畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2613-2625.doi: 10.11843/j.issn.0366-6964.2025.06.008
郑艳虹(), 吴梓琦, 刘谕儒, 罗均, 郭霄峰, 罗永文*(
)
收稿日期:
2024-06-11
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
罗永文
E-mail:yhzheng_2001@163.com;ywluo@scau.edu.cn
作者简介:
郑艳虹(2001-),女,福建闽侯人,本科生,主要从事预防兽医学研究,E-mail: yhzheng_2001@163.com
基金资助:
ZHENG Yanhong(), WU Ziqi, LIU Yuru, LUO Jun, GUO Xiaofeng, LUO Yongwen*(
)
Received:
2024-06-11
Online:
2025-06-23
Published:
2025-06-25
Contact:
LUO Yongwen
E-mail:yhzheng_2001@163.com;ywluo@scau.edu.cn
摘要:
狂犬病(rabies)是由弹状病毒科(Rhabdoviridae)狂犬病病毒属(Lyssavirus,也称丽沙病毒属)病毒引起的一种人兽共患的烈性传染病。根据国际病毒分类学委员会第10次报告的最新分类,狂犬病病毒属目前被分为17个种。其中,血清Ⅰ型狂犬病病毒(rabies virus,RABV)是狂犬病病毒属的成员之一,是最常见的狂犬病病原体。随着测序技术的发展,越来越多狂犬病病毒的全基因组序列被测定,这有助于人们在分子水平更深入地理解该病毒的流行情况和自然演化过程。本文对狂犬病病毒的分布、传播规律、起源及系统进化等方面进行综述,为追溯狂犬病病毒的起源,掌握其传播及遗传演化规律,制定科学的狂犬病防控策略提供理论参考。
中图分类号:
郑艳虹, 吴梓琦, 刘谕儒, 罗均, 郭霄峰, 罗永文. 狂犬病病毒的起源、传播及遗传演化[J]. 畜牧兽医学报, 2025, 56(6): 2613-2625.
ZHENG Yanhong, WU Ziqi, LIU Yuru, LUO Jun, GUO Xiaofeng, LUO Yongwen. Origin, Transmission and Genetic Evolution of Lyssavirus[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2613-2625.
表 1
狂犬病病毒的分布与宿主"
病毒种类 Virus species | 分组 Groups | 分布地区 Distribution | 储存及溢出宿主 Reservoir and spillover hosts | |
遗传谱系Ⅰ Phylogroup Ⅰ | ||||
Rabies lyssavirus(RABV) | 犬相关 | 世界流行组 | 除澳大利亚、南极洲和若干岛屿外,各个洲都有发现 | 犬、狼、鼬、狸猫、狐狸、羊、鹿、鼠、棕熊、人等 |
斯里兰卡组 | 斯里兰卡 | 麝香猫、人 | ||
亚洲组 | 中国、泰国等 | 犬、猪、牛、鼬、狸猫、狼、驴、人等 | ||
蝙蝠相关 | / | 美洲国家:美国、加拿大、墨西哥、巴西、阿根廷、圭那亚等 | 主要是翼手目, 包括几种食虫、吸血和食果蝙蝠,此外还有浣熊、臭鼬、狐狸、犬、人等 | |
Duvenhage lyssavirus(DUVV) | 非洲国家、荷兰 | 长翼蝠、凹脸蝠和人 | ||
European bat lyssavirus 1(EBLV-1) | 欧洲国家 | 大棕蝠、人等 | ||
European bat lyssavirus 2(EBLV-2) | 欧洲国家 | 鼠耳蝠和人 | ||
Australian bat lyssavirus(ABLV) | 澳大利亚 | 狐蝠、人、马等 | ||
Aravan lyssavirus(ARAV) | 吉尔吉斯斯坦 | 小鼠耳蝠 | ||
Bokeloh bat lyssavirus(BBLV) | 法国、德国、波兰 | 纳氏鼠耳蝠、普通伏翼 | ||
Gannoruwa bat lyssavirus(GBLV) | 斯里兰卡 | 狐蝠(印度飞狐) | ||
Irkut lyssavirus(IRKV) | 俄罗斯、中国 | 白腹管鼻蝠、人 | ||
Khujand lyssavirus(KHUV) | 塔吉克斯坦 | 胡须蝙蝠 | ||
Taiwan bat lyssavirus(TWBLV) | 中国台湾 | 日本伏翼 | ||
遗传谱系Ⅱ Phylogroup Ⅱ | ||||
Lagos bat lyssavirus(LBV) | 非洲国家:肯尼亚、塞内加尔、尼日利亚等 | 黄毛果蝠、埃及果蝠 | ||
Mokola lyssavirus(MOKV) | 非洲国家:津巴布韦、中非共和国、南非等 | 鼩鼱、家猫、人 | ||
Shimoni bat lyssavirus(SHIBV) | 肯尼亚 | 叶鼻蝠 | ||
遗传谱系Ⅲ(待定) Phylogroup Ⅲ (undetermined) | ||||
Lleida bat lyssavirus(LLEBV) | 西班牙、法国 | 普通弯翅蝙蝠、长翼蝙蝠 | ||
Ikoma lyssavirus(IKOV) | 坦桑尼亚(东非) | 非洲灵猫 | ||
West Caucasian bat virus(WCBV) | 俄罗斯、肯尼亚 | 普通弯翅蝙蝠、猫 |
1 |
SCOTT T P , NEL L H . Lyssaviruses and the fatal encephalitic disease rabies[J]. Front Immunol, 2021, 12, 786953.
doi: 10.3389/fimmu.2021.786953 |
2 |
FOOKS A R , BANYARD A C , HORTON D L , et al. Current status of rabies and prospects for elimination[J]. Lancet, 2014, 384 (9951): 1389- 1399.
doi: 10.1016/S0140-6736(13)62707-5 |
3 |
LANKESTER F , HAMPSON K , LEMBO T , et al. Implementing pasteur's vision for rabies elimination[J]. Science, 2014, 345 (6204): 1562- 1564.
doi: 10.1126/science.1256306 |
4 | WALKER P J , FREITAS-ASTÚA J , BEJERMAN N , et al. ICTV virus taxonomy profile: Rhabdoviridae 2022[J]. J Gen Virol, 2022, 103, 001689. |
5 |
FOOKS A R , CLIQUET F , FINKE S , et al. Rabies[J]. Nat Rev Dis Primers, 2017, 3 (1): 17091.
doi: 10.1038/nrdp.2017.91 |
6 |
TROUPIN C , DACHEUX L , TANGUY M , et al. Large-scale phylogenomic analysis reveals the complex evolutionary history of rabies virus in multiple carnivore hosts[J]. PLoS Pathog, 2016, 12 (12): e1006041.
doi: 10.1371/journal.ppat.1006041 |
7 |
KLEIN A , CALVELAGE S , SCHLOTTAU K , et al. Retrospective enhanced bat lyssavirus surveillance in Germany between 2018-2020[J]. Viruses, 2021, 13 (8): 1538.
doi: 10.3390/v13081538 |
8 |
CALVELAGE S , FREULING C M , FOOKS A R , et al. Full-genome sequences and phylogenetic analysis of archived Danish European bat lyssavirus 1 (EBLV-1) emphasize a higher genetic resolution and spatial segregation for sublineage 1a[J]. Viruses, 2021, 13 (4): 634.
doi: 10.3390/v13040634 |
9 |
MCELHINNEY L M , MARSTON D A , WISE E L , et al. Molecular epidemiology and evolution of European bat lyssavirus 2[J]. Int J Mol Sci, 2018, 19 (1): 156.
doi: 10.3390/ijms19010156 |
10 | FREULING C M , BEER M , CONRATHS F J , et al. Novel lyssavirus in Natterer's bat, Germany[J]. Emerg Infect Dis, 2011, 17 (8): 1519- 1522. |
11 | SMRECZAK M , ORŁOWSKA A , TR BAS P . Detection of BBLV in Natterer's bat in Poland[J]. Med Weter, 2020, 76 (2): 119- 123. |
12 |
PICARD-MEYER E , BEVEN V , HIRCHAUD E , et al. Lleida Bat Lyssavirus isolation in Miniopterus schreibersii in France[J]. Zoonoses Public Health, 2019, 66 (2): 254- 258.
doi: 10.1111/zph.12535 |
13 |
LEOPARDI S , BARNESCHI E , MANNA G , et al. Spillover of west Caucasian bat lyssavirus (WCBV) in a domestic cat and westward expansion in the Palearctic region[J]. Viruses, 2021, 13 (10): 2064.
doi: 10.3390/v13102064 |
14 |
NOKIREKI T , TAMMIRANTA N , KOKKONEN U M , et al. Tentative novel lyssavirus in a bat in Finland[J]. Transbound Emerg Dis, 2018, 65 (3): 593- 596.
doi: 10.1111/tbed.12833 |
15 |
AČG ERNE D , HOSTNIK P , TOPLAK I , et al. Discovery of a novel bat lyssavirus in a Long-fingered bat (Myotis capaccinii) from Slovenia[J]. PLoS Negl Trop Dis, 2023, 17 (6): e0011420.
doi: 10.1371/journal.pntd.0011420 |
16 | VAN EEDEN C , MARKOTTER W , NEL L . Molecular phylogeny of Duvenhage virus[J]. S Afr J Sci, 2011, 107 (11-12): 65- 69. |
17 |
COERTSE J , GELDENHUYS M , LE ROUX K , et al. Lagos bat virus, an under-reported rabies-related lyssavirus[J]. Viruses, 2021, 13 (4): 576.
doi: 10.3390/v13040576 |
18 |
KUZMIN I V , TURMELLE A S , AGWANDA B , et al. Commerson's leaf-nosed bat (Hipposideros commersoni) is the likely reservoir of Shimoni bat virus[J]. Vector-Borne Zoonot Dis, 2011, 11 (11): 1465- 1470.
doi: 10.1089/vbz.2011.0663 |
19 | MCMAHON W C , COERTSE J , KEARNEY T , et al. Surveillance of the rabies-related lyssavirus, Mokola in non-volant small mammals in South Africa[J]. Onderstepoort J Vet Res, 2021, 88 (1): e1- e13. |
20 |
SCHATZ J , FOOKS A R , MCELHINNEY L , et al. Bat rabies surveillance in Europe[J]. Zoonoses Public Health, 2013, 60 (1): 22- 34.
doi: 10.1111/zph.12002 |
21 |
VILJOEN N , WEYER J , COERTSE J , et al. Evaluation of taxonomic characteristics of Matlo and Phala bat rabies-related lyssaviruses identified in South Africa[J]. Viruses, 2023, 15 (10): 2047.
doi: 10.3390/v15102047 |
22 |
KUZMIN I V , ORCIARI L A , ARAI Y T , et al. Bat lyssaviruses (Aravan and Khujand) from central Asia: phylogenetic relationships according to N, P and G gene sequences[J]. Virus Res, 2003, 97 (2): 65- 79.
doi: 10.1016/S0168-1702(03)00217-X |
23 |
POLESHCHUK E M , TAGAKOVA D N , SIDOROV G N , et al. Lethal cases of lyssavirus encephalitis in humans after contact with bats in the Russian Far East in 2019-2021[J]. Vopr Virusol, 2023, 68 (1): 45- 58.
doi: 10.36233/0507-4088-156 |
24 |
GUNAWARDENA P S , MARSTON D A , ELLIS R J , et al. Lyssavirus in Indian flying foxes, Sri Lanka[J]. Emerg Infect Dis, 2016, 22 (8): 1456- 1459.
doi: 10.3201/eid2208.151986 |
25 |
HU S C , HSU C L , LEE M S , et al. Lyssavirus in Japanese pipistrelle, Taiwan, China[J]. Emerg Infect Dis, 2018, 24 (4): 782- 785.
doi: 10.3201/eid2404.171696 |
26 |
HU S C , HSU C L , LEE F , et al. Novel bat lyssaviruses identified by nationwide passive surveillance in Taiwan, China, 2018-2021[J]. Viruses, 2022, 14 (7): 1562.
doi: 10.3390/v14071562 |
27 |
IGLESIAS R , COX-WITTON K , FIELD H , et al. Australian bat lyssavirus: analysis of national bat surveillance data from 2010 to 2016[J]. Viruses, 2021, 13 (2): 189.
doi: 10.3390/v13020189 |
28 |
YOUNG A R , STOBART C C . Emergence, tropism, disease, and treatment of Australian bat lyssavirus infections in humans[J]. Vector-Borne Zoonot Dis, 2023, 23 (9): 486- 494.
doi: 10.1089/vbz.2022.0089 |
29 |
LIU Y , ZHANG S F , WU X F , et al. Ferret badger rabies origin and its revisited importance as potential source of rabies transmission in Southeast China[J]. BMC Infect Dis, 2010, 10, 234.
doi: 10.1186/1471-2334-10-234 |
30 |
SHAO X Q , YAN X J , LUO G L , et al. Genetic evidence for domestic raccoon dog rabies caused by arctic-like rabies virus in Inner Mongolia, China[J]. Epidemiol Infect, 2011, 139 (4): 629- 635.
doi: 10.1017/S0950268810001263 |
31 |
FENG Y , WANG Y Y , XU W D , et al. Animal rabies surveillance, China, 2004-2018[J]. Emerg Infect Dis, 2020, 26 (12): 2825- 2834.
doi: 10.3201/eid2612.200303 |
32 |
MIAO F M , LI N , YANG J J , et al. Neglected challenges in the control of animal rabies in China[J]. One Health, 2021, 12, 100212.
doi: 10.1016/j.onehlt.2021.100212 |
33 |
TAO X Y , LIU S Q , ZHU W Y , et al. Rabies surveillance and control in China over the last twenty years[J]. Biosaf Health, 2021, 3 (3): 142- 147.
doi: 10.1016/j.bsheal.2020.11.004 |
34 |
SCOTT T P , FISCHER M , KHAISEB S , et al. Complete genome and molecular epidemiological data infer the maintenance of rabies among kudu (Tragelaphus strepsiceros) in Namibia[J]. PLoS One, 2013, 8 (3): e58739.
doi: 10.1371/journal.pone.0058739 |
35 |
MOLLENTZE N , STREICKER D G , MURCIA P R , et al. Virulence mismatches in index hosts shape the outcomes of cross-species transmission[J]. Proc Natl Acad Sci U S A, 2020, 117 (46): 28859- 28866.
doi: 10.1073/pnas.2006778117 |
36 |
CARLSON C J , ALBERY G F , MEROW C , et al. Climate change increases cross-species viral transmission risk[J]. Nature, 2022, 607 (7919): 555- 562.
doi: 10.1038/s41586-022-04788-w |
37 | CONDORI R E , ARAGON A , BRECKENRIDGE M , et al. Divergent rabies virus variant of probable bat origin in 2 gray foxes, New Mexico, USA[J]. Emerg Infect Dis, 2022, 28 (6): 1137- 1145. |
38 |
FISHER C R , STREICKER D G , SCHNELL M J . The spread and evolution of rabies virus: conquering new frontiers[J]. Nat Rev Microbiol, 2018, 16 (4): 241- 255.
doi: 10.1038/nrmicro.2018.11 |
39 |
SHIPLEY R , WRIGHT E , SELDEN D , et al. Bats and viruses: emergence of novel lyssaviruses and association of bats with viral zoonoses in the EU[J]. Trop Med Infect Dis, 2019, 4 (1): 31.
doi: 10.3390/tropicalmed4010031 |
40 |
MARSTON D A , BANYARD A C , MCELHINNEY L M , et al. The lyssavirus host-specificity conundrum-rabies virus-the exception not the rule[J]. Curr Opin Virol, 2018, 28, 68- 73.
doi: 10.1016/j.coviro.2017.11.007 |
41 |
HARRIS S L , BROOKES S M , JONES G , et al. European bat lyssaviruses: distribution, prevalence and implications for conservation[J]. Biol Conserv, 2006, 131 (2): 193- 210.
doi: 10.1016/j.biocon.2006.04.006 |
42 |
RUPPRECHT C , KUZMIN I , MESLIN F . Lyssaviruses and rabies: current conundrums, concerns, contradictions and controversies[J]. F1000Research, 2017, 6, 184.
doi: 10.12688/f1000research.10416.1 |
43 |
GEORGE D B , WEBB C T , FARNSWORTH M L , et al. Host and viral ecology determine bat rabies seasonality and maintenance[J]. Proc Natl Acad Sci U S A, 2011, 108 (25): 10208- 10213.
doi: 10.1073/pnas.1010875108 |
44 |
WALLACE R M , GILBERT A , SLATE D , et al. Right place, wrong species: a 20-year review of rabies virus cross species transmission among terrestrial mammals in the United States[J]. PLoS One, 2014, 9 (10): e107539.
doi: 10.1371/journal.pone.0107539 |
45 |
ESCOBAR L E , VELASCO-VILLA A , SATHESHKUMAR P S , et al. Revealing the complexity of vampire bat rabies "spillover transmission"[J]. Infect Dis Poverty, 2023, 12 (1): 10.
doi: 10.1186/s40249-023-01062-7 |
46 |
STREICKER D G , TURMELLE A S , VONHOF M J , et al. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats[J]. Science, 2010, 329 (5992): 676- 679.
doi: 10.1126/science.1188836 |
47 |
BADRANE H , TORDO N . Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders[J]. J Virol, 2001, 75 (17): 8096- 8104.
doi: 10.1128/JVI.75.17.8096-8104.2001 |
48 |
DING N Z , XU D S , SUN Y Y , et al. A permanent host shift of rabies virus from Chiroptera to Carnivora associated with recombination[J]. Sci Rep, 2017, 7 (1): 289.
doi: 10.1038/s41598-017-00395-2 |
49 |
FOOKS A R , SHIPLEY R , MARKOTTER W , et al. Renewed public health threat from emerging lyssaviruses[J]. Viruses, 2021, 13 (9): 1769.
doi: 10.3390/v13091769 |
50 |
BORUCKI M K , CHEN-HARRIS H , LAO V , et al. Ultra-deep sequencing of intra-host rabies virus populations during cross-species transmission[J]. PLoS Negl Trop Dis, 2013, 7 (11): e2555.
doi: 10.1371/journal.pntd.0002555 |
51 |
KUZMIN I V , SHI M , ORCIARI L A , et al. Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001-2009[J]. PLoS Pathog, 2012, 8 (6): e1002786.
doi: 10.1371/journal.ppat.1002786 |
52 |
SARARAT C , CHANGRUENNGAM S , CHUMKAEO A , et al. The effects of geographical distributions of buildings and roads on the spatiotemporal spread of canine rabies: an individual-based modeling study[J]. PLoS Negl Trop Dis, 2022, 16 (5): e0010397.
doi: 10.1371/journal.pntd.0010397 |
53 |
HOLTZ A , BAELE G , BOURHY H , et al. Integrating full and partial genome sequences to decipher the global spread of canine rabies virus[J]. Nat Commun, 2023, 14 (1): 4247.
doi: 10.1038/s41467-023-39847-x |
54 | BANYARD A C , FOOKS A R . Rabies and other lyssaviruses (Rhabdoviridae)[J]. Encycl Virol (Fourth Ed), 2021, 2, 738- 746. |
55 |
SMITH D L , LUCEY B , WALLER L A , et al. Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes[J]. Proc Natl Acad Sci U S A, 2002, 99 (6): 3668- 3672.
doi: 10.1073/pnas.042400799 |
56 |
GUO Z Y , TAO X Y , YIN C P , et al. National borders effectively halt the spread of rabies: the current rabies epidemic in China is dislocated from cases in neighboring countries[J]. PLoS Negl Trop Dis, 2013, 7 (1): e2039.
doi: 10.1371/journal.pntd.0002039 |
57 |
TAZERJI S S , NARDINI R , SAFDAR M , et al. An overview of anthropogenic actions as drivers for emerging and re-emerging zoonotic diseases[J]. Pathogens, 2022, 11 (11): 1376.
doi: 10.3390/pathogens11111376 |
58 |
VELASCO-VILLA A , MAULDIN M R , SHI M , et al. The history of rabies in the Western Hemisphere[J]. Antivir Res, 2017, 146, 221- 232.
doi: 10.1016/j.antiviral.2017.03.013 |
59 |
GAUTRET P , RIBADEAU-DUMAS F , PAROLA P , et al. Risk for rabies importation from North Africa[J]. Emerg Infect Dis, 2011, 17 (12): 2187- 2193.
doi: 10.3201/eid1712.110300 |
60 |
HUANG A S E , CHEN W C , HUANG W T , et al. Public health responses to reemergence of animal rabies, Taiwan, China, July 16-December 28, 2013[J]. PLos One, 2015, 10 (7): e0132160.
doi: 10.1371/journal.pone.0132160 |
61 | NEL L H, RUPPRECHT C E. Emergence of lyssaviruses in the Old World: the case of Africa[M]//CHILDS J E, MACKENZIE J S, RICHT J A. Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission. Berlin, Heidelberg: Springer, 2007: 161-193. |
62 |
HAYMAN D T S , FOOKS A R , MARSTON D A , et al. The global phylogeography of lyssaviruses-challenging the 'out of Africa' hypothesis[J]. PLoS Negl Trop Dis, 2016, 10 (12): e0005266.
doi: 10.1371/journal.pntd.0005266 |
63 |
AMARASINGHE G K , AYLLÓN M A , BÀO Y , et al. Taxonomy of the order Mononegavirales: update 2019[J]. Arch Virol, 2019, 164 (7): 1967- 1980.
doi: 10.1007/s00705-019-04247-4 |
64 |
MATSUMOTO T , NANAYAKKARA S , PERERA D , et al. Terrestrial animal-derived rabies virus in a juvenile Indian flying fox in Sri Lanka[J]. Jpn J Infect Dis, 2017, 70 (6): 693- 695.
doi: 10.7883/yoken.JJID.2017.249 |
65 |
SHOJI Y , KOBAYASHI Y , SATO G , et al. Genetic characterization of rabies viruses isolated from frugivorous bat (Artibeus spp.) in Brazil[J]. J Vet Med Sci, 2004, 66 (10): 1271- 1273.
doi: 10.1292/jvms.66.1271 |
66 |
LI G , ZHANG Y , HE H L , et al. Evolution and distribution of rabies viruses from a panorama view[J]. Microbiol Spectr, 2023, 11 (5): e0525722.
doi: 10.1128/spectrum.05257-22 |
67 |
COERTSE J , MARKOTTER W , LE ROUX K , et al. New isolations of the rabies-related Mokola virus from South Africa[J]. BMC Vet Res, 2016, 13 (1): 37.
doi: 10.1186/s12917-017-0948-0 |
68 |
COERTSE J , GROBLER C S , SABETA C T , et al. Lyssaviruses in insectivorous bats, South Africa, 2003-2018[J]. Emerg Infect Dis, 2020, 26 (12): 3056- 3060.
doi: 10.3201/eid2612.203592 |
69 |
CALVELAGE S , TAMMIRANTA N , NOKIREKI T , et al. Genetic and antigenetic characterization of the novel Kotalahti bat lyssavirus (KBLV)[J]. Viruses, 2021, 13 (1): 69.
doi: 10.3390/v13010069 |
70 |
AMENGUAL B , WHITBY J E , KING A , et al. Evolution of European bat lyssaviruses[J]. J Gen Virol, 1997, 78 (9): 2319- 2328.
doi: 10.1099/0022-1317-78-9-2319 |
71 |
VOLOCH C M , CAPELLÃO R T , MELLO B , et al. Analysis of adaptive evolution in lyssavirus genomes reveals pervasive diversifying selection during species diversification[J]. Viruses, 2014, 6 (11): 4465- 4478.
doi: 10.3390/v6114465 |
72 |
BADRANE H , BAHLOUL C , PERRIN P , et al. Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity[J]. J Virol, 2001, 75 (7): 3268- 3276.
doi: 10.1128/JVI.75.7.3268-3276.2001 |
73 |
CARABALLO D A , LEMA C , NOVARO L , et al. A novel terrestrial rabies virus lineage occurring in South America: origin, diversification, and evidence of contact between wild and domestic cycles[J]. Viruses, 2021, 13 (12): 2484.
doi: 10.3390/v13122484 |
74 |
DAVIS P L , RAMBAUT A , BOURHY H , et al. The evolutionary dynamics of canid and mongoose rabies virus in Southern Africa[J]. Arch Virol, 2007, 152 (7): 1251- 1258.
doi: 10.1007/s00705-007-0962-9 |
75 | STREICKER D G, BIEK R. Chapter 3-Evolution of rabies virus[M]//FOOKS A R, JACKSON A C. Rabies. 4th ed. Boston: Academic Press, 2020: 83-101. |
76 |
STREICKER D G , LEMEY P , VELASCO-VILLA A , et al. Rates of viral evolution are linked to host geography in bat rabies[J]. PLoS Pathog, 2012, 8 (5): e1002720.
doi: 10.1371/journal.ppat.1002720 |
77 |
DUNDAROVA H , IVANOVA-ALEKSANDROVA N , BEDNARIKOVA S , et al. Phylogeographic aspects of bat lyssaviruses in Europe: a review[J]. Pathogens, 2023, 12 (9): 1089.
doi: 10.3390/pathogens12091089 |
78 | LONGDON B , MURRAY G G R , PALMER W J , et al. The evolution, diversity, and host associations of rhabdoviruses[J]. Virus Evol, 2015, 1 (1): vev014. |
79 |
TSIE K , NGOEPE E , PHAHLADIRA B , et al. Molecular characterization of lyssaviruses originating from domestic and wild cats provides an insight on the diversity of lyssaviruses and a risk of rabies transmission to other susceptible mammals and humans in South Africa[J]. Pathogens, 2023, 12 (10): 1212.
doi: 10.3390/pathogens12101212 |
80 |
BROOKES S M , PARSONS G , JOHNSON N , et al. Rabies human diploid cell vaccine elicits cross-neutralising and cross-protecting immune responses against European and Australian bat lyssaviruses[J]. Vaccine, 2005, 23 (32): 4101- 4109.
doi: 10.1016/j.vaccine.2005.03.037 |
81 |
HANLON C A , KUZMIN I V , BLANTON J D , et al. Efficacy of rabies biologics against new lyssaviruses from Eurasia[J]. Virus Res, 2005, 111 (1): 44- 54.
doi: 10.1016/j.virusres.2005.03.009 |
82 |
LIU Y , CHEN Q , ZHANG F , et al. Evaluation of rabies biologics against Irkut virus isolated in China[J]. J Clin Microbiol, 2013, 51 (11): 3499- 3504.
doi: 10.1128/JCM.01565-13 |
83 |
INOUE Y , KAKU Y , HARADA M , et al. Cross-neutralization activities of antibodies against 18 lyssavirus glycoproteins[J]. Jpn J Infect Dis, 2024, 77 (3): 169- 173.
doi: 10.7883/yoken.JJID.2023.400 |
84 |
DE BENEDICTIS P , MINOLA A , ROTA NODARI E , et al. Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis[J]. Embo Mol Med, 2016, 8 (4): 407- 421.
doi: 10.15252/emmm.201505986 |
85 |
INOUE Y , KAKU Y , HARADA M , et al. Establishment of serological neutralizing tests using pseudotyped viruses for comprehensive detection of antibodies against all 18 lyssaviruses[J]. J Vet Med Sci, 2024, 86 (1): 128- 134.
doi: 10.1292/jvms.23-0463 |
86 |
CAI M N , LIU H Z , JIANG F , et al. Analysis of the evolution, infectivity and antigenicity of circulating rabies virus strains[J]. Emerg Microbes Infect, 2022, 11 (1): 1474- 1487.
doi: 10.1080/22221751.2022.2078742 |
87 | 冯烨, 许炜迪, 李文婧, 等. 狂犬病病毒分子流行病学研究进展[J]. 传染病信息, 2015, 28 (1): 45- 48. |
FENG Y , XU W D , LI W J , et al. Research advances in molecular epidemiology of rabies virus[J]. Infectious Disease Information, 2015, 28 (1): 45- 48. | |
88 | WANG P H , SHAH P T , XING L . Genetic characteristics and geographic distribution of rabies virus in China[J]. Arch Virol, 2023, 169 (1): 14. |
89 |
GONG W J , JIANG Y , ZA Y , et al. Temporal and spatial dynamics of rabies viruses in China and Southeast Asia[J]. Virus Res, 2010, 150 (1-2): 111- 118.
doi: 10.1016/j.virusres.2010.02.019 |
90 | 王茜, 李木丽, 陈叶, 等. 中国不同地区狂犬病病毒种群分布的差异[J]. 中华流行病学杂志, 2018, 39 (4): 491- 494. |
WANG Q , LI M L , CHEN Y , et al. Differences on geographic distribution of rabies virus lineages in China[J]. Chinese Journal of Epidemiology, 2018, 39 (4): 491- 494. | |
91 |
TAO X Y , LI M L , GUO Z Y , et al. Inner mongolia: a potential portal for the spread of rabies to western China[J]. Vector-Borne Zoonot Dis, 2019, 19 (1): 51- 58.
doi: 10.1089/vbz.2017.2248 |
92 | 陶晓燕, 李浩, 唐青, 等. 亚洲狂犬病病毒的进化和传播特点[J]. 中华实验和临床病毒学杂志, 2013, 27 (3): 187- 189. |
TAO X Y , LI H , TANG Q , et al. Evolutionary and transmission characteristics of rabies viruses in Asia[J]. Chinese Journal of Experimental and Clinical Virology, 2013, 27 (3): 187- 189. | |
93 | FISHER C R , LOWE D E , SMITH T G , et al. Lyssavirus vaccine with a chimeric glycoprotein protects across phylogroups[J]. Cell Rep, 2020, 32 (3): 107920. |
[1] | 王亚楠, 郭雅茹, 姜艳平, 崔文, 李佳璇, 李一经, 王丽. 猪轮状病毒的分离鉴定及其致病性分析[J]. 畜牧兽医学报, 2025, 56(5): 2259-2269. |
[2] | 罗诗师, 陈蓓蕾, 张蕾, 冯启贤, 吴瑞森, 陈佳祺, 王媛, 简子昕, 许丽惠, 陈秋勇, 马玉芳, 王全溪. 太子参多糖经Let-7d-3p下调伪狂犬病病毒感染小鼠的炎症基因转录水平[J]. 畜牧兽医学报, 2025, 56(5): 2438-2450. |
[3] | 李婷, 张成成, 王秀玲, 张小荣, 吴艳涛. 一株新型鸭呼肠孤病毒的分离鉴定及其σC基因序列分析[J]. 畜牧兽医学报, 2025, 56(5): 2520-2524. |
[4] | 匡尹之, 徐凤培, 周沛. 水獭源犬圆环病毒的全基因组序列分析[J]. 畜牧兽医学报, 2025, 56(4): 1989-1994. |
[5] | 王浩, 王世玉, 肖金龙, 沈珏, 潘天灵, 张靖松, 肖鹏, 高洪. 猪源大肠杆菌高致病性毒力岛结构基因进化分析及其对TNF/NF-κB通路的影响[J]. 畜牧兽医学报, 2025, 56(1): 392-403. |
[6] | 付艺乾, 梁东阁, 王铭洋, 潘佳佳, 杨彦宾, 曾磊, 康相涛. 干扰素调节因子敲减细胞系的构建及其对猪伪狂犬病病毒增殖的影响[J]. 畜牧兽医学报, 2024, 55(9): 4100-4109. |
[7] | 王梦迪, 王昱旻, 张震, 鲁秀香, 王恒, 樊文杰, 姚晨, 刘鹏翔, 马延杰, 褚贝贝, 王江, 杨国宇. TSG101基因敲低对猪伪狂犬病病毒体外增殖的影响[J]. 畜牧兽医学报, 2024, 55(9): 4110-4120. |
[8] | 谢碧林, 林志敏, 林彬彬, 徐以娟, 林锋强, 闫露, 伍慧妮, 李翠婷, 周海欧, 李兆龙. 鸭疫里氏杆菌LC1和CX1株的分离鉴定及致病性分析[J]. 畜牧兽医学报, 2024, 55(9): 4196-4203. |
[9] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[10] | 呙会会, 张浩, 杨丹, 旷燕, 李亚菲, 刘绍蒙, 刘青芸, 王湘如. 伪狂犬病病毒荧光标签毒株构建及其在抗病毒药物筛选中的初步应用[J]. 畜牧兽医学报, 2024, 55(8): 3600-3611. |
[11] | 李继桐, 朱彤, 吕俊峰, 高月花, 胡峰, 于可响, 宋敏训, 王建琳, 李玉峰. 三株新型鸭源微RNA病毒分离毒株的全基因组序列分析[J]. 畜牧兽医学报, 2024, 55(7): 3075-3084. |
[12] | 周宁, 汤承, 许佳, 岳华, 陈曦. 猫泛白细胞减少症病毒A91S变异株对猫的致病性及基因组特征研究[J]. 畜牧兽医学报, 2024, 55(6): 2560-2568. |
[13] | 朱昊天, 刘路瑶, 杨聪山, 姜纪, 石涵, 刘笑笑, 陈木新, 徐前明. 一例海豚源典型异尖线虫形态观察和分子鉴定[J]. 畜牧兽医学报, 2024, 55(6): 2599-2606. |
[14] | 张颖, 宋春莲, 张莹, 沈鸿, 舒相华, 杨洪贵. 伪狂犬病病毒感染小鼠基质金属蛋白酶-9介导紧密连接蛋白损伤血脑屏障的研究[J]. 畜牧兽医学报, 2024, 55(5): 2186-2194. |
[15] | 钟朱夏, 胡修忠, 向敏, 余婕, 刘辰晖, 赵胜兰, 万平民, 王定发, 周源, 程蕾. 妊娠相关糖蛋白的生物学功能及其在畜牧生产中的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 874-881. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||