畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (10): 4105-4116.doi: 10.11843/j.issn.0366-6964.2023.10.010
赵慧颖, 余诗强, 赵玉超, 蒋林树*
收稿日期:
2023-03-20
出版日期:
2023-10-23
发布日期:
2023-10-26
通讯作者:
蒋林树,主要从事奶牛营养调控,非常规饲料资源开发、反刍动物营养与免疫研究,E-mail:jls@bua.edu.cn
作者简介:
赵慧颖(1999-),女,河南郑州人,硕士生,主要从事反刍动物营养与免疫研究,E-mail:1183236380@qq.com
基金资助:
ZHAO Huiying, YU Shiqiang, ZHAO Yuchao, JIANG Linshu*
Received:
2023-03-20
Online:
2023-10-23
Published:
2023-10-26
摘要: 围产期是奶牛的重要生理阶段,同时也是营养代谢性疾病多发、高发的时期。过度的能量负平衡会使奶牛产生肝外组织胰岛素抵抗,使得葡萄糖流向乳腺,而胰岛素抵抗加剧则会造成机体糖脂代谢紊乱,造成脂肪组织过度动员和肝脏脂质积累,严重的则会出现脂肪肝等疾病。大量研究表明肝脏和脂肪组织在脂肪肝发生发展中存在密切联系。本文旨在综述介导肝脏-脂肪组织串扰相关的因子及作用,以期为调控围产期奶牛糖脂代谢、改善肝脏健康提供科学参考。
中图分类号:
赵慧颖, 余诗强, 赵玉超, 蒋林树. 肝脏-脂肪组织代谢串扰在围产期奶牛脂肪肝发展中的作用机制[J]. 畜牧兽医学报, 2023, 54(10): 4105-4116.
ZHAO Huiying, YU Shiqiang, ZHAO Yuchao, JIANG Linshu. Mechanism of Liver-Adipose Tissue Crosstalk in the Development of Fatty Liver in Periparturient Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4105-4116.
[1] | BAUMGARD L H, COLLIER R J, BAUMAN D E. A 100-year review:Regulation of nutrient partitioning to support lactation[J]. J Dairy Sci, 2017, 100(12):10353-10366. |
[2] | MCFADDEN J W. Review:Lipid biology in the periparturient dairy cow:contemporary perspectives[J]. Animal, 2020, 14(S1):s165-s175. |
[3] | BOBE G, YOUNG J W, BEITZ D C. Invited review:Pathology, etiology, prevention, and treatment of fatty liver in dairy cows[J]. J Dairy Sci, 2004, 87(10):3105-3124. |
[4] | ZACHUT M, HONIG H, STRIEM S, et al. Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss[J]. J Dairy Sci, 2013, 96(9):5656-5669. |
[5] | ARNER P. The adipocyte in insulin resistance:key molecules and the impact of the thiazolidinediones[J]. Trends Endocrinol Metab, 2003, 14(3):137-145. |
[6] | HAVEL P J. Section IV:Lipid modulators of islet function update on adipocyte hormones regulation of energy balance and carbohydrate/lipid metabolism[J]. Diabetes, 2004, 53(S1):S143-S151. |
[7] | KHARITONENKOV A, SHIYANOVA T L, KOESTER A, et al. FGF-21 as a novel metabolic regulator[J]. J Clin Invest, 2005, 115(6):1627-1635. |
[8] | SHUBHAM K, VINAY L, VINOD P K. Systems-level organization of non-alcoholic fatty liver disease progression network[J]. Mol BioSyst, 2017, 13(9):1898-1911. |
[9] | VERNON R G. Lipid metabolism during lactation:a review of adipose tissue-liver interactions and the development of fatty liver[J]. J Dairy Res, 2005, 72(4):460-469. |
[10] | ZAMMIT V A. Ketogenesis in the liver of ruminants-adaptations to a challenge[J]. J Agric Sci, 1990, 115(2):155-162. |
[11] | ZAMMIT V A. The malonyl-CoA-long-chain acyl-CoA axis in the maintenance of mammalian cell function[J]. Biochem J, 1999, 343(Pt 3):505-515. |
[12] | GRUMMER R R. Etiology of lipid-related metabolic disorders in periparturient dairy cows[J]. J Dairy Sci, 1993, 76(12):3882-3896. |
[13] | LUCY M C, JIANG H, KOBAYASHI Y. Changes in the somatotrophic axis associated with the initiation of lactation[J]. J Dairy Sci, 2001, 84:E113-E119. |
[14] | WHITE H. The role of TCA cycle anaplerosis in ketosis and fatty liver in periparturient dairy cows[J]. Animals, 2015, 5(3):793-802. |
[15] | HUSAIN-SYED F, MCCULLOUGH P A, BIRK H W, et al. Cardio-pulmonary-renal interactions[J]. J Am Coll Cardiol, 2015, 65(22):2433-2448. |
[16] | STERN J H, RUTKOWSKI J M, SCHERER P E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk[J]. Cell Metab, 2016, 23(5):770-784. |
[17] | SPANN R A, MORRISON C D, DEN HARTIGH L J. The nuanced metabolic functions of endogenous FGF21 depend on the nature of the stimulus, tissue source, and experimental model[J]. Front Endocrinol, 2022, 12:802541. |
[18] | PETERSEN M C, SHULMAN G I. Mechanisms of insulin action and insulin resistance[J]. Physiol Rev, 2018, 98(4):2133-2223. |
[19] | CARTER-KENT C, ZEIN N N, FELDSTEIN A E. Cytokines in the pathogenesis of fatty liver and disease progression to steatohepatitis:implications for treatment[J]. Am J Gastroenterol, 2008, 103(4):1036-1042. |
[20] | RICO J E, SAED SAMII S, MATHEWS A T, et al. Temporal changes in sphingolipids and systemic insulin sensitivity during the transition from gestation to lactation[J]. PLoS ONE, 2017, 12(5):e0176787. |
[21] | BORODZICZ S, CZARZASTA K, KUCH M, et al. Sphingolipids in cardiovascular diseases and metabolic disorders[J]. Lipids Health Dis, 2015, 14(1):55. |
[22] | SUMMERS S. Ceramides in insulin resistance and lipotoxicity[J]. Prog Lipid Res, 2006, 45(1):42-72. |
[23] | BARTKE N, HANNUN Y A. Bioactive sphingolipids:metabolism and function[J]. J Lipid Res, 2009, 50:S91-S96. |
[24] | MARCHESINI N, HANNUN Y A. Acid and neutral sphingomyelinases:roles and mechanisms of regulation[J]. Biochem Cell Biol, 2004, 82(1):27-44. |
[25] | RICO J E, BANDARU V V R, DORSKIND J M, et al. Plasma ceramides are elevated in overweight Holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation[J]. J Dairy Sci, 2015, 98(11):7757-7770. |
[26] | GREEN C D, MACEYKA M, COWART L A, et al. Sphingolipids in metabolic disease:The good, the bad, and the unknown[J]. Cell Metab, 2021, 33(7):1293-1306. |
[27] | BOON J, HOY A J, STARK R, et al. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance[J]. Diabetes, 2013, 62(2):401-410. |
[28] | COANT N, SAKAMOTO W, MAO C G, et al. Ceramidases, roles in sphingolipid metabolism and in health and disease[J]. Adv Biol Regul, 2017, 63:122-131. |
[29] | CHAVEZ J A, SUMMERS S A. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes[J]. Arch Biochem Biophys, 2003, 419(2):101-109. |
[30] | TRAUNER M, ARRESE M, WAGNER M. Fatty liver and lipotoxicity[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2010, 1801(3):299-310. |
[31] | SCHWABE R F, BRENNER D A. Mechanisms of liver injury. I. TNF-α-induced liver injury:role of IKK, JNK, and ROS pathways[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(4):G583-G589. |
[32] | DE MELLO V D F, LANKINEN M, SCHWAB U, et al. Link between plasma ceramides, inflammation and insulin resistance:association with serum IL-6 concentration in patients with coronary heart disease[J]. Diabetologia, 2009, 52(12):2612-2615. |
[33] | VANDANMAGSAR B, YOUM Y H, RAVUSSIN A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance[J]. Nat Med, 2011, 17(2):179-188. |
[34] | LI Y, TALBOT C L, CHAURASIA B. Ceramides in adipose tissue[J]. Front Endocrinol, 2020, 11:407. |
[35] | CHAURASIA B, TIPPETTS T S, MAYORAL MONIBAS R, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis[J]. Science, 2019, 365(6451):386-392. |
[36] | PARK M, KADDAI V, CHING J, et al. A role for ceramides, but not sphingomyelins, as antagonists of insulin signaling and mitochondrial metabolism in C2C12 myotubes[J]. J Biol Chem, 2016, 291(46):23978-23988. |
[37] | OBEID L M, LINARDIC C M, KAROLAK L A, et al. Programmed cell death induced by ceramide[J]. Science, 1993, 259(5102):1769-1771. |
[38] | BIKMAN B T, GUAN Y G, SHUI G H, et al. Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis[J]. J Biol Chem, 2012, 287(21):17426-17437. |
[39] | DAVIS A N, CLEGG J L, PERRY C A, et al. Nutrient restriction increases circulating and hepatic ceramide in dairy cows displaying impaired insulin tolerance[J]. Lipids, 2017, 52(9):771-780. |
[40] | QIN N B, KOKKONEN T, SALIN S, et al. Prepartal overfeeding alters the lipidomic profiles in the liver and the adipose tissue of transition dairy cows[J]. Metabolomics, 2017, 13(2):21. |
[41] | RICO J E, GIESY S L, HAUGHEY N J, et al. Intravenous triacylglycerol infusion promotes ceramide accumulation and hepatic steatosis in dairy cows[J]. J Nutr, 2018, 148(10):1529-1535. |
[42] | HOTAMISLIGIL G S, SHARGILL N S, SPIEGELMAN B M. Adipose expression of tumor necrosis factor-α:direct role in obesity-linked insulin resistance[J]. Science, 1993, 259(5091):87-91. |
[43] | OLEFSKY J M, GLASS C K. Macrophages, inflammation, and insulin resistance[J]. Annu Rev Physiol, 2010, 72(1):219-246. |
[44] | GAMBINO R, MUSSO G, CASSADER M. Redox balance in the pathogenesis of nonalcoholic fatty liver disease:mechanisms and therapeutic opportunities[J]. Antioxid Redox Signal, 2011, 15(5):1325-1365. |
[45] | OHTSUKA H, KOIWA M, HATSUGAYA A, et al. Relationship between serum TNF activity and insulin resistance in dairy cows affected with naturally occurring fatty liver[J]. J Vet Med Sci, 2001, 63(9):1021-1025. |
[46] | KERN P A, RANGANATHAN S, LI C L, et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance[J]. Am J Physiol Endocrinol Metab, 2001, 280(5):E745-E751. |
[47] | HOTAMISLIGIL G S, PERALDI P, BUDAVARI A, et al. IRS-I-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α-and obesity-induced insulin resistance[J]. Science, 1996, 271(5249):665-670. |
[48] | AGUIRRE V, UCHIDA T, YENUSH L, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307[J]. J Biol Chem, 2000, 275(12):9047-9054. |
[49] | KOCA S S, BAHCECIOGLU I H, POYRAZOGLU O K, et al. The treatment with antibody of TNF-α reduces the inflammation, necrosis and fibrosis in the non-alcoholic steatohepatitis induced by methionine-and choline-deficient diet[J]. Inflammation, 2008, 31(2):91-98. |
[50] | LI Y, DING H Y, WANG X C, et al. High levels of acetoacetate and glucose increase expression of cytokines in bovine hepatocytes, through activation of the NF-κB signalling pathway[J]. J Dairy Res, 2016, 83(1):51-57. |
[51] | DU X L, LIU M C, TAI W J, et al. Tumor necrosis factor-α promotes lipolysis and reduces insulin sensitivity by activating nuclear factor kappa B and c-Jun N-terminal kinase in primary bovine adipocytes[J]. J Dairy Sci, 2022, 105(10):8426-8438. |
[52] | SHI X X, LI X W, LI D D, et al. β-hydroxybutyrate activates the NF-κB signaling pathway to promote the expression of pro-inflammatory factors in calf hepatocytes[J]. Cell Physiol Biochem, 2014, 33(4):920-932. |
[53] | WANG Y, XU A M, KNIGHT C, et al. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin[J]. J Biol Chem, 2002, 277(22):19521-19529. |
[54] | MAEDA K, OKUBO K, SHIMOMURA I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1)[J]. Biochem Biophys Res Commun, 1996, 221(2):286-289. |
[55] | NAKANO Y, TOBE T, CHOI-MIURA N H, et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma[J]. J Biochem, 1996, 120(4):803-812. |
[56] | SCHERER P E, WILLIAMS S, FOGLIANO M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes[J]. J Biol Chem, 1995, 270(45):26746-26749. |
[57] | HU E D, LIANG P, SPIEGELMAN B M. AdipoQ is a novel adipose-specific gene dysregulated in obesity[J]. J Biol Chem, 1996, 271(18):10697-10703. |
[58] | PAJVANI U B, DU X L, COMBS T P, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin[J]. J Biol Chem, 2003, 278(11):9073-9085. |
[59] | WAKI H, YAMAUCHI T, KAMON J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes[J]. J Biol Chem, 2003, 278(41):40352-40363. |
[60] | YAMAUCHI T, KAMON J, WAKI H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J]. Nat Med, 2001, 7(8):941-946. |
[61] | PAJVANI U B, HAWKINS M, COMBS T P, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity[J]. J Biol Chem, 2004, 279(13):12152-12162. |
[62] | QIANG L, WANG H, FARMER S R. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-Lα[J]. Mol Cell Biol, 2007, 27(13):4698-4707. |
[63] | SEINO Y, HIROSE H, SAITO I, et al. High-molecular-weight adiponectin is a predictor of progression to metabolic syndrome:a population-based 6-year follow-up study in Japanese men[J]. Metabolism, 2009, 58(3):355-360. |
[64] | HARA K, HORIKOSHI M, YAMAUCHI T, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome[J]. Diabetes Care, 2006, 29(6):1357-1362. |
[65] | YAMAUCHI T, KAMON J, ITO Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects[J]. Nature, 2003, 423(6941):762-769. |
[66] | HUG C, WANG J, AHMAD N S, et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin[J]. Proc Natl Acad Sci U S A, 2004, 101(28):10308-10313. |
[67] | 张 辉. 脂联素对围产期奶牛脂肪动员的相关性研究[D]. 长春:吉林大学, 2007.ZHANG H. The interrelation of ADPN and fat mobilization of dairy cows in peripartum[D]. Changchun:Jilin University, 2007. (in Chinese) |
[68] | YAMAUCHI T, KAMON J, MINOKOSHI Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nat Med, 2002, 8(11):1288-1295. |
[69] | MAO X M, KIKANI C K, RIOJAS R A, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function[J]. Nat Cell Biol, 2006, 8(5):516-523. |
[70] | FU Y C, LUO N L, KLEIN R L, et al. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation[J]. J Lipid Res, 2005, 46(7):1369-1379. |
[71] | KIM J Y, VAN DE WALL E, LAPLANTE M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue[J]. J Clin Invest, 2007, 117(9):2621-2637. |
[72] | LUMENG C N, BODZIN J L, SALTIEL A R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization[J]. J Clin Invest, 2007, 117(1):175-184. |
[73] | KUMADA M, KIHARA S, OUCHI N, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages[J]. Circulation, 2004, 109(17):2046-2049. |
[74] | OHASHI K, PARKER J L, OUCHI N, et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype[J]. J Biol Chem, 2010, 285(9):6153-6160. |
[75] | CHENG K K Y, LAM K S L, WANG B L, et al. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin[J]. Best Pract Res Clin Endocrinol Metab, 2014, 28(1):3-13. |
[76] | BIANCHI G, BUGIANESI E, FRYSTYK J, et al. Adiponectin isoforms, insulin resistance and liver histology in nonalcoholic fatty liver disease[J]. Dig Liver Dis, 2011, 43(1):73-77. |
[77] | XU A M, WANG Y, KESHAW H, et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice[J]. J Clin Invest, 2003, 112(1):91-100. |
[78] | ADACHI M, BRENNER D A. High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase[J]. Hepatology, 2008, 47(2):677-685. |
[79] | RYU J, HADLEY J T, LI Z, et al. Adiponectin alleviates diet-induced inflammation in the liver by suppressing MCP-1 expression and macrophage infiltration[J]. Diabetes, 2021, 70(6):1303-1316. |
[80] | AWAZAWA M, UEKI K, INABE K, et al. Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway[J]. Biochem Biophys Res Commun, 2009, 382(1):51-56. |
[81] | CHEN H, ZHANG L, LI X W, et al. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes[J]. J Steroid Biochem Mol Biol, 2013, 138:445-454. |
[82] | SHEN L, QIAN B, XIAO J, et al. Characterization of serum adiponectin and leptin in healthy perinatal dairy cows or cows with ketosis, and their effects on ketosis involved indices[J]. Pol J Vet Sci, 2020, 23(3):373-381. |
[83] | KUPCHAK B R, GARITAONANDIA I, VILLA N Y, et al. Antagonism of human adiponectin receptors and their membrane progesterone receptor paralogs by TNFα and a ceramidase inhibitor[J]. Biochemistry, 2009, 48(24):5504-5506. |
[84] | SHARMA A X, HOLLAND W L. Adiponectin and its hydrolase-activated receptors[J]. J Nat Sci, 2017, 3(6):e396. |
[85] | HOLLAND W L, MILLER R A, WANG Z V, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin[J]. Nat Med, 2011, 17(1):55-63. |
[86] | HOLLAND W L, XIA J Y, JOHNSON J A, et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis[J]. Mol Metab, 2017, 6(3):267-275. |
[87] | XIA J Y, HOLLAND W L, KUSMINSKI C M, et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis[J]. Cell Metab, 2015, 22(2):266-278. |
[88] | BADMAN M K, PISSIOS P, KENNEDY A R, et al. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states[J]. Cell Metab, 2007, 5(6):426-437. |
[89] | INAGAKI T, DUTCHAK P, ZHAO G X, et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21[J]. Cell Metab, 2007, 5(6):415-425. |
[90] | FISHER F M, MARATOS-FLIER E. Understanding the physiology of FGF21[J]. Annu Rev Physiol, 2016, 78(1):223-241. |
[91] | GENG L L, LAM K S L, XU A M. The therapeutic potential of FGF21 in metabolic diseases:from bench to clinic[J]. Nat Rev Endocrinol, 2020, 16(11):654-667. |
[92] | XU J, LLOYD D J, HALE C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice[J]. Diabetes, 2009, 58(1):250-259. |
[93] | AKBAR H, BATISTEL F, DRACKLEY J K, et al. Alterations in hepatic FGF21, co-regulated genes, and upstream metabolic genes in response to nutrition, ketosis and inflammation in peripartal holstein cows[J]. PLoS ONE, 2015, 10(10):e0139963. |
[94] | WANG J G, ZHU X Y, SHE G H, et al. Serum hepatokines in dairy cows:periparturient variation and changes in energy-related metabolic disorders[J]. BMC Vet Res, 2018, 14(1):236. |
[95] | CAIXETA L S, GIESY S L, KRUMM C S, et al. Effect of circulating glucagon and free fatty acids on hepatic FGF21 production in dairy cows[J]. Am J Physiol Regul Integr Comp Physiol, 2017, 313(5):R526-R534. |
[96] | KHAN M J, JACOMETO C B, GRAUGNARD D E, et al. Overfeeding dairy cattle during late-pregnancy alters hepatic PPARα-regulated pathways including hepatokines:impact on metabolism and peripheral insulin sensitivity[J]. Gene Regul Syst Biol, 2014, 8:97-111. |
[97] | BONDURANT L D, AMEKA M, NABER M C, et al. FGF21 regulates metabolism through adipose-dependent and-independent mechanisms[J]. Cell Metab, 2017, 25(4):935-944. e4. |
[98] | GE X, CHEN C, HUI X Y, et al. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes[J]. J Biol Chem, 2011, 286(40):34533-34541. |
[99] | SCHLEIN C, TALUKDAR S, HEINE M, et al. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues[J]. Cell Metab, 2016, 23(3):441-453. |
[100] | CAIXETA L S, GIESY S L, KRUMM C S, et al. Fibroblast growth factor-21 (FGF21) administration to early-lactating dairy cows. II. Pharmacokinetics, whole-animal performance, and lipid metabolism[J]. J Dairy Sci, 2019, 102(12):11597-11608. |
[101] | ZHANG Y Y, PROENCA R, MAFFEI M, et al. Positional cloning of the mouse obese gene and its human homologue[J]. Nature, 1994, 372(6505):425-432. |
[102] | HARRIS R B S. Direct and indirect effects of leptin on adipocyte metabolism[J]. Biochim Biophys Acta, 2014, 1842(3):414-423. |
[103] | WANG J L, LIU R, HAWKINS M, et al. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat[J]. Nature, 1998, 393(6686):684-688. |
[104] | BARR V A, MALIDE D, ZARNOWSKI M J, et al. Insulin stimulates both leptin secretion and production by rat white adipose tissue[J]. Endocrinology, 1997, 138(10):4463-4472. |
[105] | CARON A, DUNGAN LEMKO H M, CASTORENA C M, et al. POMC neurons expressing leptin receptors coordinate metabolic responses to fasting via suppression of leptin levels[J]. eLife, 2018, 7:e33710. |
[106] | FEI H, OKANO H J, LI C, et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues[J]. Proc Natl Acad Sci U S A, 1997, 94(13):7001-7005. |
[107] | BURGUERA B, COUCE M E, LONG J, et al. The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain[J]. Neuroendocrinology, 2000, 71(3):187-195. |
[108] | LIEFERS S C, VEERKAMP R F, PAS M F W, et al. A missense mutation in the bovine leptin receptor gene is associated with leptin concentrations during late pregnancy[J]. Anim Genet, 2004, 35(2):138-141. |
[109] | SADRI H, MIELENZ M, MOREL I, et al. Plasma leptin and mRNA expression of lipogenesis and lipolysis-related factors in bovine adipose tissue around parturition[J]. J Anim Physiol Anim Nutr (Berl), 2011, 95(6):790-797. |
[110] | KOKKONEN T, TAPONEN J, ANTTILA T, et al. Effect of body fatness and glucogenic supplement on lipid and protein mobilization and plasma leptin in dairy cows[J]. J Dairy Sci, 2005, 88(3):1127-1141. |
[111] | SCHUH K, SADRI H, HÄUSSLER S, et al. Comparison of performance and metabolism from late pregnancy to early lactation in dairy cows with elevated v. normal body condition at dry-off[J]. Animal, 2019, 13(7):1478-1488. |
[112] | RAZA S H A, LIU G Y, ZHOU L, et al. Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds[J]. Gene, 2020, 758:144957. |
[113] | GYÖRFFY A, KERESZTES M, FAIGL V, et al. Glycogenic induction of thyroid hormone conversion and leptin system activation in the liver of postpartum dairy cows[J]. Acta Vet Hung, 2009, 57(1):139-146. |
[114] | ANDERWALD C, MULLER G, KOCA G, et al. Short-term leptin-dependent inhibition of hepatic gluconeogenesis is mediated by insulin receptor substrate-2[J]. Mol Endocrinol, 2002, 16(7):1612-1628. |
[115] | HUANG W, DEDOUSIS N, BANDI A, et al. Liver triglyceride secretion and lipid oxidative metabolism are rapidly altered by leptin in vivo[J]. Endocrinology, 2006, 147(3):1480-1487. |
[116] | HACKL M T, FVRNSINN C, SCHUH C M, et al. Brain leptin reduces liver lipids by increasing hepatic triglyceride secretion and lowering lipogenesis[J]. Nat Commun, 2019, 10(1):2717. |
[117] | POLYZOS S A, KOUNTOURAS J, MANTZOROS C S. Leptin in nonalcoholic fatty liver disease:A narrative review[J]. Metabolism, 2015, 64(1):60-78. |
[118] | ZENG W W, PIRZGALSKA R M, PEREIRA M M A, et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis[J]. Cell, 2015, 163(1):84-94. |
[119] | PÉREZ C, FERNÁNDEZ-GALAZ C, FERNÁNDEZ-AGULLÓ T, et al. Leptin impairs insulin signaling in rat adipocytes[J]. Diabetes, 2004, 53(2):347-353. |
[120] | ELIMAM A, KAMEL A, MARCUS C. In vitro effects of leptin on human adipocyte metabolism[J]. Horm Res, 2002, 58(2):88-93. |
[121] | MVLLER G, ERTL J, GERL M, et al. Leptin impairs metabolic actions of insulin in isolated rat adipocytes[J]. J Biol Chem, 1997, 272(16):10585-10593. |
[122] | KRAUS D, FASSHAUER M, OTT V, et al. Leptin secretion and negative autocrine crosstalk with insulin in brown adipocytes[J]. J Endocrinol, 2002, 175(1):185-191. |
[123] | BLOCK S S, BUTLER W R, EHRHARDT R A, et al. Decreased concentration of plasma leptin in periparturient dairy cows is caused by negative energy balance[J]. J Endocrinol, 2001, 171(2):339-348. |
[124] | EHRHARDT R A, FOSKOLOS A, GIESY S L, et al. Increased plasma leptin attenuates adaptive metabolism in early lactating dairy cows[J]. J Endocrinol, 2016, 229(2):145-157. |
[125] | LIEFERS S C, VEERKAMP R F, TE PAS M F W, et al. Leptin concentrations in relation to energy balance, milk yield, intake, live weight, and estrus in dairy cows[J]. J Dairy Sci, 2003, 86(3):799-807. |
[1] | 张亚峰, 朱斌, 马畅, 张源淑. 二脒那秦激活ACE2对非酒精性脂肪肝病大鼠肝线粒体影响研究[J]. 畜牧兽医学报, 2023, 54(9): 3895-3904. |
[2] | 赵婉莉, 曹棋棋, 杨悦, 邓昭举, 徐闯. 胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用[J]. 畜牧兽医学报, 2023, 54(7): 2751-2760. |
[3] | 樊磊, 莘余, 尤留超, 田欣宇, 罗皓, 王辛, 张婷婷, 沈留红. 脂多糖致奶牛糖脂代谢异常研究进展[J]. 畜牧兽医学报, 2023, 54(2): 484-493. |
[4] | 周敏, 汪凯歌, 张濂, 马曦. 微生物-肠-肌轴调节骨骼肌代谢和功能的研究进展[J]. 畜牧兽医学报, 2022, 53(9): 2845-2857. |
[5] | 夏博策, 张凯艺, 苗佳坤, 彭焕祺, 杨宇, 陶聪, 吴添文, 王彦芳, 杨述林. 富营养饮食重塑代谢性疾病易感猪关键组织mRNA剪接模式研究[J]. 畜牧兽医学报, 2022, 53(8): 2537-2547. |
[6] | 张弥, 涂闻君, 张奇, 江莎. 影响鸡脂肪肝出血综合征的因素及“多重打击”学说[J]. 畜牧兽医学报, 2022, 53(8): 2453-2469. |
[7] | 刘同君, 赵盼, 赵敏孟, 刘龙, 崔恒宓, 龚道清, 耿拓宇. 内质网应激标记基因Grp78参与鹅肥肝免疫/炎症状态的调控[J]. 畜牧兽医学报, 2019, 50(4): 727-737. |
[8] | 刘颖, 王换换, 闫书平, 朱斌, 张源淑. 大鼠非酒精性单纯性脂肪肝中肾素血管紧张素系统两条通路的相互作用研究[J]. 畜牧兽医学报, 2019, 50(11): 2309-2317. |
[9] | 姚晓磊, 黄欣爱, 肖慎华, 郑临枫, 范丽洁, 金宇月, 刘孜斐, 张艳丽, 王洁, 王锋. 不同发育阶段湖羊生殖器官脂联素受体与睾酮分泌关键基因表达模式及相关性研究[J]. 畜牧兽医学报, 2018, 49(8): 1642-1650. |
[10] | 唐妮, 王书瑶, 齐锦雯, 吴源冰, 李志琼. 脂联素调控脂质代谢的研究进展[J]. 畜牧兽医学报, 2018, 49(12): 2550-2557. |
[11] | 沈留红,江涛,巫晓峰,姜思汛,肖劲邦,曹随忠,余树民,邓俊良,左之才,彭广能,马晓平,钟志军,任志华,王娅,胡延春. 奶牛胎盘脂联素、瘦素、内脂素与犊牛初生重相关性研究[J]. 畜牧兽医学报, 2017, 48(1): 185-192. |
[12] | 王倩倩,杨彪,夏丽丽,孙晓先,耿拓宇,龚道清. 鹅乙酰辅酶A酰基转移酶2基因的克隆及其在鹅肥肝形成过程中的表达变化[J]. 畜牧兽医学报, 2016, 47(4): 700-708. |
[13] | 孙雨航,夏成,舒适,孙玲伟,徐闯. 应用iTRAQ-HPLC-MS技术筛选奶牛脂肪肝病尿液蛋白标志物[J]. 畜牧兽医学报, 2014, 45(5): 844-852. |
[14] | 潘洪彬,赵素梅,孙泽威,龙国辉,高士争,秦贵信. 脂肪特异蛋白27(Fsp27)与脂肪代谢[J]. 畜牧兽医学报, 2014, 45(3): 347-353. |
[15] | 刘霭莎;李岩;胡文锋;吴同山;李加琪;陈真伟;江冠尧;黎立. 猪脂联素球状结构域gAd基因在乳酸乳球菌中的表达[J]. 畜牧兽医学报, 2012, 43(3): 353-357. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||