畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2724-2732.doi: 10.11843/j.issn.0366-6964.2025.06.017
韩小曼(), 孙少宁, 杨洁, 沈宁, 鲍志远, 蔡佳炜, 赵博昊, 陈阳, 吴信生*(
)
收稿日期:
2024-11-08
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
吴信生
E-mail:1069919686@qq.com;xswu@yzu.edu.cn
作者简介:
韩小曼(2000-),女,安徽阜阳人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail: 1069919686@qq.com
基金资助:
HAN Xiaoman(), SUN Shaoning, YANG Jie, SHEN Ning, BAO Zhiyuan, CAI Jiawei, ZHAO Bohao, CHEN Yang, WU Xinsheng*(
)
Received:
2024-11-08
Online:
2025-06-23
Published:
2025-06-25
Contact:
WU Xinsheng
E-mail:1069919686@qq.com;xswu@yzu.edu.cn
摘要:
旨在探究Msh同源框2(Msh-homebox 2,MSX2)在长毛兔毛囊毛乳头细胞(dermal papilla cell,DPC)增殖中的调控模式。本试验选取12只健康6月龄长毛兔,采集背部皮肤分离培养DPCs, 通过克隆MSX2基因的编码序列(coding sequence,CDS),利用生物信息学对MSX2的生物学特性进行初步分析, 分别探究过表达和敲低MSX2对DPC增殖的影响,及相关基因对其调控作用。结果显示,MSX2基因的编码序列全长807 bp,可编码268个氨基酸。通过在DPCs中过表达与敲低MSX2,检测毛囊发育相关基因的表达水平变化。过表达MSX2后,CCND1、EGF、Wnt2、Hoxc13基因的mRNA表达量极显著升高(P<0.01),STAT1、SFRP2和Wnt5a基因的mRNA表达量显著或极显著下降(P < 0.05或P < 0.01);而敲低MSX2后,则显示出相反的趋势。同时,MSX2能够显著促进DPC增殖。本研究结果为进一步研究MSX2在家兔毛囊发育中的作用提供了理论支持。
中图分类号:
韩小曼, 孙少宁, 杨洁, 沈宁, 鲍志远, 蔡佳炜, 赵博昊, 陈阳, 吴信生. 家兔MSX2基因的克隆表达及生物信息学分析[J]. 畜牧兽医学报, 2025, 56(6): 2724-2732.
HAN Xiaoman, SUN Shaoning, YANG Jie, SHEN Ning, BAO Zhiyuan, CAI Jiawei, ZHAO Bohao, CHEN Yang, WU Xinsheng. Cloning Expression and Bioinformatics Analysis of Rabbit MSX2 Gene[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2724-2732.
表 1
生物信息学预测网址信息表"
项目Projects | 用途Purpose | 网址/软件Software |
ProtParam[ | 蛋白质的氨基酸序列 | |
ProtScale[ | 亲疏水性 | |
SOPMA[ | 蛋白质二级结构 | |
Swiss-Model[ | 蛋白质三级结构 | |
NetPhos | 蛋白的磷酸化位点 | |
蛋白的N-糖基化位点 | ||
STRING数据库[ | 蛋白交联分析 | |
STRING data base | MSX2进化分析 | MEGA 5.1 |
表 3
实时荧光定量PCR引物信息"
基因 Gene | 引物序列(5′→3′) Primers sequence | 产物长度/bp Products length | 退火温度/℃ Tm |
MSX2 | F: CTGCAAGCCACGTCCCTTTA; R: AGGACAAGTGGTACATGCCG | 115 | 60.6 |
CCND1 | F: GAACGCTACCTTCCCCAGTGCTC; R: CCTCACAGACCTCCAGCATCCAG | 103 | 57.2 |
EGF | F: TGGAGTAGGCATGGAGCAAG; R: GCCCCGTAAGATGGTCGATG | 102 | 59.4 |
SFRP2 | F: CCAGCCCGACTTCTCCTACAAGC; R: TCCAGCACCTCTTTCATGGTCT | 135 | 57.5 |
STAT1 | F: CCAGAGGCCAGTCTTGTCAC; R: ACGGAAACACTACCTGGGAC | 112 | 60.3 |
Wnt5a | F: CGCAGGACCTGGTCTACATC; R: CGCTCTGTCTGTACCGTCTT | 175 | 59.9 |
HOXC13 | F: AGAAAGAGTACGCAGCCAGC; R: TCTTCTCTTTGACTCGGCGG | 123 | 60.3 |
Wnt2 | F: AGCCATCCAGGTCGTCATGAACCAG; R: TGCACACACGACCTGCTGTACCC | 164 | 56.3 |
GAPDH | F: CACCAGGGCTGCTTTTAACTCT; R: CTTCCCGTTCTCAGCCTTGACC | 145 | 53.9 |
1 |
STENN K S , PAUS R . Controls of hair follicle cycling[J]. Physiol Rev, 2001, 81 (1): 449- 494.
doi: 10.1152/physrev.2001.81.1.449 |
2 |
POWELL B , CROCKER L , ROGERS G . Hair follicle differentiation: expression, structure and evolutionary conservation of the hair type Ⅱ keratin intermediate filament gene family[J]. Development, 1992, 114 (2): 417- 433.
doi: 10.1242/dev.114.2.417 |
3 |
XING Y Z , XU W , YANG K , et al. Immunolocalization of Wnt5a during the hair cycle and its role in hair shaft growth in mice[J]. Acta Histochem, 2011, 113 (6): 608- 612.
doi: 10.1016/j.acthis.2010.06.006 |
4 | JEONG K H , JOO H J , KIM J E , et al. Effect of mycophenolic acid on proliferation of dermal papilla cells and induction of anagen hair follicles[J]. Z Hautkr, 2015, 40 (8): 894- 902. |
5 |
MORGAN B A . The dermal papilla: An instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle[J]. Cold Spring Harb Perspect Med, 2014, 4 (7): a015180.
doi: 10.1101/cshperspect.a015180 |
6 |
MA J , YANG G , QIN X , et al. Molecular characterization of MSX2 gene and its role in regulating steroidogenesis in yak (Bos grunniens) cumulus granulosa cells[J]. Theriogenology, 2025, 231, 101- 110.
doi: 10.1016/j.theriogenology.2024.10.014 |
7 |
LIN L L , LIANG L N , YANG X , et al. The homeobox transcription factor MSX2 partially mediates the effects of bone morphogenetic protein 4 (BMP4) on somatic cell reprogramming[J]. J Biol Chem, 2018, 293 (38): 14905- 14915.
doi: 10.1074/jbc.RA118.003913 |
8 |
DAI J W , MOU Z F , SHEN S Y , et al. Bioinformatic analysis of Msx1 and Msx2 involved in craniofacial development[J]. J Craniofac Surg, 2014, 25 (1): 129- 134.
doi: 10.1097/SCS.0000000000000373 |
9 | CHENG S , SHAO J , CHARLTON KACHIGIAN N , et al. The osteoblast homeoprotein MSX2 promotes osteogenic differentiation of aortic myofibroblasts[J]. J Bone Miner Res, 2003, 18, S46- S. |
10 |
LIU F , LIANG Y , LIN X J C T R . MiR-151b inhibits osteoblast differentiation via downregulating MSX2[J]. Connect Tissue Res, 2022, 63 (2): 112- 123.
doi: 10.1080/03008207.2021.1882442 |
11 |
KWON D H , CHOE N , SHIN S , et al. Regulation of MDM2 E3 ligase-dependent vascular calcification by MSX1/2[J]. Exp Mol Med, 2021, 53 (11): 1781- 1791.
doi: 10.1038/s12276-021-00708-6 |
12 |
LI B , HUANG Q L , WEI G H . The role of HOX transcription factors in cancer predisposition and progression[J]. Cancers (Basel), 2019, 11 (4): 528.
doi: 10.3390/cancers11040528 |
13 |
RUSPITA I , DAS P , MIYOSHI K , et al. Enam expression is regulated by Msx2[J]. Dev Dyn, 2023, 252 (10): 1292- 1302.
doi: 10.1002/dvdy.598 |
14 |
KULESSA H , TURK G , HOGAN B L M . Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle[J]. EMBO J, 2000, 19 (24): 6664- 6674.
doi: 10.1093/emboj/19.24.6664 |
15 |
RENDL M , POLAK L , FUCHS E . BMP signaling in dermal papilla cells is required for their hair follicle inductive properties[J]. Genes Dev, 2008, 22 (4): 543- 557.
doi: 10.1101/gad.1614408 |
16 | 李佳丽, 刘明, 周娟, 等. 家兔毛乳头细胞的分离、培养和鉴定[J]. 中国养兔, 2020 (3): 4-7+16. |
LI J L , LIU M , ZHOU J , et al. Isolation, Culture and Identification of Rabbit Dermal Papilla Cells[J]. Chinese Journal of Rabbit Farming, 2020 (3): 4-7+16. | |
17 |
DUVAUD S , GABELLA C , LISACEK F , et al. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users[J]. Nucleic Acids Res, 2021, 49 (W1): W216- W227.
doi: 10.1093/nar/gkab225 |
18 |
DELÉAGE G . ALIGNSEC: viewing protein secondary structure predictions within large multiple sequence alignments[J]. Bioinformatics, 2017, 33 (24): 3991- 3992.
doi: 10.1093/bioinformatics/btx521 |
19 |
WATERHOUSE A , BERTONI M , BIENERT S , et al. SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucleic Acids Res, 2018, 46 (W1): W296- W303.
doi: 10.1093/nar/gky427 |
20 |
SZKLARCZYK D , GABLE A L , NASTOU K C , et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49 (D1): D605- D612.
doi: 10.1093/nar/gkaa1074 |
21 |
SCHMITTGEN T D , LIVAK K J . Analyzing real-time PCR data by the comparative[J]. Nat Protoc, 2008, 3 (6): 1101- 1108.
doi: 10.1038/nprot.2008.73 |
22 |
LIN X , ZHU L , HE J J F I C , et al. Morphogenesis, growth cycle and molecular regulation of hair follicles[J]. Front Cell Dev Biol, 2022, 10, 899095.
doi: 10.3389/fcell.2022.899095 |
23 | ZHANG H L , QIU X X , LIAO X H J B . Dermal papilla cells: From basic research to translational applications[J]. Biology (Basel), 2024, 13 (10): 842. |
24 |
GAN Y , WANG H , DU L , et al. Cellular heterogeneity facilitates the functional differences between hair follicle dermal sheath cells and dermal papilla cells: a new classification system for mesenchymal cells within the hair follicle niche[J]. Stem Cell Rev Rep, 2022, 18 (6): 2016- 2027.
doi: 10.1007/s12015-022-10411-2 |
25 |
WELLE M M J V P . Basic principles of hair follicle structure, morphogenesis, and regeneration[J]. Vet Pathol, 2023, 60 (6): 732- 747.
doi: 10.1177/03009858231176561 |
26 |
ZHANG B , CHEN T J N R M C B . Local and systemic mechanisms that control the hair follicle stem cell niche[J]. Nat Rev Mol Cell Biol, 2024, 25 (2): 87- 100.
doi: 10.1038/s41580-023-00662-3 |
27 | WANG X , LIU Y , HE J , et al. Regulation of signaling pathways in hair follicle stem cells[J]. Burns Trauma, 2022, 4, 10. |
28 |
MUKHOPADHYAY A , KRISHNASWAMI S R , COWING-ZITRON C , et al. Negative regulation of Shh levels by Kras and Fgfr2 during hair follicle development[J]. Dev Biol, 2013, 373 (2): 373- 382.
doi: 10.1016/j.ydbio.2012.10.024 |
29 |
TSAI S-Y , SENNETT R , REZZA A , et al. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation[J]. Dev Biol, 2014, 385 (2): 179- 188.
doi: 10.1016/j.ydbio.2013.11.023 |
30 |
KIM B K , YOON S K . Hairless down-regulates expression of Msx2 and its related target genes in hair follicles[J]. J Dermatol Sci, 2013, 71 (3): 203- 209.
doi: 10.1016/j.jdermsci.2013.04.019 |
31 | 陈秋燃. IGF-1与EGF因子联合使用对毛兔毛囊生长的影响[D]. 扬州: 扬州大学, 2020. |
CHEN Q R. The effect of IGF-1 combined with EGF on the hair follicle growth of Angora rabbit[D]. Yangzhou: Yangzhou University, 2020. (in Chinese) | |
32 |
HUSSEN B M , HIDAYAT H J , GHAFOURI-FARD S J P-R , et al. Identification of expression of CCND1-related lncRNAs in breast cancer[J]. Pathol Res Pract, 2022, 236, 154009.
doi: 10.1016/j.prp.2022.154009 |
33 |
LI C M , ZHANG J , WU W , et al. FBXO43 increases CCND1 stability to promote hepatocellular carcinoma cell proliferation and migration[J]. Front Oncol, 2023, 13, 1138348.
doi: 10.3389/fonc.2023.1138348 |
34 |
ANDL T , REDDY S T , GADDAPARA T , et al. WNT signals are required for the initiation of hair follicle development[J]. Dev Cell, 2002, 2 (5): 643- 653.
doi: 10.1016/S1534-5807(02)00167-3 |
35 |
KIM B K , YOON S K . Expression of Sfrp2 is increased in catagen of hair follicles and inhibits keratinocyte proliferation[J]. Ann Dermatol, 2014, 26 (1): 79- 87.
doi: 10.5021/ad.2014.26.1.79 |
36 |
TRINH MINH T , CHEN C W , MANH C T , et al. Noncanonical WNT5A controls the activation of latent TGF-β to drive fibroblast activation and tissue fibrosis[J]. J Clin Invest, 2024, 134 (10): e159884.
doi: 10.1172/JCI159884 |
37 |
KHAN I , AMIN M A , EKLUND E A , et al. Regulation of HOX gene expression in AML[J]. Blood Cancer J, 2024, 14 (1): 42.
doi: 10.1038/s41408-024-01004-y |
38 |
GODWIN A R , CAPECCHI M R J G , DEVELOPMENT . Hoxc13 mutant mice lack external hair[J]. Genes Dev, 1998, 12 (1): 11- 20.
doi: 10.1101/gad.12.1.11 |
39 |
LI H , GAO P , CHEN H , et al. HOXC13 promotes cell proliferation, metastasis and glycolysis in breast cancer by regulating DNMT3A[J]. Exp Ther Med, 2023, 26 (3): 439.
doi: 10.3892/etm.2023.12138 |
40 | SUN H , HE Z , ZHAO F , et al. Molecular genetic characteristics of the Hoxc13 gene and association analysis of wool traits[J]. Int J Mol Sci, 2024, 25 (3): 1594. |
[1] | 曹馨予, 蔡佳炜, 鲍志远, 姚漱玉, 李云鹏, 陈阳, 吴信生, 赵博昊. ATG14调控家兔毛囊毛乳头细胞自噬进程的功能探究[J]. 畜牧兽医学报, 2024, 55(8): 3472-3481. |
[2] | 王小松, 李冬, 李淑, 陈佳力, 刘永需, 赵红, 李福昌, 刘磊. 不同饲粮铜水平对安哥拉兔生产性能及毛囊发育的影响[J]. 畜牧兽医学报, 2024, 55(7): 3032-3039. |
[3] | 张莉蕊, 张北育, 李玉娟, 刘永需, 赵红, 李福昌, 刘磊. 饲粮蛋氨酸水平对安哥拉兔产毛性能和毛囊发育的影响[J]. 畜牧兽医学报, 2024, 55(7): 3024-3031. |
[4] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[5] | 康佳, 段香茹, 尹雪姣, 杨若晨, 李太春, 单新雨, 陈美静, 张英杰, 刘月琴. 半胱氨酸、蛋氨酸对体外培养绒山羊次级毛囊生长及毛乳头细胞增殖的影响[J]. 畜牧兽医学报, 2024, 55(2): 515-527. |
[6] | 李玉娟, 张原铭, 张北育, 李福昌, 刘磊. 饲粮赖氨酸水平对安哥拉兔产毛性能及毛囊发育的影响[J]. 畜牧兽医学报, 2023, 54(5): 2013-2019. |
[7] | 张希宇, 翟频, 王璠, 戴莹莹, 赵博昊, 陈阳, 吴信生. KRT16在长毛兔毛囊发育过程中的表达规律及功能探究[J]. 畜牧兽医学报, 2023, 54(1): 157-167. |
[8] | 秦枫, 王菁, 翟频, 潘孝青, 杨杰, 邵乐, 李健, 张霞. 不同颜色LED光对苏系长毛兔毛品质及皮肤毛囊发育的影响[J]. 畜牧兽医学报, 2021, 52(9): 2545-2552. |
[9] | 丁洋洋, 刘占发, 孟详人, 马月辉, 浦亚斌, 赵倩君. 羊毛弯曲及毛囊发育相关生物学机制研究进展[J]. 畜牧兽医学报, 2020, 51(1): 9-17. |
[10] | 肖平, 仲涛, 刘占发, 浦亚斌, 马月辉, 赵倩君. 绵、山羊毛囊发育与毛发弯曲机制研究进展[J]. 畜牧兽医学报, 2018, 49(8): 1567-1576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||