畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (2): 484-493.doi: 10.11843/j.issn.0366-6964.2023.02.007
樊磊, 莘余, 尤留超, 田欣宇, 罗皓, 王辛, 张婷婷, 沈留红*
收稿日期:
2022-05-19
出版日期:
2023-02-23
发布日期:
2023-02-21
通讯作者:
沈留红,主要从事奶牛疾病研究,E-mail:shenlh@sicau.edu.cn
作者简介:
樊磊(1999-),男,四川成都人,硕士,主要从事奶牛疾病研究,E-mail:1936441948@qq.com;莘余(1996-),女,河北张家口人,硕士,主要从事奶牛疾病研究,E-mail:xy15031324924@163.com。
基金资助:
FAN Lei, SHEN Yu, YOU Liuchao, TIAN Xinyu, LUO Hao, WANG Xin, ZHANG Tingting, SHEN Liuhong*
Received:
2022-05-19
Online:
2023-02-23
Published:
2023-02-21
摘要: 脂多糖(LPS)是革兰阴性菌细胞壁的主要成分,广泛存在于环境中,可诱导机体炎症反应,与奶牛的多种疾病相关。环境和疾病等因素引起机体LPS水平升高,LPS与巨噬细胞、中性粒细胞和上皮细胞等作用,激活NF-κB和MAPKs信号通路,释放炎症因子,改变机体糖脂代谢相关激素和脂肪因子水平,进而影响糖脂代谢,造成奶牛2型糖尿病、酮病、脂肪肝和肥胖等代谢性疾病。本文综述了LPS与炎症反应和糖脂代谢相互作用关系及其导致糖脂代谢异常作用机制,为LPS致奶牛糖脂代谢异常机理研究提供参考。
中图分类号:
樊磊, 莘余, 尤留超, 田欣宇, 罗皓, 王辛, 张婷婷, 沈留红. 脂多糖致奶牛糖脂代谢异常研究进展[J]. 畜牧兽医学报, 2023, 54(2): 484-493.
FAN Lei, SHEN Yu, YOU Liuchao, TIAN Xinyu, LUO Hao, WANG Xin, ZHANG Tingting, SHEN Liuhong. Research Progress on Abnormal Glucose and Lipid Metabolism in Dairy Cows Induced by Lipopolysaccharide (LPS)[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 484-493.
[1] | COCHET F, PERI F. The role of carbohydrates in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signalling[J]. Int J Mol Sci, 2017, 18(11):2318. |
[2] | SHERMAN D J, XIE R, TAYLOR R J, et al. Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge[J]. Science, 2018, 359(6377):798-801. |
[3] | ZEBELI Q, SIVARAMAN S, DUNN S M, et al. Intermittent parenteral administration of endotoxin triggers metabolic and immunological alterations typically associated with displaced abomasum and retained placenta in periparturient dairy cows[J]. J Dairy Sci, 2011, 94(10):4968-4983. |
[4] | ZEBELI Q, DUNN S M, AMETAJ B N. Perturbations of plasma metabolites correlated with the rise of rumen endotoxin in dairy cows fed diets rich in easily degradable carbohydrates[J]. J Dairy Sci, 2011, 94(5):2374-2382. |
[5] | 汪 志, 董国忠, 吴剑波. 内毒素对猪的危害及其控制[J]. 动物营养学报, 2017, 29(2):397-402.WANG Z, DONG G Z, WU J B. The adverse effects of endotoxin on pigs and its control[J]. Chinese Journal of Animal Nutrition, 2017, 29(2):397-402. (in Chinese) |
[6] | AKHTAR M, GUO S, GUO Y F, et al. Upregulated-gene expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) via TLRs following NF-κB and MAPKs in bovine mastitis[J]. Acta Trop, 2020, 207:105458. |
[7] | DOHMEN M J W, JOOP K, STURK A, et al. Relationship between intra-uterine bacterial contamination, endotoxin levels and the development of endometritis in postpartum cows with dystocia or retained placenta[J]. Theriogenology, 2000, 54(7):1019-1032. |
[8] | GOMEZ D E, RODRIGUEZ-LECOMPTE J C, LOFSTEDT J, et al. Detection of endotoxin in plasma of hospitalized diarrheic calves[J]. J Vet Emerg Crit Care (San Antonio), 2019, 29(2):166-172. |
[9] | KIM H S, WHON T W, SUNG H, et al. Longitudinal evaluation of fecal microbiota transplantation for ameliorating calf diarrhea and improving growth performance[J]. Nat Commun, 2021, 12(1):161. |
[10] | GOZHO G N, KRAUSE D O, PLAIZIER J C. Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows[J]. J Dairy Sci, 2007, 90(2):856-866. |
[11] | ELMHADI M E, ALI D K, KHOGALI M K, et al. Subacute ruminal acidosis in dairy herds:microbiological and nutritional causes, consequences, and prevention strategies[J]. Anim Nutr, 2022, 10:148-155. |
[12] | KRAUSE K M, OETZEL G R. Understanding and preventing subacute ruminal acidosis in dairy herds:a review[J]. Anim Feed Sci Technol, 2006, 126(3-4):215-236. |
[13] | 张晓音, 吴 旻, 李雨萌, 等. 脂多糖的效应及其机理研究进展[J]. 动物医学进展, 2015, 36(12):133-136.ZHANG X Y, WU M, LI Y M, et al. Progress on effects and mechanisms of lipopolysaccharides[J]. Progress in Veterinary Medicine, 2015, 36(12):133-136. (in Chinese) |
[14] | LEE Y G, LEE J, BYEON S E, et al. Functional role of Akt in macrophage-mediated innate immunity[J]. Front Biosci (Landmark Ed), 2011, 16(2):517-530. |
[15] | QURESHI N, VOGEL S N, VAN WAY III C, et al. The proteasome:a central regulator of inflammation and macrophage function[J]. Immunol Res, 2005, 31(3):243-260. |
[16] | DAVIES D, MEADE K G, HERATH S, et al. Toll-like receptor and antimicrobial peptide expression in the bovine endometrium[J]. Reprod Biol Endocrinol, 2008, 6:53. |
[17] | 赵 欣, 王 莹, 李春亭, 等. 蒲公英提取物对LPS诱导小鼠乳腺炎的减轻效应及其机制分析[J]. 畜牧兽医学报, 2022, 53(8):2773-2781.ZHAO X, WANG Y, LI C T, et al. Alleviating effect and mechanism of dandelion extract on LPS-induced mastitis in mice[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8):2773-2781. (in Chinese) |
[18] | GUO Y F, XU N N, SUN W J, et al. Luteolin reduces inflammation in Staphylococcus aureus-induced mastitis by inhibiting NF-kB activation and MMPs expression[J]. Oncotarget, 2017, 8(17):28481-28493. |
[19] | FICKE L M. Role of TLR4 accessory proteins CD14 and MD-2 in the combinatorial recognition of pathogens[D]. Toledo:The University of Toledo, 2008. |
[20] | GIOANNINI T L, WEISS J P. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells[J]. Immunol Res, 2007, 39(1-3):249-260. |
[21] | BELHAOUANE I, HOFFMANN E, CHAMAILLARD M, et al. Paradoxical roles of the MAL/tirap adaptor in pathologies[J]. Front Immunol, 2020, 11:569127. |
[22] | ANTHONEY N, FOLDI I, HIDALGO A. Toll and toll-like receptor signalling in development[J]. Development, 2018, 145(9):v156018. |
[23] | TSUKAMOTO H, TAKEUCHI S, KUBOTA K, et al. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKK∈-IRF3 axis activation[J]. J Biol Chem, 2018, 293(26):10186-10201. |
[24] | CRONIN J G, TURNER M L, GOETZE L, et al. Toll-like receptor 4 and MYD88-dependent signaling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium[J]. Biol Reprod, 2012, 86(2):51. |
[25] | HAYDEN M S, GHOSH S. Signaling to NF-κB[J]. Genes Dev, 2004, 18(18):2195-2224. |
[26] | LOYI T, KUMAR H, NANDI S, et al. Differential expression of pro-inflammatory cytokines in endometrial tissue of buffaloes with clinical and sub-clinical endometritis[J]. Res Vet Sci, 2013, 94(2):336-340. |
[27] | CUI L Y, WANG H, LIN J Q, et al. Progesterone inhibits inflammatory response in E. coli-or LPS-Stimulated bovine endometrial epithelial cells by NF-κB and MAPK pathways[J]. Dev Comp Immunol, 2020, 105:103568. |
[28] | ARTHUR J S C, LEY S C. Mitogen-activated protein kinases in innate immunity[J]. Nat Rev Immunol, 2013, 13(9):679-692. |
[29] | TAKEUCHI O. IRF3:a molecular switch in pathogen responses[J]. Nat Immunol, 2012, 13(7):634-635. |
[30] | TIAN M Y, LI K, LIU R N, et al. Angelica polysaccharide attenuates LPS-induced inflammation response of primary dairy cow claw dermal cells via NF-κB and MAPK signaling pathways[J]. BMC Vet Res, 2021, 17(1):248. |
[31] | 李 林, 曹 萌, 宫彬彬, 等. 丁酸钠通过AMPK通路调控LPS造成牛乳腺上皮细胞脂代谢紊乱的作用机制[J]. 畜牧兽医学报, 2022, 53(9):3221-3230.LI L, CAO M, GONG B B, et al. The mechanism of sodium butyrate through AMPK pathway to regulate lipid metabolism disorder caused by LPS in bovine mammary epithelial cells[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9):3221-3230.(in Chinese) |
[32] | CANI P D, AMAR J, IGLESIAS M A, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7):1761-1772. |
[33] | GROSS J J, SCHWINN A C, BRUCKMAIER R M. Free and bound cortisol, corticosterone, and metabolic adaptations during the early inflammatory response to an intramammary lipopolysaccharide challenge in dairy cows[J]. Domest Anim Endocrinol, 2020, 74:106554. |
[34] | HAYIRLI A. The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle[J]. Vet Res Commun, 2006, 30(7):749-774. |
[35] | AMETAJ B N. A new understanding of the causes of fatty liver in dairy cows[J]. Adv Dairy Technol, 2005, 17:97-112. |
[36] | WEBER C, SCHÄFF C T, KAUTZSCH U, et al. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving[J]. J Dairy Sci, 2016, 99(8):6665-6679. |
[37] | SUMARA G, FORMENTINI I, COLLINS S, et al. Regulation of PKD by the MAPK p38δ in insulin secretion and glucose homeostasis[J]. Cell, 2009, 136(2):235-248. |
[38] | FUJISHIRO M, GOTOH Y, KATAGIRI H, et al. MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression[J]. J Biol Chem, 2001, 276(23):19800-19806. |
[39] | OZAKI K I, AWAZU M, TAMIYA M, et al. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes[J]. Am J Physiol Endocrinol Metab, 2016, 310(8):E643-E651. |
[40] | ANDERSEN P H. Bovine endotoxicosis——some aspects of relevance to production diseases. A review[J]. Acta Vet Scand Suppl, 2003, 98:141-155. |
[41] | AMETAJ B N, BRADFORD B J, BOBE G, et al. Strong relationships between mediators of the acute phase response and fatty liver in dairy cows[J]. Can J Anim Sci, 2005, 85(2):165-175. |
[42] | KHOVIDHUNKIT W, KIM M S, MEMON R A, et al. Thematic review series:the pathogenesis of atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host[J]. J Lipid Res, 2004, 45(7):1169-1196. |
[43] | MERKEL M, ECKEL R H, GOLDBERG I J. Lipoprotein lipase:genetics, lipid uptake, and regulation[J]. J Lipid Res, 2002, 43(12):1997-2006. |
[44] | WALDRON M R, KULICK A E, BELL A W, et al. Acute experimental mastitis is not causal toward the development of energy-related metabolic disorders in early postpartum dairy cows[J]. J Dairy Sci, 2006, 89(2):596-610. |
[45] | ZEBELI Q, AMETAJ B N. Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows[J]. J Dairy Sci, 2009, 92(8):3800-3809. |
[46] | VELS L, RØNTVED C M, BJERRING M, et al. Cytokine and acute phase protein gene expression in repeated liver biopsies of dairy cows with a lipopolysaccharide-induced mastitis[J]. J Dairy Sci, 2009, 92(3):922-934. |
[47] | HISS S, MIELENZ M, BRUCKMAIER R M, et al. Haptoglobin concentrations in blood and milk after endotoxin challenge and quantification of mammary Hp mRNA expression[J]. J Dairy Sci, 2004, 87(11):3778-3784. |
[48] | KHAFIPOUR E, KRAUSE D O, PLAIZIER J C. Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation[J]. J Dairy Sci, 2009, 92(4):1712-1724. |
[49] | SHANGRAW E M, RODRIGUES R O, WITZKE M C, et al. Intramammary lipopolysaccharide infusion induces local and systemic effects on milk components in lactating bovine mammary glands[J]. J Dairy Sci, 2020, 103(8):7487-7497. |
[50] | XU T L, WU X Y, LU X B, et al. Metformin activated AMPK signaling contributes to the alleviation of LPS-induced inflammatory responses in bovine mammary epithelial cells[J]. BMC Vet Res, 2021, 17(1):97. |
[51] | AMETAJ B N, EMMANUEL D G V, ZEBELI Q, et al. Feeding high proportions of barley grain in a total mixed ration perturbs diurnal patterns of plasma metabolites in lactating dairy cows[J]. J Dairy Sci, 2009, 92(3):1084-1091. |
[52] | DEPREESTER E, DE KOSTER J, VAN POUCKE M, et al. Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy[J]. J Dairy Sci, 2018, 101(7):6542-6555. |
[53] | 朱颍琨, 肖劲邦, 钱柏霖, 等. 泌乳初期奶牛相关脂肪因子及生理生化指标与脂肪肝的相关性[J]. 浙江农业学报, 2019, 31(5):722-729.ZHU Y K, XIAO J B, QIAN B L, et al. Correlations between adipokine, biochemical indicators in early lactation cows with fatty liver[J]. Acta Agriculturae Zhejiangensis, 2019, 31(5):722-729. (in Chinese) |
[54] | 沈留红, 肖劲邦, 朱颍琨, 等. 围产期奶牛相关脂肪因子及生理生化指标对脂肪肝的风险评估研究[J]. 东北农业大学学报, 2019, 50(2):37-45.SHEN L H, XIAO J B, ZHU Y K, et al. Fatty liver risk assessment function of adipokine, biochemical, and physiological indicators in perinatal dairy cows[J]. Journal of Northeast Agricultural University, 2019, 50(2):37-45. (in Chinese) |
[55] | 肖劲邦, 朱颍琨, 钱柏霖, 等. 围产前期奶牛血清相关能量平衡指标和脂肪因子对酮病的预警作用及意义[J]. 中国农业大学学报, 2019, 24(9):79-87.XIAO J B, ZHU Y K, QIAN B L, et al. Early warning function and significance of serum energy balance index and adipokine levels for ketosis in dairy cows during early prenatal[J]. Journal of China Agricultural University, 2019, 24(9):79-87. (in Chinese) |
[56] | SHEN L, QIAN B, XIAO J, et al. Characterization of serum adiponectin and leptin in healthy perinatal dairy cows or cows with ketosis, and their effects on ketosis involved indices[J]. Pol J Vet Sci, 2020, 23(3):373-381. |
[57] | AGUIRRE V, UCHIDA T, YENUSH L, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of ser307[J]. J Biol Chem, 2000, 275(12):9047-9054. |
[58] | ASTAPOVA O, LEFF T. Adiponectin and PPARγ:cooperative and interdependent actions of two key regulators of metabolism[J]. Vitam Horm, 2012, 90:143-162. |
[59] | YE J P. Regulation of PPARγ function by TNF-α[J]. Biochem Biophys Res Commun, 2008, 374(3):405-408. |
[60] | RUI L Y, YUAN M S, FRANTZ D, et al. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2[J]. J Biol Chem, 2002, 277(44):42394-42398. |
[61] | 宁 茂, 曹 杰. 奶牛围产期脂肪因子变化对胰岛素信号通路的影响[J]. 黑龙江畜牧兽医, 2022(2):32-37.NING M, CAO J. Effects of adipokine changes on insulin signaling pathway in perinatal period of dairy cows[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(2):32-37. (in Chinese) |
[62] | SHEN L H, ZHU Y K, XIAO J B, et al. Serum adipokines play different roles in type I and II ketosis[J]. Asian-Australas J Anim Sci, 2020, 33(12):1930-1939. |
[63] | VAN ANDEL M, HEIJBOER A C, DRENT M L. Adiponectin and its isoforms in pathophysiology[J]. Adv Clin Chem, 2018, 85:115-147. |
[64] | KRUMM C S, GIESY S L, CAIXETA L S, et al. Effect of hormonal and energy-related factors on plasma adiponectin in transition dairy cows[J]. J Dairy Sci, 2017, 100(11):9418-9427. |
[65] | SUTTON J D, DHANOA M S, MORANT S V, et al. Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets[J]. J Dairy Sci, 2003, 86(11):3620-3633. |
[66] | AJUWON K M, SPURLOCK M E. Adiponectin inhibits LPS-induced NF-κB activation and IL-6 production and increases PPARγ2 expression in adipocytes[J]. Am J Physiol Regul, Integr Comp Physiol, 2005, 288(5):R1220-R1225. |
[67] | KIM Y B, UOTANI S, PIERROZ D D, et al. In vivo administration of leptin activates signal transduction directly in insulin-sensitive tissues:overlapping but distinct pathways from insulin[J]. Endocrinology, 2000, 141(7):2328-2339. |
[68] | LULU S A, KOKTA T A, DODSON M V, et al. Early signaling interactions between the insulin and leptin pathways in bovine myogenic cells[J]. Biochim Biophys Acta (BBA)-Mol Cell Res, 2005, 1744(2):164-175. |
[69] | PESSIN J E, SALTIEL A R. Signaling pathways in insulin action:molecular targets of insulin resistance[J]. J Clin Invest, 2000, 106(2):165-169. |
[70] | 刘小平, 史卓言, 孙 卓, 等. 抵抗素与动物肌内脂肪沉积研究进展[J]. 现代畜牧兽医, 2021(10):92-96.LIU X P, SHI Z Y, SUN Z, et al. Research progress of resistin and intramuscular fat deposition in animals[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2021(10):92-96. (in Chinese) |
[71] | GARTEN A, SCHUSTER S, PENKE M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism[J]. Nat Rev Endocrinol, 2015, 11(9):535-546. |
[72] | PIYA M K, MCTERNAN P G, KUMAR S. Adipokine inflammation and insulin resistance:the role of glucose, lipids and endotoxin[J]. J Endocrinol, 2013, 216(1):T1-T15. |
[73] | FUKUHARA A, MATSUDA M, NISHIZAWA M, et al. Visfatin:a protein secreted by visceral fat that mimics the effects of insulin[J]. Obstet Gynecol Surv, 2005, 60(8):523-524. |
[1] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[2] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[3] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[4] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[5] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[6] | 张志飞, 唐雪颖, 闵力, 童雄, 陈卫东, 巨向红, 李大刚. 荷斯坦奶牛肝脏组织中与泌乳时期及繁殖力相关的基因共表达网络构建[J]. 畜牧兽医学报, 2024, 55(2): 528-539. |
[7] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[8] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
[9] | 孟璐, 胡海燕, 董蕾, 郑楠, 王加启. 基于SourceTracker分析牧场环境对乳房炎乳菌群的影响[J]. 畜牧兽医学报, 2023, 54(9): 3872-3883. |
[10] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
[11] | 赵婉莉, 曹棋棋, 杨悦, 邓昭举, 徐闯. 胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用[J]. 畜牧兽医学报, 2023, 54(7): 2751-2760. |
[12] | 黄上真, 马龙刚, 娄文琦, 宁景扬, 张海亮, 胡丽蓉, 扎琼, 李斌, 徐青, 巴桑罗布, 王雅春. 高原地区奶牛血液指标的影响因素分析[J]. 畜牧兽医学报, 2023, 54(5): 1964-1978. |
[13] | 蔡明玉, 张海龙, 海珍珍, 乔亚蕊, 杜军, 周学章. 重组克柔念珠菌14-3-3蛋白诱导奶牛乳腺上皮细胞炎症反应的分子机制[J]. 畜牧兽医学报, 2023, 54(4): 1679-1689. |
[14] | 冯肖艺, 杨柏高, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激导致奶牛胚胎质量下降的机制及解决措施[J]. 畜牧兽医学报, 2023, 54(3): 868-876. |
[15] | 余诗强, 李留学, 赵小博, 赵慧颖, 屠焰, 赵玉超, 蒋林树. 不同泌乳阶段和体细胞水平的中国荷斯坦奶牛泌乳性能差异和相关性研究[J]. 畜牧兽医学报, 2023, 54(3): 1003-1014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||