRNA-mRNA gene pair levels in human cumulus cells correlate with oocyte maturation and embryo development[J]. Reprod Sci, 2015, 22 (8): 1008- 1014.
doi: 10.1177/1933719115570911 |
21 |
YERUSHALMI G M , SALMON-DIVON M , YUNG Y , et al. Characterization of the human cumulus cell transcriptome during final follicular maturation and ovulation[J]. Mol Hum Reprod, 2014, 20 (8): 719- 735.
doi: 10.1093/molehr/gau031 |
22 | 岳炳霖. 牛circRNA的ceRNA网络构建及调控牛骨骼肌细胞发育的功能机制研究[D]. 杨凌: 西北农林科技大学, 2021. |
YUE B L. Construction of the ceRNA network of bovine circRNA and the functional mechanism of regulating the development of bovine skeletal muscle cells[D]. Yangling: Northwest A&F University, 2021. (in Chinese) | |
23 | 刘梦馨, 杜双杨, 杨京沧, 等. lncRNA作为竞争性内源分子的作用机制及研究进展[J]. 中国畜牧兽医, 2021, 48 (10): 3604- 3613. |
LIU M X , DU S Y , YANG J C , et al. Mechanism and research progress of lncrnas copetitive endogenous molecules[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (10): 3604- 3613. | |
24 |
DUAN B , XU X Z S . How to break a fever: A feedback circuit for body temperature control[J]. Neuron, 2019, 103 (2): 179- 181.
doi: 10.1016/j.neuron.2019.06.023 |
25 | 陈玉林, 刘玉芳, 储明星. 非编码RNA在动物繁殖中的研究进展[J]. 中国草食动物学, 2023, 43 (6): 39- 44. |
CHEN Y L , LIU Y F , CHU M X . Research Progress of Non-coding RNA in Animal Reproduction[J]. China Herbivore Science, 2023, 43 (6): 39- 44. | |
26 | 吴士良. 黏蛋白型O-聚糖: 结构、功能及与肿瘤的相关性[J]. 生命科学, 2011, 23 (6): 563- 568. |
WU S L . Mucin-type O-glycans in human cancer: structures and functions[J]. Chinese Bulletin of Life Sciences, 2011, 23 (6): 563- 568. | |
27 | 陈尔希蒂. MiR-140-3p在卵巢储备功能减退中的表达及其相关功能机制研究[D]. 杭州: 浙江大学, 2021. |
CHEN E X D. The roles and mechanisms of miR-140-3p in the diminished ovarian reserve[D]. Hangzhou: Zhejiang University, 2021. (in Chinese) | |
28 | DUAN P , HA M , HUANG X , et al. Intronic miR-140-5p contributes to beta-cypermethrin-mediated testosterone decline[J]. Sci Total Environ, 2022, 806 (Pt.1): 10517. |
29 | 杨俊, 祝徳, 段智慧, 等. miR-140抑制卵巢癌细胞增殖促进卵巢癌细胞凋亡及靶向抑制CMTM6表达[J]. 中国组织化学与细胞化学杂志, 2022, 31 (6): 582- 591. |
YANG J , ZHU D , DUAN Z H , et al. Inhibition of proliferation, promotion of apoptosis, and target inhibition of CMTM6 expression by miR-140 in ovarian cancer cells[J]. Chinese Journal of Histochemistry and Cytochemistry, 2022, 31 (6): 582- 591. | |
30 | 刘娇. Circ_0000231通过miR-140结合RAP1B介导卵巢癌细胞恶性生物学行为及紫杉醇耐药的机制研究[D]. 沈阳: 中国医科大学, 2022. |
LIU J. The study on mechanisms of circ_0000231 competitively binds to miR-140/RAP1B to further mediate malignant biological behavior of ovarian cancer cells and paclitaxel resistance[D]. Shenyang: China Medical University, 2022. (in Chinese) | |
31 | 吴大英, 张秀艳, 李霞, 等. 兔抗人MiR-338抗体制备与鉴定[J]. 九江学院学报(自然科学版), 2020, 35 (2): 96- 99. |
WU D Y , ZHANG X Y , LI X , et al. Preparation and identification of rabbit anti-human antibody of miR-338[J]. Journal of jiujiang University (natural sciences), 2020, 35 (2): 96- 99. | |
32 | 张瑞涛, 李松, 史惠蓉, 等. 卵巢上皮性癌细胞中miR-338-3p过表达对MACC1表达及细胞迁移和侵袭的影响[J]. 郑州大学学报(医学版), 2021, 56 (1): 32- 38. |
ZHANG R T , LI S , SHI H R , et al. Effects of miR-338-3p overexpression in epithelial ovarian cancer cells on MACC1 expression and cell migration and invasion[J]. Journal of Zhengzhou University(Medical Sciences), 2021, 56 (1): 32- 38. | |
33 | ZHANG R , SHI H , REN F , et al. MicroRNA-338-3p suppresses ovarian cancer cells growth and metastasis: implication of Wnt/catenin beta and MEK/ERK signaling pathways[J]. J Exp Clin Cancer Res, 2024, 43 (1): 48. |
34 | 赵凌. LncPHLPP1-miR-338-y-CCND1轴调控PI3K/AKT通路对牦牛卵泡体细胞增殖分化的影响[D]. 兰州: 甘肃农业大学, 2023. |
ZHAO L. Effect of lncPHLPP1-miR-338-y-CCND1 axis regulation PI3K/AKT pathway on proliferation and differentiation of yak follicular somatic cells[D]. Lanzhou: Gansu Agricultural University, 2023. (in Chinese) | |
35 | 徐子雯. MiR-338-3p通过影响颗粒细胞功能和卵泡发育参与卵巢储备调控的机制研究[D]. 郑州: 郑州大学, 2021. |
XU Z W. MiR-338-3p participates in the regulation of ovarian reserve by affecting granulosa cell function and follicular development[D]. Zhengzhou: Zhengzhou University, 2021. (in Chinese) | |
36 | 金雪峰, 杨广宇. 鞘糖脂与肿瘤疾病相关性研究进展[J]. 中国临床新医学, 2021, 14 (10): 976- 980. |
JIN X F , YANG G Y . Research progress in the correlation between glycosphingolipids and tumor diseases[J]. Chinese Journal of New Clinical Medicine, 2021, 14 (10): 976- 980. | |
37 | 李晓荣, 仲佳雯, 秦岭, 等. 卵巢储备功能减退和卵巢早衰模型小鼠的差异蛋白质组学研究[J]. 广东医学, 2024, 45 (1): 68- 76. |
LI X R , ZHONG J W , QIN L , et al. Differential proteomic study of ovarian reserve decline and premature ovarian insufficiency model mice[J]. Guangdong Medical Journal, 2024, 45 (1): 68- 76. | |
38 | 陈雪峰, 王春琳, 顾志敏, 等. 罗氏沼虾(Macrobrachium rosenbergii)卵巢发育不同时期转录组分析[J]. 海洋与湖沼, 2019, 50 (2): 398- 408. |
CHEN X F , WANG C L , GU Z M , et al. Transcriptome analysis of Macrobrachium rosenbergii ovary in four development stages[J]. Oceanologia Et Limnologia Sinica, 2019, 50 (2): 398- 408. | |
39 | 衣欢, 郑祥钦, 宋建榕, 等. 卵巢癌外泌体携运miRNAs调控葡萄糖代谢生物信息学分析[J]. 福建医药杂志, 2019, 41 (5): 117- 119. |
YI H , ZHENG X Q , SONG J R , et al. Bioinformatics analysis of ovarian-cancer-secreted exosomal miRNAs regulation glucose metabolism[J]. Fujian Medical Journal, 2019, 41 (5): 117- 119. | |
40 | XU X , GUAN R , GONG K , et al. Circ_FURIN knockdown assuages Testosterone-induced human ovarian granulosa-like tumor cell disorders by sponging miR-423-5p to reduce MTM1 expression in polycystic ovary syndrome[J]. Reprod Biol Endocrinol, 2022, 20 (1): 32. |
41 | SUI S , JIA Y , HE B , et al. Maternal low-protein diet alters ovarian expression of folliculogenic and steroidogenic genes and their regulatory microRNAs in neonatal piglets[J]. Asian-Australas J Anim Sci, 2014, 27 (12): 1695- 1704. |
42 | 于兰兰. 参与初情期启动的山羊卵巢miRNA筛选与鉴定[D]. 合肥: 安徽农业大学, 2016. |
YU L L. Screening and identification of ovarian miRNA involved in puberty initiation in goat[D]. Hefei: Anhui Agricultural University, 2016. (in Chinese) | |
43 | 宋洋, 任芳. miR-423-5p在卵巢癌组织中的表达及对癌细胞增殖的影响[J]. 医学临床研究, 2018, 35 (9): 1675- 1678. |
SONG Y , REN F . Effect of miR-423-5p expression on the proliferatioan ovarian cancer cells[J]. Journal of Clinical Research, 2018, 35 (9): 1675- 1678. | |
44 | 孔亚茹. 猪有腔卵泡内卵母细胞成熟的转录组分析[D]. 广州: 华南农业大学, 2020. |
KONG Y R. Transcriptome analysis of oocyte maturation in pig antrum follicles[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese) | |
45 | YEO H L , FAN T C , LIN R J , et al. Sialylation of vasorin by ST3Gal1 facilitates TGF-β1-mediated tumor angiogenesis and progression[J]. Int J Cancer, 2019, 144 (8): 1996- 2007. |
[1] | 罗睿杰, 王建魁, 曹素英. 敖汉细毛羊的粗毛返祖性状相关lncRNA-mRNA的联合测序分析[J]. 畜牧兽医学报, 2025, 56(6): 2685-2700. |
[2] | 石闪闪, 万琼飞, 许赢心, 王秋硕, 张林林, 郭益文, 胡德宝, 郭宏, 丁向彬, 李新. 牛骨骼肌不同发育阶段miRNA测序及生物信息学分析[J]. 畜牧兽医学报, 2025, 56(6): 2701-2710. |
[3] | 朱海燕, 张菁怡, 晏雪勇, 梁海平, 魏庆, 曹际, 黄建珍. 基于转录组探究光周期对泰和乌鸡产蛋性能影响的分子机制[J]. 畜牧兽医学报, 2025, 56(5): 2123-2135. |
[4] | 李雪源, 杨利峰, 赵德明. 犬卵巢肿瘤病理诊断及分析[J]. 畜牧兽医学报, 2025, 56(5): 2393-2402. |
[5] | 郭妍岩, 张羽欣, 陆瑞, 李玉鹏, 陈龙宾, 张金龙, 姚大为, 阮维斌, 张效生, 郭晓飞. 哺乳动物卵泡发育阶段颗粒细胞增殖与分化的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1484-1493. |
[6] | 王莹, 张姣姣, 王鲜忠, 权富生. 卵巢颗粒细胞自噬研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1508-1517. |
[7] | 李笑微, 田微, 刘媛, 李惠侠. 高温应激下湖羊卵巢颗粒细胞m6A甲基化修饰差异研究[J]. 畜牧兽医学报, 2025, 56(4): 1712-1721. |
[8] | 叶润根, 刘渊博, 路丽丽, Collins Amponsah Asiamah, 苏瑛. miR-215-5p在雷州黑鸭组织中的表达及其对卵泡颗粒细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2025, 56(4): 1722-1730. |
[9] | 灭列·马达尼牙提, 孙萌, 褚瑰燕. Hedgehog信号通路在动物卵巢卵泡发育和类固醇生成中的调控作用[J]. 畜牧兽医学报, 2025, 56(3): 969-978. |
[10] | 陈琼, 毛帅翔, 吴龙飞, 杨闯, 孙宝丽. 雷琼牛和陆丰牛半腱肌的lncRNA表达特征及其在骨骼肌发育和脂肪沉积中的ceRNA网络分析[J]. 畜牧兽医学报, 2025, 56(3): 1203-1215. |
[11] | 杨杨, 李良远, 万鹏程, 卢守亮, 刘长彬, 杨华, 王立民, 代蓉, 周平. 绵羊季节性发情性状核心基因和关键lncRNA的筛选与分析[J]. 畜牧兽医学报, 2025, 56(3): 1264-1277. |
[12] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
[13] | 卢建, 马猛, 郭军, 王星果, 窦套存, 胡玉萍, 王强, 李永峰, 邵丹, 童海兵, 郭杰, 曲亮. 育成期能量限饲及转换为自由采食调控开产时蛋鸡生殖器官发育的关键基因和信号通路研究[J]. 畜牧兽医学报, 2025, 56(2): 737-754. |
[14] | 王磊, 白少成, 王森, 鲍志远, 蔡佳炜, 刘燕, 赵博昊, 吴信生, 陈阳. SRD5A2对兔颗粒细胞增殖、凋亡和类固醇激素合成相关基因表达的影响[J]. 畜牧兽医学报, 2025, 56(1): 259-268. |
[15] | 高语馨, 刘青, 陈继兰, 麻慧. miRNAs介导寄生虫和宿主互作机制的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3812-3823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||