畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 1995-2003.doi: 10.11843/j.issn.0366-6964.2025.05.001
周锐1(), 吴德1, 车炼强1, 林燕1, 冯斌1, 方正锋1,2,*(
)
收稿日期:
2024-10-10
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
方正锋
E-mail:rui1zhou@163.com;ZFang@sicau.edu.cn
作者简介:
周锐(1997-),男,四川德阳人,博士生,主要从事动物营养与饲料科学研究,E-mail:rui1zhou@163.com
基金资助:
ZHOU Rui1(), WU De1, CHE Lianqiang1, LIN Yan1, FENG Bin1, FANG Zhengfeng1,2,*(
)
Received:
2024-10-10
Online:
2025-05-23
Published:
2025-05-27
Contact:
FANG Zhengfeng
E-mail:rui1zhou@163.com;ZFang@sicau.edu.cn
摘要:
N6-甲基腺嘌呤(N6-methyladenosine, m6A) 修饰是真核mRNA中普遍存在的一种动态可逆修饰, 对脂肪代谢调控具有重要作用。m6A修饰通过调节mRNA的稳定性、剪接、运输及翻译等过程, 参与脂肪细胞分化、脂质合成和分解等生物学过程。本文系统地综述了m6A修饰调控脂肪细胞分化、脂质合成和分解的作用机制, 旨在为调控动物脂质生成、提高肉品质、促进畜牧业发展提供新策略。
中图分类号:
周锐, 吴德, 车炼强, 林燕, 冯斌, 方正锋. N6-腺苷甲基化调控脂肪生成的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 1995-2003.
ZHOU Rui, WU De, CHE Lianqiang, LIN Yan, FENG Bin, FANG Zhengfeng. Advances of N6-Adenosine Methylation Regulating Adipogenesis[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 1995-2003.
1 |
梁小娟, 李雨爽, 李莹莹, 等. 北京黑猪脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55 (07): 2877- 2889.
doi: 10.11843/j.issn.0366-6964.2024.07.009 |
LIANG X J , LI Y S , LI Y Y , et al. Isolation, culture and adipogenic differentiation of Beijing Black pig preadipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 2877- 2889.
doi: 10.11843/j.issn.0366-6964.2024.07.009 |
|
2 | BOGIE J F J , GRAJCHEN E , WOUTERS E , et al. Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain[J]. J Exp Med, 2020, 217 (5) |
3 | 汪以真. mRNA N6-甲基腺嘌呤修饰调控与动物脂肪沉积的研究进展[J]. 动物营养学报, 2022, 34 (11): 6801- 6816. |
WANG Y Z . Research Progress on mRNA N6-methyladenosine modification regulation and animal fat deposition[J]. Chinese Journal of Animal Nutrition, 2022, 34 (11): 6801- 6816. | |
4 |
FANG Z , MEI W , QU C , et al. Role of m6A writers, erasers and readers in cancer[J]. Exp Hematol Oncol, 2022, 11 (1): 45.
doi: 10.1186/s40164-022-00298-7 |
5 |
ALARCÓN C R , LEE H , GOODARZI H , et al. N6-methyladenosine marks primary microRNAs for processing[J]. Nature, 2015, 519 (7544): 482- 485.
doi: 10.1038/nature14281 |
6 |
WEI C M , GERSHOWITZ A , MOSS B . Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA[J]. Cell, 1975, 4 (4): 379- 86.
doi: 10.1016/0092-8674(75)90158-0 |
7 |
SHI H , WEI J , HE C . Where, When, and How: context-dependent functions of RNA methylation writers, readers, and erasers[J]. Mol Cell, 2019, 74 (4): 640- 650.
doi: 10.1016/j.molcel.2019.04.025 |
8 |
SOMMER S , LAVI U , DARNELL J E Jr . The absolute frequency of labeled N-6-methyladenosine in HeLa cell messenger RNA decreases with label time[J]. J Mol Biol, 1978, 124 (3): 487- 499.
doi: 10.1016/0022-2836(78)90183-3 |
9 | BOKAR J A , SHAMBAUGH M E , POLAYES D , et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase[J]. RNA, 1997, 3 (11): 1233- 1247. |
10 |
JIA G , FU Y , ZHAO X , et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7 (12): 885- 887.
doi: 10.1038/nchembio.687 |
11 |
DOMINISSINI D , MOSHITCH-MOSHKOVITZ S , SCHWARTZ S , et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485 (7397): 201- 206.
doi: 10.1038/nature11112 |
12 |
庞立川, 单艳菊, 刘一帆, 等. METTL16在鸡不同类型肌肉中的表达规律及其对肌肉功能的调控作用[J]. 畜牧兽医学报, 2023, 54 (02): 545- 553.
doi: 10.11843/j.issn.0366-6964.2023.02.012 |
PANG L C , SHAN Y J , LIU Y F , et al. Expression of METTL16 in different types of chicken muscle and its regulatory role in chicken skeletal muscle function[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 545- 553.
doi: 10.11843/j.issn.0366-6964.2023.02.012 |
|
13 | 张娟丽, 杨姣姣, 杨巧丽, 等. m6A甲基化修饰对畜禽生产影响的研究进展[J]. 中国兽医学报, 2023, 43 (6): 1333- 1341. |
ZHANG J L , YANG J J , YANG Q L , et al. Research progress on the effects of m6A methylation modification on livestock and poultry production[J]. Chinese Journal of Veterinary Science, 2023, 43 (6): 1333- 1341. | |
14 |
肖叶懿, 郜重丞, 包文斌, 等. 猪m6A甲基化酶WTAP基因与F18大肠杆菌感染的关系[J]. 畜牧兽医学报, 2021, 52 (6): 1709- 1716.
doi: 10.11843/j.issn.0366-6964.2021.06.025 |
XIAO Y Y , GAO Z C , BAO W B , et al. Relationship between porcine m6A methylase WTAP Gene and F18 Escherichia coli infection[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (6): 1709- 1716.
doi: 10.11843/j.issn.0366-6964.2021.06.025 |
|
15 | 田婷婷, 伊旭东, 庞卫军. 脂肪含量和肥胖相关蛋白介导的mRNA m6A修饰对动物脂肪沉积的作用及其应用前景[J]. 生物工程学报, 2022, 38 (1): 119- 129. |
TIAN T T , YI X D , PANG W J . The effect of fat mass and obesity associated proteins mediated mRNA m6A modification on animal fat deposition and its application prospects[J]. Chinese Journal of Biotechnology, 2022, 38 (1): 119- 129. | |
16 |
韩皓哲, 帖子航, 庞卫军, 等. IGF2BP2介导的m6A修饰调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2023, 54 (9): 3605- 3612.
doi: 10.11843/j.issn.0366-6964.2023.09.002 |
HAN H Z , TIE Z H , PANG W J , et al. Advances of IGF2BP2-mediated m6A modification on animal fat deposition[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3605- 3612.
doi: 10.11843/j.issn.0366-6964.2023.09.002 |
|
17 |
SONG T , YANG Y , JIANG S , et al. Novel insights into adipogenesis from the perspective of transcriptional and RNA N6-methyladenosine-mediated post-transcriptional regulation[J]. Adv Sci, 2020, 7 (21): 2001563.
doi: 10.1002/advs.202001563 |
18 |
卢曾奎, 张利平, 李青, 等. mRNA中N6-甲基腺苷修饰及其在动物中的研究进展[J]. 畜牧兽医学报, 2019, 50 (1): 1- 13.
doi: 10.11843/j.issn.0366-6964.2019.01.001 |
LU Z K , ZHANG L P , LI Q , et al. N6-methyladenosine modification in mRNA and its research advance in animals[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (1): 1- 13.
doi: 10.11843/j.issn.0366-6964.2019.01.001 |
|
19 |
YOON H , SHAW J L , HAIGIS M C , et al. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity[J]. Mol Cell, 2021, 81 (18): 3708- 3730.
doi: 10.1016/j.molcel.2021.08.027 |
20 |
JEON Y G , KIM Y Y , LEE G , et al. Physiological and pathological roles of lipogenesis[J]. Nat Metab, 2023, 5 (5): 735- 759.
doi: 10.1038/s42255-023-00786-y |
21 | ZHAO X , YANG Y , SUN B F , et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014, 24 (12): 1403- 1419. |
22 | FRAYLING T M , TIMPSON N J , WEEDON M N , et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity[J]. Science, 2007, 316 (5826): 889- 894. |
23 | MERKESTEIN M , SELLAYAH D . Role of FTO in adipocyte development and function: Recent insights[J]. Int J Endocrinol, 2015, 2015, 521381. |
24 | MERKESTEIN M , LABER S , MCMURRAY F , et al. FTO influences adipogenesis by regulating mitotic clonal expansion[J]. Nat Commun, 2015, 6, 6792. |
25 | WANG X , SUN B , JIANG Q , et al. mRNA m6A plays opposite role in regulating UCP2 and PNPLA2 protein expression in adipocytes[J]. Int J Obes, 2018, 42 (11): 1912- 1924. |
26 | WANG X , WU R , LIU Y , et al. m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7[J]. Autophagy, 2020, 16 (7): 1221- 1235. |
27 | CHEN A , CHEN X , CHENG S , et al. FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863 (5): 538- 548. |
28 | WANG L , SONG C , WANG N , et al. NADP modulates RNA m6A methylation and adipogenesis via enhancing FTO activity[J]. Nat Chem Biol, 2020, 16 (12): 1394- 1402. |
29 | YOUNOSSI Z M . Non-alcoholic fatty liver disease-A global public health perspective[J]. J Hepatol, 2019, 70 (3): 531- 544. |
30 | PENG Z , GONG Y , WANG X , et al. METTL3-m6A-Rubicon axis inhibits autophagy in nonalcoholic fatty liver disease[J]. Mol Ther, 2022, 30 (2): 932- 946. |
31 | ZHOU B , LUO Y , BI H , et al. Amelioration of nonalcoholic fatty liver disease by inhibiting the deubiquitylating enzyme RPN11[J]. Cell Metab, 2024, 36 (10): 2228- 2244.e7. |
32 | WANG Y , GAO M , ZHU F , et al. METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice[J]. Nat Commun, 2020, 11 (1): 1648. |
33 | CHEN H , GAO S , LIU W , et al. RNA N6-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m6A-GLUT1-mTORC1 axis and is a therapeutic target[J]. Gastroenterology, 2021, 160 (4): 1284- 1300.e16. |
34 | LU X Y , SHI X J , HU A , et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis[J]. Nature, 2020, 588 (7838): 479- 484. |
35 | FU R , CHEN D , TIAN G , et al. Betaine affects abdominal flare fat metabolism via regulating m6A RNA methylation in finishing pigs fed a low-energy diet[J]. J Functional Foods, 2023, 107, 105620. |
36 | CHO S , CHUN Y , HE L , et al. FAM120A couples SREBP-dependent transcription and splicing of lipogenesis enzymes downstream of mTORC1[J]. Mol Cell, 2023, 83 (16): 3010- 3026.e8. |
37 | ZHONG X , YU J , FRAZIER K , et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m6A mRNA methylation[J]. Cell Rep, 2018, 25 (7): 1816- 1828.e4. |
38 | WANG Y , LI X , LIU C , et al. WTAP regulates postnatal development of brown adipose tissue by stabilizing METTL3 in mice[J]. Life Metab, 2022, 1 (3): 270- 284. |
39 | XIAO L , DE JESUS D F , JU C W , et al. m6A mRNA methylation in brown fat regulates systemic insulin sensitivity via an inter-organ prostaglandin signaling axis independent of UCP1[J]. Cell Metab, 2024, 36 (10): 2207- 2227.e9. |
40 | SONG T , YANG Y , WEI H , et al. Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation[J]. Nucleic Acids Res, 2019, 47 (12): 6130- 6144. |
41 | LIU Q , ZHAO Y , WU R , et al. ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m6 A dependent manner[J]. RNA Biol, 2019, 16 (12): 1785- 1793. |
42 | JIANG Q , SUN B , LIU Q , et al. MTCH2 promotes adipogenesis in intramuscular preadipocytes via an m6A-YTHDF1-dependent mechanism[J]. FASEB J, 2019, 33 (2): 2971- 2981. |
43 | ZHOU B , LIU C , XU L , et al. N6-methyladenosine reader protein YT521-B homology domain-containing 2 suppresses liver steatosis by regulation of mRNA stability of lipogenic genes[J]. Hepatology, 2021, 73 (1): 91- 103. |
44 | YAN Z , ZHANG Y , NAN N , et al. YTHDC2 mediated RNA m6A modification contributes to PM2.5-induced hepatic steatosis[J]. J Hazard Mater, 2024, 476, 135004. |
45 | DAI N , ZHAO L , WRIGHTING D , et al. IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and other mRNAs encoding mitochondrial proteins[J]. Cell Metab, 2015, 21 (4): 609- 621. |
46 | REGUé L , MINICHIELLO L , AVRUCH J , et al. Liver-specific deletion of IGF2 mRNA binding protein-2/IMP2 reduces hepatic fatty acid oxidation and increases hepatic triglyceride accumulation[J]. J Biol Chem, 2019, 294 (31): 11944- 11951. |
47 | CHENG Y , GAO Z , ZHANG T , et al. Decoding m6A RNA methylome identifies PRMT6-regulated lipid transport promoting AML stem cell maintenance[J]. Cell Stem Cell, 2023, 30 (1): 69- 85.e7. |
48 | JIANG Y , PENG J , SONG J , et al. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2[J]. Nat Metab, 2021, 3 (11): 1569- 1584. |
49 | LEVINE B , KROEMER G . Biological functions of autophagy genes: A disease perspective[J]. Cell, 2019, 176 (1-2): 11- 42. |
50 | SONG H , FENG X , ZHANG H , et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy, 2019, 15 (8): 1419- 1437. |
51 | VILLA E , SAHU U , O 'HARA B P , et al. mTORC1 stimulates cell growth through SAM synthesis and m6A mRNA-dependent control of protein synthesis[J]. Mol Cell, 2021, 81 (10): 2076- 2093.e9. |
52 | CHO S , LEE G , PICKERING B F , et al. mTORC1 promotes cell growth via m6A-dependent mRNA degradation[J]. Mol Cell, 2021, 81 (10): 2064- 2075.e8. |
53 | ZUO F , WEI H , PENG J , et al. Effects on the cell barrier function of L-Met and DL-HMTBA is related to metabolic characteristics and m6A modification[J]. Front Nutr, 2022, 9, 836069. |
54 | 左方瑞. 不同形式的蛋氨酸源在猪不同细胞系中的代谢特征和对细胞功能的影响[D]. 武汉: 华中农业大学, 2020. |
ZUO F R. Metabolic characteristics and effects on cell functions of different forms of methionine sources in different pig cell lines[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese) | |
55 | GEBEYEW K , YANG C , MI H , et al. Lipid metabolism and m6A RNA methylation are altered in lambs supplemented rumen-protected methionine and lysine in a low-protein diet[J]. J Anim Sci Biotechnol, 2022, 13 (1): 85. |
56 | SONG Y P , LV J W , ZHANG Z C , et al. Effects of gestational arsenic exposures on placental and fetal development in mice: The role of Cyr61 m6A[J]. Environ Health Perspect, 2023, 131 (9): 97004. |
57 | LIU Y , SHEN J , YANG X , et al. Folic acid reduced triglycerides deposition in primary chicken hepatocytes[J]. J Agric Food Chem, 2018, 66 (50): 13162- 13172. |
58 | LIU Y , YANG J , LIU X , et al. Dietary folic acid addition reduces abdominal fat deposition mediated by alterations in gut microbiota and SCFA production in broilers[J]. Anim Nutr, 2023, 12, 54- 62. |
59 | LI N , ZHANG D , CAO S , et al. The effects of folic acid on RNA m6A methylation in hippocampus as well as learning and memory ability of rats with acute lead exposure[J]. J Functional Foods, 2021, 76, 104276. |
60 | ZHONG Y , YAN Z , SONG B , et al. Dietary supplementation with betaine or glycine improves the carcass trait, meat quality and lipid metabolism of finishing mini-pigs[J]. Anim Nutr, 2021, 7 (2): 376- 383. |
61 | ZHAO N , YANG S , SUN B , et al. Maternal betaine protects rat offspring from glucocorticoid-induced activation of lipolytic genes in adipose tissue through modification of DNA methylation[J]. Eur J Nutr, 2020, 59 (4): 1707- 1716. |
62 | FU R , WANG Q , KONG C , et al. Mechanism of action and the uses betaine in pig production[J]. J Anim Physiol Anim Nutr, 2022, 106 (3): 528- 536. |
63 | WU W , WANG S , XU Z , et al. Betaine promotes lipid accumulation in adipogenic-differentiated skeletal muscle cells through ERK/PPARγ signalling pathway[J]. Mol Cell Biochem, 2018, 447 (1-2): 137- 149. |
64 | LU N , LI X , YU J , et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m6 A RNA methylation in piglets[J]. Lipids, 2018, 53 (1): 53- 63. |
65 | 窦晓宁, 蒋苏苏, 魏芳, 等. α-亚麻酸和亚油酸通过抑制脂肪细胞分化和诱导凋亡减弱猪脂肪形成[J]. 基因组学与应用生物学, 2021, 40 (Z3): 2995- 3005. |
DOU X N , JIANG S S , WEI F , et al. α-linolenic acid and linoleic acid decreased porcine fat formation by inhibiting adipocyte differentiation and inducing apoptosis[J]. Genomics and Applied Biology, 2021, 40 (Z3): 2995- 3005. | |
66 | CHEN W , CHEN Y , WU R , et al. DHA alleviates diet-induced skeletal muscle fiber remodeling via FTO/m6A/DDIT4/PGC1α signaling[J]. BMC Biol, 2022, 20 (1): 39. |
67 | CHEN W , LIU Y , LIU J , et al. Acute exercise promotes WAT browning by remodeling mRNA m6A methylation[J]. Life Sci, 2025, 361, 123269. |
[1] | 张岩岩, 葛红帆, 周振雷. 红景天苷对甲泼尼龙诱导的肉鸡股骨头坏死的影响[J]. 畜牧兽医学报, 2025, 56(5): 2496-2506. |
[2] | 王盛琪, 季新雨, 黄福青, 胡曼丽, 王柔淇, 耿玉欣, 孙迎雪, 齐智利, 张鑫. 添加红景天苷的全价粮对犬血液生化指标和肝转录组学的影响[J]. 畜牧兽医学报, 2025, 56(1): 455-465. |
[3] | 李瑶, 贾蕊, 李杰, 滚双宝, 杨巧丽, 王龙龙, 张鹏霞, 高小莉, 黄晓宇. 低温对合作猪脂肪组织形态、脂代谢相关基因表达和酶活性及AMPK/PGC-1α通路的影响[J]. 畜牧兽医学报, 2024, 55(8): 3418-3426. |
[4] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[5] | 邵钺馨, 张新钰, 葛丽岩, 史怀平. 西农萨能奶山羊ATF4基因克隆及其功能初步研究[J]. 畜牧兽医学报, 2023, 54(6): 2353-2364. |
[6] | 欧正淼, 周家文, 刘莉莉, 吴芸, 陈粉粉. 基于RNA-Seq的无量山乌骨鸡肝脏组织脂代谢相关基因筛选及其表达分析[J]. 畜牧兽医学报, 2023, 54(3): 976-988. |
[7] | 樊磊, 莘余, 尤留超, 田欣宇, 罗皓, 王辛, 张婷婷, 沈留红. 脂多糖致奶牛糖脂代谢异常研究进展[J]. 畜牧兽医学报, 2023, 54(2): 484-493. |
[8] | 赵慧颖, 余诗强, 赵玉超, 蒋林树. 肝脏-脂肪组织代谢串扰在围产期奶牛脂肪肝发展中的作用机制[J]. 畜牧兽医学报, 2023, 54(10): 4105-4116. |
[9] | 李林, 曹萌, 宫彬彬, 赵梅, 王婕, 张晓辉. 丁酸钠通过AMPK通路调控LPS造成牛乳腺上皮细胞脂代谢紊乱的作用机制[J]. 畜牧兽医学报, 2022, 53(9): 3221-3230. |
[10] | 胡立萍, 沈子亮, 王全, 于紫桐, 张琦绮, 毛永江, 杨章平, 张慧敏. 泌乳早期奶牛瘤胃微生物与牛奶脂肪酸组成的变化[J]. 畜牧兽医学报, 2022, 53(9): 3018-3028. |
[11] | 周敏, 汪凯歌, 张濂, 马曦. 微生物-肠-肌轴调节骨骼肌代谢和功能的研究进展[J]. 畜牧兽医学报, 2022, 53(9): 2845-2857. |
[12] | 李林, 宫彬彬, 王广力, 赵梅, 张源淑. 乙酸钠对油酸诱导的BRL-3A细胞脂肪变性的影响及机制分析[J]. 畜牧兽医学报, 2022, 53(12): 4450-4460. |
[13] | 常凌, 何业春, 李正, 王奇志, 赵爱华, 宋泽和, 张海涵, 贺喜. 溶血卵磷脂对降能饲粮饲喂良凤花鸡生长发育的影响[J]. 畜牧兽医学报, 2022, 53(11): 3892-3906. |
[14] | 谢宁, 张凯艺, 阮进学, 陶聪, 吴添文, 王彦芳, 杨述林. Glut4突变调控脂肪重分布及肌纤维重塑的机制研究[J]. 畜牧兽医学报, 2021, 52(9): 2464-2474. |
[15] | 梁小娟, 陶聪, 赵莹, 王超, 刘璐璐, 王彦芳. RNF20及其介导的组蛋白H2B单泛素化对小鼠棕色脂肪细胞分化的影响[J]. 畜牧兽医学报, 2020, 51(4): 722-731. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||