畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 969-978.doi: 10.11843/j.issn.0366-6964.2025.03.001
收稿日期:
2024-08-29
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
褚瑰燕
E-mail:3528685906@qq.com;3624815055@qq.com;guiyanchu@nwafu.edu.cn
作者简介:
灭列·马达尼牙提(1996-),女,哈萨克族,新疆阿勒泰人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail:3528685906@qq.com灭列·马达尼牙提与孙萌为同等贡献作者
基金资助:
MIELIE·Madaniyati (), SUN Meng(
), CHU Guiyan*(
)
Received:
2024-08-29
Online:
2025-03-23
Published:
2025-04-02
Contact:
CHU Guiyan
E-mail:3528685906@qq.com;3624815055@qq.com;guiyanchu@nwafu.edu.cn
摘要:
Hedgehog(HH)信号通路是参与胚胎形成的关键途径之一,它在从果蝇到人类的进化过程中广泛分布且保持高度保守性,对多种器官的发育起到了至关重要的作用。研究指出,HH信号通路在卵巢卵泡的生长、颗粒细胞的增殖、卵母细胞的成熟、类固醇激素的合成以及排卵过程中扮演着重要的调节角色。本文基于现有研究成果,详细回顾了HH信号通路在卵巢卵泡生长、卵母细胞成熟、排卵以及类固醇激素合成中的调控功能,并概述了由于HH信号通路异常导致生殖能力下降的几种卵巢疾病的最新研究动态,旨在为提升雌性繁殖能力及卵巢疾病的治疗提供理论支持。
中图分类号:
灭列·马达尼牙提, 孙萌, 褚瑰燕. Hedgehog信号通路在动物卵巢卵泡发育和类固醇生成中的调控作用[J]. 畜牧兽医学报, 2025, 56(3): 969-978.
MIELIE·Madaniyati , SUN Meng, CHU Guiyan. The Regulatory Function of the Hedgehog Signaling Pathway in Follicle Development and Steroidogenesis of Animal Ovary[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 969-978.
表 1
Hedgehog信号通路在卵巢生理中的作用"
卵巢生理 Ovarian physiology | 作用 Function | 参考文献 Reference |
卵泡发育 Follicular development | HH信号通路通过调控GCs和卵母细胞之间的双向信号传导及靶基因的表达,促进卵泡细胞的增殖与分泌,维持卵泡储备,促进卵泡生长 | [ |
卵母细胞成熟 Oocyte maturation | HH信号通路通过调控卵泡干细胞的自噬和死亡,调节卵母细胞相关基因及表达,并与外源因子(如褪黑素、黄芩苷等)产生互作,降低氧化应激,促进卵母细胞成熟和胚胎发育 | [ |
排卵 Ovulation | HH信号通过调控卵巢细胞充分分化,增强GCs对LH的反应性及与IGF系统的相互作用, 促进排卵及黄体形成 | [ |
类固醇激素合成 Steroid hormone synthesis | HH信号的激活通过上调类固醇生成酶的表达诱导胆固醇转化为类固醇激素 | [ |
表 2
Hedgehog信号通路在卵巢病理中的作用"
卵巢病理 Ovarian pathology | 作用 Function | 参考文献 Reference |
多囊卵巢综合征 Polycystic ovarian syndrome | HH信号的异常激活可能通过调节颗粒细胞氧化应激和凋亡及其与代谢紊乱的关系促进PCOS的发生 | [ |
卵巢早衰和卵巢功能不全Premature ovarian failure and ovarian insufficiency | HH信号通过调节卵泡发育,缓解氧化应激,增加原始卵泡数量以及促进FGSCs增殖和干性,调节卵母细胞质量和延缓生殖衰退速度 | [ |
卵巢癌 Carcinoma of ovary | HH信号通路通过DNA损伤修复、DNA甲基化和上皮-间质转化诱导耐药,抑制卵巢癌细胞的生长,并在体内抑制肿瘤的生长 | [ |
1 |
LI L Y , SHI X J , SHI Y , et al. The signaling pathways involved in ovarian follicle development[J]. Front Physiol, 2021, 12, 730196.
doi: 10.3389/fphys.2021.730196 |
2 |
YAO X L , EI-SAMAHY M A , XIAO S H , et al. CITED4 mediates proliferation, apoptosis and steroidogenesis of Hu sheep granulosa cells in vitro[J]. Reproduction, 2021, 161 (3): 255- 267.
doi: 10.1530/REP-20-0427 |
3 |
ZHANG Y X , BEACHY P A . Cellular and molecular mechanisms of Hedgehog signalling[J]. Nat Rev Mol Cell Biol, 2023, 24 (9): 668- 687.
doi: 10.1038/s41580-023-00591-1 |
4 |
DILOWER I , NILOY A J , KUMAR V , et al. Hedgehog signaling in gonadal development and function[J]. Cells, 2023, 12 (3): 358.
doi: 10.3390/cells12030358 |
5 |
HUANG C C J , YAO H H C . Diverse functions of Hedgehog signaling in formation and physiology of steroidogenic organs[J]. Mol Reprod Dev, 2010, 77 (6): 489- 496.
doi: 10.1002/mrd.21174 |
6 |
FINCO I , LAPENSEE C R , KRILL K T , et al. Hedgehog signaling and steroidogenesis[J]. Annu Rev Physiol, 2015, 77, 105- 129.
doi: 10.1146/annurev-physiol-061214-111754 |
7 |
SARI I N , PHI L T H , JUN N , et al. Hedgehog signaling in cancer: a prospective therapeutic target for eradicating cancer stem cells[J]. Cells, 2018, 7 (11): 208.
doi: 10.3390/cells7110208 |
8 |
SKODA A M , SIMOVIC D , KARIN V , et al. The role of the Hedgehog signaling pathway in cancer: a comprehensive review[J]. Bosn J Basic Med Sci, 2018, 18 (1): 8- 20.
doi: 10.17305/bjbms.2018.2756 |
9 |
SIGAFOOS A N , PARADISE B D , FERNANDEZ-ZAPICO M E . Hedgehog/GLI signaling pathway: transduction, regulation, and implications for disease[J]. Cancers (Basel), 2021, 13 (14): 3410.
doi: 10.3390/cancers13143410 |
10 |
JIA Y F , WANG Y S , XIE J W . The Hedgehog pathway: role in cell differentiation, polarity and proliferation[J]. Arch Toxicol, 2015, 89 (2): 179- 191.
doi: 10.1007/s00204-014-1433-1 |
11 |
HUI C C , ANGERS S . Gli proteins in development and disease[J]. Annu Rev Cell Dev Biol, 2011, 27, 513- 537.
doi: 10.1146/annurev-cellbio-092910-154048 |
12 | LIU C , RODRIGUEZ K F , BROWN P R , et al. Reproductive, physiological, and molecular outcomes in female mice deficient in Dhh and Ihh[J]. Endocrinology, 2018, 159 (7): 2563- 2575. |
13 |
MONKKONEN T , LEWIS M T . New paradigms for the Hedgehog signaling network in mammary gland development and breast Cancer[J]. Biochim Biophys Acta Rev Cancer, 2017, 1868 (1): 315- 332.
doi: 10.1016/j.bbcan.2017.06.003 |
14 | FRANCO H L , YAO H H C . Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation[J]. Chromosome Res, 2012, 20 (1): 247- 258. |
15 | MEHTA P , SINGH P , GUPTA N J , et al. Mutations in the desert hedgehog (DHH) gene in the disorders of sexual differentiation and male infertility[J]. J Assist Reprod Genet, 2021, 38 (7): 1871- 1878. |
16 | JOHANSSON H K L , SVINGEN T . Hedgehog signal disruption, gonadal dysgenesis and reproductive disorders: is there a link to endocrine disrupting chemicals?[J]. Curr Res Toxico, 2020, 1, 116- 123. |
17 | BIAN Y H , HAHN H , UHMANN A . The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis[J]. Front Endocrinol (Lausanne), 2023, 14, 1219018. |
18 | SEN A , HOFFMANN H M . Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis[J]. Mol Cell Endocrinol, 2020, 501, 110655. |
19 |
RICHARDS J S , REN Y A , CANDELARIA N , et al. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update[J]. Endocr Rev, 2018, 39 (1): 1- 20.
doi: 10.1210/er.2017-00164 |
20 |
LIU C , PENG J , MATZUK M M , et al. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells[J]. Nat Commun, 2015, 6, 6934.
doi: 10.1038/ncomms7934 |
21 | REN Y , COWAN R G , MIGONE F F , et al. Overactivation of hedgehog signaling alters development of the ovarian vasculature in mice[J]. Biol Reprod, 2012, 86 (6): 174. |
22 |
CHEN X , TUKACHINSKY H , HUANG C H , et al. Processing and turnover of the Hedgehog protein in the endoplasmic reticulum[J]. J Cell Biol, 2011, 192 (5): 825- 838.
doi: 10.1083/jcb.201008090 |
23 |
JIANG Y , ZHU D T , LIU W F , et al. Hedgehog pathway inhibition causes primary follicle atresia and decreases female germline stem cell proliferation capacity or stemness[J]. Stem Cell Res Ther, 2019, 10 (1): 198.
doi: 10.1186/s13287-019-1299-5 |
24 |
SINGH T , LEE E H , HARTMAN T R , et al. Opposing action of hedgehog and insulin signaling balances proliferation and autophagy to determine follicle stem cell lifespan[J]. Dev Cell, 2018, 46 (6): 720- 734.e6.
doi: 10.1016/j.devcel.2018.08.008 |
25 |
WANG D C , HUANG J C , LO N W , et al. Sonic Hedgehog promotes in vitro oocyte maturation and term development of embryos in Taiwan native goats[J]. Theriogenology, 2017, 103, 52- 58.
doi: 10.1016/j.theriogenology.2017.07.029 |
26 |
LEE S , JIN J X , TAWEECHAIPAISANKUL A , et al. Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes[J]. J Pineal Res, 2017, 63 (3): e12424.
doi: 10.1111/jpi.12424 |
27 |
LEE S , KANG H G , JEONG P S , et al. Effect of oocyte quality assessed by brilliant cresyl blue (BCB) staining on cumulus cell expansion and sonic hedgehog signaling in porcine during in vitro maturation[J]. Int J Mol Sci, 2020, 21 (12): 4423.
doi: 10.3390/ijms21124423 |
28 |
LIU Y , WEI Z Y , HUANG Y F , et al. Cyclopamine did not affect mouse oocyte maturation in vitro but decreased early embryonic development[J]. Anim Sci J, 2014, 85 (9): 840- 847.
doi: 10.1111/asj.12220 |
29 |
GUO Q , XUAN M F , LUO Z B , et al. Baicalin improves the in vitro developmental capacity of pig embryos by inhibiting apoptosis, regulating mitochondrial activity and activating sonic hedgehog signaling[J]. Mol Hum Reprod, 2019, 25 (9): 538- 549.
doi: 10.1093/molehr/gaz036 |
30 | JEONG P S , KANG H G , SONG B S , et al. Restoration of developmental competence in low-quality porcine cumulus-oocyte complexes through the supplementation of sonic hedgehog protein during in vitro maturation[J]. Animals (Basel), 2023, 13 (6): 1001. |
31 | JOO Y E , JEONG P S , LEE S , et al. Anethole improves the developmental competence of porcine embryos by reducing oxidative stress via the sonic hedgehog signaling pathway[J]. J Anim Sci Biotechnol, 2023, 14 (1): 32. |
32 | GUO Q , LI S , WANG X , et al. Paeoniflorin improves the in vitro maturation of benzo(a)pyrene treated porcine oocytes via effects on the sonic hedgehog pathway[J]. Theriogenology, 2022, 180, 72- 81. |
33 | AAD P Y , ECHTERNKAMP S E , SYPHERD D D , et al. The hedgehog system in ovarian follicles of cattle selected for twin ovulations and births: evidence of a link between the IGF and hedgehog systems[J]. Biol Reprod, 2012, 87 (4): 79. |
34 | PARK Y , PARK Y B , LIM S W , et al. Time series ovarian transcriptome analyses of the porcine estrous cycle reveals gene expression changes during steroid metabolism and corpus luteum development[J]. Animals (Basel), 2022, 12 (3): 376. |
35 | TANG C , PAN Y B , LUO H , et al. Hedgehog signaling stimulates the conversion of cholesterol to steroids[J]. Cell Signal, 2015, 27 (3): 487- 497. |
36 | SIEBOLD C , ROHATGI R . The inseparable relationship between cholesterol and hedgehog signaling[J]. Annu Rev Biochem, 2023, 92, 273- 298. |
37 | JING J J , WU Z X , WANG J H , et al. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies[J]. Sig Transduct Target Ther, 2023, 8 (1): 315. |
38 | LI Y , XIONG G H , TAN J , et al. Aberrant activation of the Hedgehog signaling pathway in granulosa cells from patients with polycystic ovary syndrome[J]. Bioengineered, 2021, 12 (2): 12123- 12134. |
39 | XU X H , ZHANG T R , MOKOU M , et al. Follistatin-like 1 as a novel adipomyokine related to insulin resistance and physical activity[J]. J Clin Endocrinol Metab, 2020, 105 (12): dgaa629. |
40 | ZHOU X , WANG Y P , CHEN W Y , et al. Circulating HHIP levels in women with insulin resistance and PCOS: effects of physical activity, cold stimulation and anti-diabetic drug therapy[J]. J Clin Med, 2023, 12 (3): 888. |
41 | ZHANG J J , CHEN Q , DU D F , et al. Can ovarian aging be delayed by pharmacological strategies?[J]. Aging (Albany NY), 2019, 11 (2): 817- 832. |
42 | VOLLENHOVEN B , HUNT S . Ovarian ageing and the impact on female fertility[J]. F1000Research, 2018, 7, 1835. |
43 | ATA B , SEYHAN A , SELI E . Diminished ovarian reserve versus ovarian aging: overlaps and differences[J]. Curr Opin Obstet Gynecol, 2019, 31 (3): 139- 147. |
44 | SHEIKHANSARI G , AGHEBATI-MALEKI L , NOURI M , et al. Current approaches for the treatment of premature ovarian failure with stem cell therapy[J]. Biomed Pharmacother, 2018, 102, 254- 262. |
45 | ESMAEILIAN Y , ATALAY A , ERDEMLI E . Putative germline and pluripotent stem cells in adult mouse ovary and their in vitro differentiation potential into oocyte-like and somatic cells[J]. Zygote, 2017, 25 (3): 358- 375. |
46 | EBRAHIMI M , AKBARI ASBAGH F . The role of autoimmunity in premature ovarian failure[J]. Iran J Reprod Med, 2015, 13 (8): 461- 472. |
47 | JIANG Y , ZHANG Z Y , CHA L J , et al. Resveratrol plays a protective role against premature ovarian failure and prompts female germline stem cell survival[J]. Int J Mol Sci, 2019, 20 (14): 3605. |
48 | TEMPLEMAN N M , COTA V , KEYES W , et al. CREB non-autonomously controls reproductive aging through hedgehog/patched signaling[J]. Dev Cell, 2020, 54 (1): 92- 105.e5. |
49 | SIEGEL R L , MILLER K D , WAGLE N S , et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73 (1): 17- 48. |
50 | LI H X , LI J H , FENG L M . Hedgehog signaling pathway as a therapeutic target for ovarian cancer[J]. Cancer Epidemiol, 2016, 40, 152- 157. |
51 | KAYE S B , FEHRENBACHER L , HOLLOWAY R , et al. A phase Ⅱ, randomized, placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission[J]. Clin Cancer Res, 2012, 18 (23): 6509- 6518. |
52 | SONG X L , YAN L Y , LU C L , et al. Activation of hedgehog signaling and its association with cisplatin resistance in ovarian epithelial tumors[J]. Oncol Lett, 2018, 15 (4): 5569- 5576. |
53 | STEG A D , KATRE A A , BEVIS K S , et al. Smoothened antagonists reverse taxane resistance in ovarian cancer[J]. Mol Cancer Ther, 2012, 11 (7): 1587- 1597. |
54 | BEN-HAMO R , ZILBERBERG A , COHEN H , et al. Resistance to paclitaxel is associated with a variant of the gene BCL2 in multiple tumor types[J]. npj Precis Oncol, 2019, 3, 12. |
55 | TASSI R A , TODESCHINI P , SIEGEL E R , et al. FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients[J]. J Exp Clin Cancer Res, 2017, 36 (1): 63. |
56 | ZHANG H , HU L Y , CHENG M Z , et al. The Hedgehog signaling pathway promotes chemotherapy resistance via multidrug resistance protein 1 in ovarian cancer[J]. Oncol Rep, 2020, 44 (6): 2610- 2620. |
57 | MENG E H , HANNA A , SAMANT R S , et al. The impact of hedgehog signaling pathway on DNA repair mechanisms in human cancer[J]. Cancers (Basel), 2015, 7 (3): 1333- 1348. |
58 | HUANG R L , GU F , KIRMA N B , et al. Comprehensive methylome analysis of ovarian tumors reveals hedgehog signaling pathway regulators as prognostic DNA methylation biomarkers[J]. Epigenetics, 2013, 8 (6): 624- 634. |
59 | ZHANG K , SUN C P , ZHANG Q , et al. Sonic hedgehog-Gli1 signals promote epithelial-mesenchymal transition in ovarian cancer by mediating PI3K/AKT pathway[J]. Med Oncol, 2015, 32 (1): 368. |
60 | ZHU Q J , YANG X , LV Y C . HERC4 modulates ovarian cancer cell proliferation by regulating SMO-elicited hedgehog signaling[J]. Biochim Biophys Acta Gen Sub, 2024, 1868 (4): 130557. |
61 | THAZHACKAVAYAL BABY B , KULKARNI A M , GAYAM P K R , et al. Beyond cyclopamine: targeting Hedgehog signaling for cancer intervention[J]. Arch Biochem Biophys, 2024, 754, 109952. |
62 | LIU Y B , HE L M , SUN M , et al. A sterol analog inhibits hedgehog pathway by blocking cholesterylation of smoothened[J]. Cell Chem Biol, 2024, 31 (7): 1264- 1276.e7. |
[1] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
[2] | 卢建, 马猛, 郭军, 王星果, 窦套存, 胡玉萍, 王强, 李永峰, 邵丹, 童海兵, 郭杰, 曲亮. 育成期能量限饲及转换为自由采食调控开产时蛋鸡生殖器官发育的关键基因和信号通路研究[J]. 畜牧兽医学报, 2025, 56(2): 737-754. |
[3] | 王磊, 白少成, 王森, 鲍志远, 蔡佳炜, 刘燕, 赵博昊, 吴信生, 陈阳. SRD5A2对兔颗粒细胞增殖、凋亡和类固醇激素合成相关基因表达的影响[J]. 畜牧兽医学报, 2025, 56(1): 259-268. |
[4] | 陈静, 吴薛蓓, 苗冬枝, 张弛, 郭振玉, 王莹. 产蛋间隔前期鸽卵泡转录组比较分析揭示卵泡发育相关基因[J]. 畜牧兽医学报, 2024, 55(8): 3503-3515. |
[5] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. |
[6] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[7] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[8] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[9] | 蒋婷, 李文东, 李兴起, 黄雨, 王启贵, 王海威, 杨朝武, 刘凌斌. 转录组和蛋白组筛选就巢鸡卵巢发育候选基因及其调控网络构建[J]. 畜牧兽医学报, 2024, 55(11): 4950-4967. |
[10] | 周宏泰, 闫俊蓉, 李鹏飞. 转录组测序筛选牛卵泡发育偏差和优势卵泡选择相关基因[J]. 畜牧兽医学报, 2024, 55(11): 5059-5071. |
[11] | 卢建, 居小军, 王星果, 马猛, 王强, 李永峰, 窦套存, 胡玉萍, 郭军, 邵丹, 童海兵, 曲亮. 育成期代谢能摄入量对蛋鸡生殖器官发育、激素水平和卵巢基因表达的影响[J]. 畜牧兽医学报, 2024, 55(11): 5085-5100. |
[12] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
[13] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[14] | 茹盟, 曾文惠, 彭剑玲, 曾庆节, 殷超, 崔勇, 魏庆, 梁海平, 谢贤华, 黄建珍. 蛋鸡卵泡发育及其表观遗传调控机制研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3613-3622. |
[15] | 廖伟莉, 张笑科, 曾检华, 阳林芳, 李硕, 胡梦婷, 郭懿萱, 陈赞谋, 张豪, 李加琪, 袁晓龙. 两广小花猪FOXL2基因多态性及其与几个重要经济性状的关联分析[J]. 畜牧兽医学报, 2023, 54(3): 956-965. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||