畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 3075-3084.doi: 10.11843/j.issn.0366-6964.2024.07.026
李继桐1,2(), 朱彤1, 吕俊峰1, 高月花1, 胡峰1, 于可响1, 宋敏训1, 王建琳2, 李玉峰1,*(
)
收稿日期:
2023-10-07
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
李玉峰
E-mail:lijitong618@163.com;dicpd@163.com
作者简介:
李继桐(1998-),男,回族,山东枣庄人,硕士生,主要从事禽病学研究,E-mail:lijitong618@163.com
基金资助:
Jitong LI1,2(), Tong ZHU1, Junfeng LÜ1, Yuehua GAO1, Feng HU1, Kexiang YU1, Minxun SONG1, Jianlin WANG2, Yufeng LI1,*(
)
Received:
2023-10-07
Online:
2024-07-23
Published:
2024-07-24
Contact:
Yufeng LI
E-mail:lijitong618@163.com;dicpd@163.com
摘要:
分离新型鸭源微RNA病毒进行全基因组测序并进行遗传进化分析。对本实验室2021年不同来源的种鸭和肉鸭病料进行PCR检测,初步确定存在一种未知分类的新型微RNA病毒感染。取病死鸭病料组织处理后接种SPF鸡胚分离病毒,设计引物对分离到的病毒进行PCR检测,通过重叠PCR方法进行全基因组扩增测序。将分离病毒各蛋白氨基酸序列两两比对,同时选取GenBank数据库中微RNA病毒代表毒株序列绘制系统进化树,并对主要蛋白P1、2C、3D序列比对分析。结果显示:共分离到三株微RNA病毒,分别命名为21101株、21016株和21075株(GenBank登录号:OQ927377~OQ927379)。基因组长度分别为7 445、7 445和7 447 bp,均包含一个编码2 141个氨基酸的开放阅读框(ORF),可划分为P1、P2、P3三个部分,符合微RNA病毒序列特征。基于全基因组序列遗传进化分析发现,三株分离病毒与本实验室前期分离的Duck/FC22/China/2017(GenBank登录号:MN102111)毒株及上海兽医研究所分离的Duck/AH15/CHN/2015(GenBank登录号:MT681985)位于同一分支,与鸭甲型肝炎病毒(Duck hepatitis A virus,DHAV)遗传距离最近。分离的三株鸭源微RNA病毒进行全基因组测序及遗传进化分析发现,与目前已知的两株微RNA毒株为同一类新型鸭源微RNA病毒。
中图分类号:
李继桐, 朱彤, 吕俊峰, 高月花, 胡峰, 于可响, 宋敏训, 王建琳, 李玉峰. 三株新型鸭源微RNA病毒分离毒株的全基因组序列分析[J]. 畜牧兽医学报, 2024, 55(7): 3075-3084.
Jitong LI, Tong ZHU, Junfeng LÜ, Yuehua GAO, Feng HU, Kexiang YU, Minxun SONG, Jianlin WANG, Yufeng LI. Isolation and Identification of Novel Picornavirus from Ducks and Whole Genome Sequence Analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3075-3084.
表 1
鸭常见病原检测引物"
名称Name | 序列(5′→3′) Sequences | 片段大小/bp Fragment length |
DHAV1F | GACTGTGCAACACGCTTCAAC | 473 |
DHAV1R | AATCTACTTCATCCCCAGACTG | |
DHAV3F | TGTGTATCTTATGAGCAGGCCA | 646 |
DHAV3R | AGCCCAACACGGCAAGCAC | |
DTMUVF | AGGAATTCATGTCTAACAAAAAACCAGG | 360 |
DTMUVR | CCCTCGAGCAGCCCAGCAACTATCG | |
DAstVF | GTTGGACHCCCTTCTWTGG | 519 |
DAstVR | GCTTCACCCACATDCCAAA | |
MDPVF | GGAAATTGGCATTGCGATTC | 390 |
MDPVR | CCGAGCCCAGGACATACG | |
AIVF | TTCTAACCGAGGTCGAAAC | 230 |
AIVR | AAGCGTCTACGCTGCAGTCC | |
MDRVF | CTATCAGCACAGTGAGCAGC | 188 |
MDRVR | GTGCGTGTTGGAGTTTCCCG | |
NDVF | ATATGAGACGGCAGATGAGTC | 540 |
NDVR | CAGTGTTCCTGATGTATGAGTC | |
DPVF | TCCTGGAACAATCACAAC | 690 |
DPVR | TCGCCTGCCAACTTAT | |
PIVF | GGTGGYATGTGTTCAGGYTC | 588 |
PIVR | TTYAGGGTATCCYRCAACAC |
表 3
新型鸭源微RNA病毒基因组扩增引物序列"
名称Name | 序列(5′→3′) Sequences | 片段大小/bp Fragment length |
CX1-F | TTTGAAAACTGGCCCCCCTGGGGA | 2 279 |
CX1-R | ACACTAGATGACGTGTGGCTAGCTC | |
CX2-F | GCTCAGCACTCGTGCTGACCTAGG | 2 352 |
CX2-R | TAAAAAGTGCCTTTCTGTTCTAGGG | |
CX3-F | TCTTTCTTTGCAAACATGATTGC | 2 140 |
CX3-R | TCCTCTTGTAGATGTTTCCCATAACC | |
CX4-F | TTCTTCCAATTGATTGGTCAAC | 1 448 |
CX4-R | TTTTTTTTTTTTTTTAAAAGTGTAGGGAAA |
表 5
三株微RNA病毒和12个现有微RNA病毒基因组特性比较"
微RNA病毒科 Picornaviridae | 氨基酸序列相似性Pairwise amino acid sequence identity | ||||||||||||||||
属 Genus | 种 Species | 登录号 GenBank No. | 来源 Source | 21101 | 21016 | 21075 | |||||||||||
P1 | 2C | 3D | 多聚蛋白 Polyprotein | P1 | 2C | 3D | 多聚蛋白 Polyprotein | P1 | 2C | 3D | 多聚蛋白 Polyprotein | ||||||
Aalivirus (Avihepatovirus/Avisivirus-like virus) | Duck aalivirus 1 | NC023985 | Duck | 33.2 | 42.7 | 43.8 | 38.2 | 33.2 | 42.7 | 43.8 | 38.2 | 33.1 | 42.7 | 43.8 | 38.1 | ||
禽肝病毒属 Avihepatovirus | Duck hepatitis A virus 1 | NC008250 | Duck | 37.0 | 43.3 | 43.8 | 41.1 | 37.0 | 43.3 | 43.8 | 41.1 | 37.3 | 43.3 | 43.8 | 41.2 | ||
禽肝病毒属 Avihepatovirus | Duck hepatitis A virus 2 | OQ862826 | Duck | 31.0 | 41.4 | 44.9 | 42.6 | 31.0 | 41.4 | 44.9 | 42.5 | 31.1 | 41.4 | 44.7 | 42.7 | ||
禽肝病毒属 Avihepatovirus | Duck hepatitis A virus 3 | KU860089 | Duck | 36.9 | 44.5 | 43.8 | 41.2 | 36.9 | 44.5 | 43.8 | 41.3 | 37.3 | 44.5 | 43.6 | 41.3 | ||
Avisivirus | Turkey avisivirus | KC614703 | Turkey | 34.5 | 40.2 | 37.4 | 34.6 | 34.5 | 40.2 | 37.4 | 34.6 | 34.7 | 40.2 | 37.4 | 34.7 | ||
未指定 Unassigned | Red-crownedcrane picornavirus | KY312544 | Crane | 33.0 | 48.5 | 48.4 | 41.8 | 33.0 | 48.5 | 48.4 | 41.8 | 33.0 | 48.5 | 48.2 | 41.7 | ||
嵴病毒属 Kobuvirus | Porcine kobuvirus | EU787450 | Porcine | 10.3 | 21.0 | 17.4 | 16.0 | 10.3 | 21.0 | 17.0 | 16.1 | 10.3 | 21.0 | 17.2 | 16.1 | ||
Megrivirus | Turkey hepatitis virus | HM751199 | Turkey | 12.3 | 23.4 | 18.3 | 15.5 | 12.3 | 23.4 | 18.3 | 15.5 | 12.1 | 23.4 | 18.1 | 15.4 | ||
震颤病毒属 Tremovirus | Avian encephalomyelitis virus | NC003990 | Avian | 12.9 | 21.4 | 19.4 | 16.1 | 12.9 | 21.4 | 19.6 | 16.2 | 13.1 | 21.4 | 19.6 | 16.1 | ||
Orthoturdivirus | Turdivirus 1 | GU182406 | Birds | 11.7 | 23.2 | 15.0 | 17.1 | 11.7 | 23.2 | 15.0 | 17.1 | 11.5 | 23.2 | 15.0 | 17.0 | ||
肠道病毒属 Enterovirus | Poliovirus | NC002058 | Human | 10.8 | 22.6 | 20.0 | 15.0 | 10.8 | 22.6 | 20.0 | 15.1 | 10.9 | 22.6 | 20.0 | 15.0 | ||
口蹄疫病毒属 Aphthovirus | Foot-and-mouth disease virus | NC002554 | Porcine | 9.3 | 9.7 | 15.6 | 11.1 | 9.3 | 9.7 | 15.6 | 11.2 | 9.6 | 9.7 | 15.6 | 11.2 |
1 |
WEN X J , CHENG A C , WANG M S , et al. Recent advances from studies on the role of structural proteins in enterovirus infection[J]. Future Microbiol, 2015, 10 (9): 1529- 1542.
doi: 10.2217/fmb.15.62 |
2 |
YANG X Y , CHENG A C , WANG M S , et al. Structures and corresponding functions of five types of picornaviral 2A proteins[J]. Front Microbiol, 2017, 8, 1373.
doi: 10.3389/fmicb.2017.01373 |
3 |
SUN D , CHEN S , CHENG A C , et al. Roles of the picornaviral 3C proteinase in the viral life cycle and host cells[J]. Viruses, 2016, 8 (3): 82.
doi: 10.3390/v8030082 |
4 |
ADAMS M J , LEFKOWITZ E J , KING A M Q , et al. Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses(2017)[J]. Arch Virol, 2017, 162 (8): 2505- 2538.
doi: 10.1007/s00705-017-3358-5 |
5 |
ZELL R , DELWART E , GORBALENYA A E , et al. ICTV virus taxonomy profile: picornaviridae[J]. J Gen Virol, 2017, 98 (10): 2421- 2422.
doi: 10.1099/jgv.0.000911 |
6 |
LIAO Q F , ZHENG L S , YUAN Y , et al. Genomic characterization of a novel picornavirus in Pekin ducks[J]. Vet Microbiol, 2014, 172 (1-2): 78- 91.
doi: 10.1016/j.vetmic.2014.05.002 |
7 |
BOROS Á , PANKOVICS P , SIMMONDS P , et al. Genomic analysis of a novel picornavirus from a migratory waterfowl, greater white-fronted goose (Anser albifrons)[J]. Arch Virol, 2018, 163 (4): 1087- 1090.
doi: 10.1007/s00705-017-3696-3 |
8 | KOFSTAD T , JONASSEN C M . Screening of feral and wood pigeons for viruses harbouring a conserved mobile viral element: characterization of novel Astroviruses and Picornaviruses[J]. PLoS One, 2017, 6 (10): e25964. |
9 |
PANKOVICS P , BOROS Á , REUTER G . Novel picornavirus in domesticated common quail (Coturnix coturnix) in Hungary[J]. Arch Virol, 2012, 157 (3): 525- 530.
doi: 10.1007/s00705-011-1192-8 |
10 |
PANKOVICS P , BOROS Á , MÁTICS R , et al. Ljungan/Sebokele-like picornavirus in birds of prey, common kestrel (Falco tinnunculus) and red-footed falcon (F. vespertinus)[J]. Infect Genet Evol, 2017, 55, 14- 19.
doi: 10.1016/j.meegid.2017.08.024 |
11 |
KIM M C , KWON Y K , JOH S J , et al. Development of one-step reverse transcriptase-polymerase chain reaction to detect duck hepatitis virus type 1[J]. Avian Dis, 2007, 51 (2): 540- 545.
doi: 10.1637/0005-2086(2007)51[540:DOORTC]2.0.CO;2 |
12 |
TSENG C H , KNOWLES N J , TSAI H J . Molecular analysis of duck hepatitis virus type 1 indicates that it should be assigned to a new genus[J]. Virus Res, 2007, 123 (2): 190- 203.
doi: 10.1016/j.virusres.2006.09.007 |
13 |
TSENG C H , TSAI H J . Molecular characterization of a new serotype of duck hepatitis virus[J]. Virus Res, 2007, 126 (1-2): 19- 31.
doi: 10.1016/j.virusres.2007.01.012 |
14 |
TSENG C H , TSAI H J . Sequence analysis of a duck picornavirus isolate indicates that it together with porcine enterovirus type 8 and simian picornavirus type 2 should be assigned to a new picornavirus genus[J]. Virus Res, 2007, 129 (2): 104- 114.
doi: 10.1016/j.virusres.2007.06.023 |
15 | WANG X Y , LIU N , WANG F M , et al. Genetic characterization of a novel duck-origin picornavirus with six 2A proteins[J]. J Gen Virol, 2014, 95 (Pt 6): 1289- 1296. |
16 |
SHEN Y L , CHENG A C , WANG M S , et al. Development of an indirect ELISA method based on the VP3 protein of duck hepatitis A virus type 1(DHAV-1) for dual detection of DHAV-1 and DHAV-3 antibodies[J]. J Virol Methods, 2015, 225, 30- 34.
doi: 10.1016/j.jviromet.2015.08.016 |
17 |
LI C F , CHEN Z Y , MENG C C , et al. High yield expression of duck hepatitis A virus VP1 protein in Escherichia coli, and production and characterization of polyclonal antibody[J]. J Virol Methods, 2013, 191 (1): 69- 75.
doi: 10.1016/j.jviromet.2013.04.004 |
18 |
LIU G Q , WANG F , NI Z , et al. Genetic diversity of the VP1 gene of duck hepatitis virus type Ⅰ (DHV-I) isolates from southeast China is related to isolate attenuation[J]. Virus Res, 2008, 137 (1): 137- 141.
doi: 10.1016/j.virusres.2008.04.030 |
19 |
ZHANG R H , ZHOU G M , XIN Y H , et al. Identification of a conserved neutralizing linear B-cell epitope in the VP1 proteins of duck hepatitis A virus type 1 and 3[J]. Vet Microbiol, 2015, 180 (3-4): 196- 204.
doi: 10.1016/j.vetmic.2015.09.008 |
20 |
马晓霞, 周建华, 沈心亮. 小RNA病毒蛋白与细胞凋亡的关系[J]. 生物技术通讯, 2009, 20 (1): 103- 105.
doi: 10.3969/j.issn.1009-0002.2009.01.030 |
MA X X , ZHOU J H , SHEN X L . Picornaviruses proteins and apoptosis[J]. Lett Biotechnol, 2009, 20 (1): 103- 105.
doi: 10.3969/j.issn.1009-0002.2009.01.030 |
|
21 |
代文君, 王洪梅, 杨少华, 等. 小RNA病毒与细胞凋亡[J]. 家畜生态学报, 2010, 31 (2): 109- 112.
doi: 10.3969/j.issn.1673-1182.2010.02.025 |
DAI W J , WANG H M , YANG S H , et al. Picornaviruses and apoptosis[J]. Acta Ecologae Animalis Domastici, 2010, 31 (2): 109- 112.
doi: 10.3969/j.issn.1673-1182.2010.02.025 |
|
22 |
BURGON T B , JENKINS J A , DEITZ S B , et al. Bypass suppression of small-plaque phenotypes by a mutation in poliovirus 2A that enhances apoptosis[J]. J Virol, 2009, 83 (19): 10129- 10139.
doi: 10.1128/JVI.00642-09 |
23 |
HAMBIDGE S J , SARNOW P . Translational enhancement of the poliovirus 5'noncoding region mediated by virus-encoded polypeptide 2A[J]. Proc Natl Acad Sci USA, 1992, 89 (21): 10272- 10276.
doi: 10.1073/pnas.89.21.10272 |
24 |
LLOYD R E , TOYODA H , ETCHISON D , et al. Cleavage of the cap binding protein complex polypeptide p220 is not effected by the second poliovirus protease 2A[J]. Virology, 1986, 150 (1): 299- 303.
doi: 10.1016/0042-6822(86)90291-6 |
25 |
SONG Q Q , LU M Z , SONG J , et al. Coxsackievirus B32A protease promotes encephalomyocarditis virus replication[J]. Virus Res, 2015, 208, 22- 29.
doi: 10.1016/j.virusres.2015.05.020 |
26 |
SMITH R W P , GRAY N K . Poly(A)-binding protein (PABP): a common viral target[J]. Biochem J, 2010, 426 (1): 1- 12.
doi: 10.1042/BJ20091571 |
27 |
SWEENEY T R , CISNETTO V , BOSE D , et al. Foot-and-mouth disease virus 2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis mechanism[J]. J Biol Chem, 2010, 285 (32): 24347- 24359.
doi: 10.1074/jbc.M110.129940 |
28 |
SPRINGER C L , HUNTOON H P , PEERSEN O B . Polyprotein context regulates the activity of poliovirus 2CATPase bound to bilayer nanodiscs[J]. J Virol, 2013, 87 (10): 5994- 6004.
doi: 10.1128/JVI.03491-12 |
29 |
TETERINA N L , LAUBER C , JENSEN K S , et al. Identification of tolerated insertion sites in poliovirus non-structural proteins[J]. Virology, 2011, 409 (1): 1- 11.
doi: 10.1016/j.virol.2010.09.028 |
30 |
GLADUE D P , O'DONNELL V , BAKER-BRANSTETTER R , et al. Foot-and-mouth disease virus nonstructural protein 2C interacts with beclin1, modulating virus replication[J]. J Virol, 2012, 86 (22): 12080- 12090.
doi: 10.1128/JVI.01610-12 |
31 |
GLADUE D P , O'DONNELL V , BAKER-BRANSTETTER R , et al. Foot-and-mouth disease virus modulates cellular vimentin for virus survival[J]. J Virol, 2013, 87 (12): 6794- 6803.
doi: 10.1128/JVI.00448-13 |
32 |
FILLMORE R A , MITRA A , XI Y G , et al. Nmi (N-Myc interactor) inhibits Wnt/β-catenin signaling and retards tumor growth[J]. Int J Cancer, 2009, 125 (3): 556- 564.
doi: 10.1002/ijc.24276 |
33 |
ZHENG W , LI X Y , WANG J C , et al. A critical role of interferon-induced protein IFP35 in the type Ⅰ interferon response in cells induced by foot-and-mouth disease virus (FMDV) protein 2C[J]. Arch Virol, 2014, 159 (11): 2925- 2935.
doi: 10.1007/s00705-014-2147-7 |
34 |
LI Y F , WANG K C , YU K X , et al. Identification and genome characterization of a novel picornavirus from ducks in China[J]. Arch Virol, 2020, 165 (9): 2087- 2089.
doi: 10.1007/s00705-020-04691-7 |
35 |
赵瑞宏, 张小飞, 魏建忠, 等. 鸭病毒性肝炎诊断技术研究进展[J]. 动物医学进展, 2006, 27 (4): 42- 45.
doi: 10.3969/j.issn.1007-5038.2006.04.012 |
ZHAO R H , ZHANG X F , WEI J Z , et al. Progress on diagnosis of duck viral hepatitis virus[J]. Progress in Veterinary Medicine, 2006, 27 (4): 42- 45.
doi: 10.3969/j.issn.1007-5038.2006.04.012 |
|
36 |
胡薛英, 苏敬良, 程国富, 等. 新型鸭肝炎病毒实验感染雏鸭的组织病理学[J]. 中国兽医学报, 2002, 22 (6): 549- 551.
doi: 10.3969/j.issn.1005-4545.2002.06.008 |
HU X Y , SU J L , CHENG G F , et al. Histopathology of experimental infectious duckling with new type duck hepatitis virus[J]. Chinese Journal of Veterinary Science, 2002, 22 (6): 549- 551.
doi: 10.3969/j.issn.1005-4545.2002.06.008 |
|
37 |
LIU G Q , WANG F , NI Z , et al. Complete genomic sequence of a Chinese isolate of duck hepatitis virus[J]. Virol Sin, 2007, 22 (5): 353- 359.
doi: 10.1007/s12250-007-0032-1 |
38 | KIM M C , KWON Y K , JOH S J , et al. Molecular analysis of duck hepatitis virus type 1 reveals a novel lineage close to the genus Parechovirus in the family Picornaviridae[J]. J Gen Virol, 2006, 87 (Pt 11): 3307- 3316. |
39 |
LI C F , SHAN T L , CHEN Z Y , et al. Isolation and complete genome analysis of a novel duck picornavirus in China[J]. Vet Microbiol, 2021, 253, 108950.
doi: 10.1016/j.vetmic.2020.108950 |
40 | 刘家森, 甘一迪, 姜骞, 等. 鸭肝炎病毒Ⅰ型VP3基因的克隆及原核表达[J]. 中国兽医科学, 2008, 38 (7): 587- 590. |
LIU J S , GAN Y D , JIANG Q , et al. Cloning and prokaryotic expression of VP3 gene of duck hepatitis virus type Ⅰ[J]. Chinese Veterinary Science, 2008, 38 (7): 587- 590. |
[1] | 郑焕琴, 姜晓敏, 岳红, 王宝岩, 刘洋, 张兴晓, 张建龙, 朱洪伟. 猫1型疱疹病毒分离鉴定及部分生物学特性分析[J]. 畜牧兽医学报, 2024, 55(7): 3040-3048. |
[2] | 刘博华, 符汉宇, 王玉恒, 索朗斯珠, 牛家强, 包玉花, 李家奎, 徐业芬. 西藏那曲市牦牛源B型多杀性巴氏杆菌的分离鉴定及基因组分析[J]. 畜牧兽医学报, 2024, 55(7): 3105-3118. |
[3] | 李明, 崔洪伟, 高婕, 安乐乐, 李松励, 饶正华. 白羽肉鸡小肠内容物中致病性大肠杆菌的鉴定及基因组分析[J]. 畜牧兽医学报, 2024, 55(6): 2692-2700. |
[4] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[5] | 郑芮, 刘紫石, 张康友, 颜勇, 魏玲, 泽仁翁姆, 丁则德米, 黄建钧, 王利, 魏勇. 花生茎源茉莉炭疽菌的分离鉴定及生物学特性研究[J]. 畜牧兽医学报, 2024, 55(5): 2206-2213. |
[6] | 田睿, 徐思翔, 谢烽, 刘广锦, 王刚, 李庆霞, 代蕾, 谢国信, 张琼文, 陆亚警, 王光文, 王金秀, 张炜. 黄牛源产气荚膜梭菌分离株基因组的生物信息学分析[J]. 畜牧兽医学报, 2024, 55(4): 1707-1715. |
[7] | 梁灿新, 郑小雪, 舒雪利, 周婉怡, 廖明, 曹伟胜. 与鸡内皮血管瘤病例相关的禽白血病病毒K亚群分离及其gp85基因演化分析[J]. 畜牧兽医学报, 2024, 55(3): 1127-1136. |
[8] | 陈玥彤, 刘晓涵, 王芷洋, 赵宇馨, 周铁忠, 胡增金, 朱悦, 王少辉, 田明星, 丁思羽, 祁晶晶, 于圣青. 广东规模化鸡场死鸡胚中鸡毒支原体的分离鉴定、致病性及药物敏感性[J]. 畜牧兽医学报, 2024, 55(1): 290-299. |
[9] | 姜玲玲, 牛小霞, 刘强, 张刚, 王璞, 李勇. 宁夏地区肉牛腹泻相关病毒感染状况的分析[J]. 畜牧兽医学报, 2023, 54(9): 3863-3871. |
[10] | 刘鑫欢, 恽佳蕾, 毛立, 李基棕, 郝飞, 何苗锋, 杨蕾蕾, 张纹纹, 程子龙, 孙敏, 刘茂军, 王少辉, 白娟, 李文良. 羊腹泻样本中大肠杆菌的分离、毒力基因与耐药性分析[J]. 畜牧兽医学报, 2023, 54(8): 3445-3454. |
[11] | 陈宏建, 曹艳, 樊杰, 甘荣萱, 宋文博, 喻盛炜, 杨婷, 赵艳霞, 魏春燕, 谢锐, 华琳, 彭忠, 吴斌. 2020—2022年湖北省生猪屠宰场伪狂犬病病毒的分离鉴定及遗传进化分析[J]. 畜牧兽医学报, 2023, 54(7): 2972-2981. |
[12] | 王佳丽, 周宁, 陈曦, 岳华, 汤承. 犬腺病毒2型E3基因自然缺失毒株的分离鉴定及其致病性[J]. 畜牧兽医学报, 2023, 54(7): 2982-2990. |
[13] | 胡秀花, 孙芷馨, 赵梦洋, 谢佳琪, 王敏, 陈海良, 葛昕, 刘天龙, 王少林. 野生松鼠源屎肠球菌的致病性与耐药性分析[J]. 畜牧兽医学报, 2023, 54(7): 3012-3021. |
[14] | 赵菲菲, 李杰, 韩宁, 谢仕廷, 曾振灵. 分离自屠宰场的肺炎克雷伯菌的耐药性分析[J]. 畜牧兽医学报, 2023, 54(7): 3044-3053. |
[15] | 赵真坚, 王书杰, 陈栋, 姬祥, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 唐国庆. 基于低深度全基因组测序分析内江猪群体结构和遗传多样性[J]. 畜牧兽医学报, 2023, 54(6): 2297-2307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||