畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1484-1493.doi: 10.11843/j.issn.0366-6964.2025.04.002
郭妍岩1,2(), 张羽欣1,2, 陆瑞1,2, 李玉鹏1, 陈龙宾1, 张金龙1, 姚大为1, 阮维斌2, 张效生1,*(
), 郭晓飞1,3,*(
)
收稿日期:
2024-07-16
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
张效生,郭晓飞
E-mail:guoyynice122@163.com;zhangxs0221@126.com;guoxfnongda@163.com
作者简介:
郭妍岩(2000-), 女, 河南洛阳人, 硕士生, 主要从事动物遗传育种与繁殖研究, E-mail: guoyynice122@163.com
基金资助:
GUO Yanyan1,2(), ZHANG Yuxin1,2, LU Rui1,2, LI Yupeng1, CHEN Longbin1, ZHANG Jinlong1, YAO Dawei1, RUAN Weibin2, ZHANG Xiaosheng1,*(
), GUO Xiaofei1,3,*(
)
Received:
2024-07-16
Online:
2025-04-23
Published:
2025-04-28
Contact:
ZHANG Xiaosheng, GUO Xiaofei
E-mail:guoyynice122@163.com;zhangxs0221@126.com;guoxfnongda@163.com
摘要:
在哺乳动物的繁殖过程中,精子和卵子的发生以及受精卵的发育都至关重要。目前,有关哺乳动物卵母细胞成熟发育的研究不在少数,但对其保卫细胞-颗粒细胞是如何对卵母细胞发育产生作用的还有待深入探索。在雌性哺乳动物中,早期卵巢颗粒细胞是由卵巢网和卵巢表皮细胞发育而来的;此后的前体颗粒细胞阶段就围绕于卵母细胞周围,通过间隙连接方式为卵母细胞提供营养物质并进行信息交流,并依赖繁殖激素(如AMH、FSH、LH)调节作用进而对卵母细胞成熟进行调控。本文通过综述哺乳动物卵巢颗粒细胞的来源、颗粒细胞在卵泡各发育阶段的分化及其在卵母细胞成熟过程的功能机制,以期为进一步研究哺乳动物卵巢颗粒细胞的生物学功能提供帮助,并为体外卵母细胞成熟培养体系提供优化思路。
中图分类号:
郭妍岩, 张羽欣, 陆瑞, 李玉鹏, 陈龙宾, 张金龙, 姚大为, 阮维斌, 张效生, 郭晓飞. 哺乳动物卵泡发育阶段颗粒细胞增殖与分化的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1484-1493.
GUO Yanyan, ZHANG Yuxin, LU Rui, LI Yupeng, CHEN Longbin, ZHANG Jinlong, YAO Dawei, RUAN Weibin, ZHANG Xiaosheng, GUO Xiaofei. Research Progress on the Proliferation and Differentiation of Granulosa Cells at Various Follicular Development Stages in Mammal[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1484-1493.
表 1
GCs在卵泡发育不同阶段的特点"
GCs特点Characteristics of GCs | 原始卵泡阶段Primordial follicular stage | 初级卵泡阶段Primary follicular stage | 次级卵泡阶段Secondary follicular stage | 成熟卵泡阶段Mature follicular stage | ||
形态Morphology | 未分化单层扁平细胞 | 扁平转变为复层;单层转变为多层;数量增多 | CCs变得膨胀;呈圆形 | MGCs呈上皮细胞样 | CCs疏散且发散;细胞层变薄 | MGCs层不规则折叠 |
空间分布Spatial distribution | 围绕卵母细胞外围 | 与卵母细胞通过透明带建立间隙连接 | 增殖2-3层;围绕卵母细胞 | 紧贴在卵泡壁 | 包裹卵母细胞排出 | 黄体壁层 |
特定基因Specific genes | FSH、RSPO1、Foxl2 | FSH、AMH、ER、BDNF、TrkB | FSH、LH、HA、Slc38a3、AMH | CYP19A1、FSHR | LHR、HA | p21、p27 |
参考文献Reference | [ | [ | [ | [ | [ | [ |
1 | JAGARLAMUDI K , LIU L , ADHIKARI D , et al. Oocyte-specific deletion of pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation[J]. PLoS One, 2009, 4 (7): 61- 86. |
2 |
RICHARDS J S , PANGAS S A . The ovary: basic biology and clinical implications[J]. J Clin Invest, 2010, 120 (4): 963- 972.
doi: 10.1172/JCI41350 |
3 |
STRINGER J M , ALESI L R , WINSHIP A L , et al. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life[J]. Hum Reprod Update, 2023, 29 (4): 434- 456.
doi: 10.1093/humupd/dmad005 |
4 |
YANG X , MA J , MO L , et al. Molecular cloning and characterization of STC1 gene and its functional analyses in yak (Bos grunniens) cumulus granulosa cells[J]. Theriogenology, 2023, 208, 185- 193.
doi: 10.1016/j.theriogenology.2023.06.023 |
5 |
TU J , CHEUNG A H , CHEN C L , et al. The role of microRNAs in ovarian granulosa cells in health and disease[J]. Front Endocrinol (Lausanne), 2019, 10, 174.
doi: 10.3389/fendo.2019.00174 |
6 |
RODGERS R J , IRVING-RODGERS H F . Formation of the ovarian follicular antrum and follicular fluid1[J]. Biol Reprod, 2010, 82 (6): 1021- 1029.
doi: 10.1095/biolreprod.109.082941 |
7 |
WOODRUFF T K , SHEA L D . A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health[J]. J Assist Reprod Genet, 2011, 28 (1): 3- 6.
doi: 10.1007/s10815-010-9478-4 |
8 |
FU Y , HE C J , JI P Y , et al. Effects of melatonin on the proliferation and apoptosis of sheep granulosa cells under thermal stress[J]. Int J Mol Sci, 2014, 15 (11): 21090- 21104.
doi: 10.3390/ijms151121090 |
9 | AZARI-DOLATABAD N , BENEDETTI C , VELEZ D A , et al. Oocyte developmental capacity is influenced by intrinsic ovarian factors in a bovine model for individual embryo production[J]. Anim Reprod Sci, 2023, 249, 107- 185. |
10 | 贺名扬. 褪黑素对绵羊卵巢颗粒细胞增殖及类固醇激素分泌的影响[D]. 保定: 河北农业大学, 2024. |
HE M Y. Effects of melatonin on granulosa cell proliferation and steroid hormone secretion in sheep ovary[D]. Baoding: Hebei Agricultural University. 2024. (in Chinese) | |
11 | 李轲涵. 原始卵泡发育启动的影响因素[J]. 畜牧与饲料科学, 2007 (3): 55- 58. |
LI K H . Influencing factors of primordial follicle development[J]. Animal Husbandry and Feed Science, 2007 (3): 55- 58. | |
12 |
SHAN X , YU T , YAN X , et al. Proteomic analysis of healthy and atretic porcine follicular granulosa cells[J]. J Proteomics, 2021, 232, 104027.
doi: 10.1016/j.jprot.2020.104027 |
13 | 匡光灿, 方振宇, 于凤悦, 等. 哺乳动物黄体和卵泡中颗粒细胞的生长与凋亡调控[J]. 中国畜牧杂志, 2024, 60 (11): 9- 14. |
KUANG G C , FANG Z Y , YU F Y , et al. Regulation of granulosa cell growth and apoptosis in the mammalian corpus luteum and follicle[J]. Chinese Journal of Animal Science, 2024, 60 (11): 9- 14. | |
14 |
GAO E , TURATHUM B , WANG L , et al. The Differential metabolomes in cumulus and mural granulosa cells from human preovulatory follicles[J]. Reprod Sci, 2022, 29 (4): 1343- 1356.
doi: 10.1007/s43032-021-00691-3 |
15 | 何环山. RAF-ERK1/2通路对牛卵巢颗粒细胞合成类固醇激素的影响[D]. 杨凌: 西北农林科技大学, 2018. |
HE H S. Effects of RAF-ERK1/2 pathway on the synthesis of steroid hormones in bovine ovarian granulosa cells[D]. Yangling: Northwest A&F University, 2018. (in Chinese) | |
16 |
TURATHUM B , GAO E , CHIAN R C . The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization[J]. Cells, 2021, 10 (9): 2292.
doi: 10.3390/cells10092292 |
17 | 邢鹏, 袁博, 王娜, 等. 原代黄素化卵泡颗粒细胞氧化应激模型的建立与评价[J]. 中国计划生育和妇产科, 2022, 14 (02): 69- 72. |
XING P , YUAN B , WANG N , et al. Establishment and evaluation of oxidative stress model of follicular granulosa cells[J]. Chinese Journal of Family Planning & Gynecology, 2022, 14 (02): 69- 72. | |
18 | 马钰静, 段春辉, 贺名扬, 等. 敲除G0S2基因对绵羊卵巢颗粒细胞增殖、类固醇激素及相关基因表达的影响[J]. 生物技术通报, 2023, 39 (6): 325- 334. |
MA Y J , DUAN C H , HE M Y , et al. Effects of knockout of G0S2 gene in ovarian cell proliferation, steroid hormones and related gene expression[J]. Biotechnology Bulletin, 2023, 39 (6): 325- 334. | |
19 | 薛丽娜, 毕锡麟. WNT2在绵羊卵泡颗粒细胞的表达及功能研究[J]. 畜牧兽医学报, 2020, 51 (1): 74- 82. |
XUE L N , BI X L . Expression and function analysis of WNT2 in ovine follicular granulose cells[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (1): 74- 82. | |
20 | GHANEM K , JOHNSON A L . Response of hen pre-recruitment ovarian follicles to follicle stimulating hormone, in vivo[J]. Gen Comp Endocrinol, 2019, 270, 41- 47. |
21 | 刘瑞妍. 颗粒细胞储能行为的发现及生物学意义探究[D]. 武汉: 华中农业大学, 2023. |
LIU R Y. The discovery and biological significance of energy storage behavior in granular cells[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese) | |
22 | ARCHILIA E C , BELLO C A P , BATALHA I M , et al. Effects of follicle-stimulating hormone, insulin-like growth factor 1, fibroblast growth factor 2, and fibroblast growth factor 9 on sirtuins expression and histone deacetylase activity in bovine granulosa cells[J]. Theriogenology, 2023, 210, 1- 8. |
23 | MOGHADAM A R E , MOGHADAM M T , HEMADI M , et al. Oocyte quality and aging[J]. JBRA Assist Reprod, 2022, 26 (1): 105- 122. |
24 | RICHANI D , DUNNING K R , THOMPSON J G , et al. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence[J]. Hum Reprod Update, 2021, 27 (1): 27- 47. |
25 | REGAN S L P , KNIGHT P G , YOVICH J L , et al. Granulosa cell apoptosis in the ovarian follicle—A changing view[J]. Front Endocrinol (Lausanne), 2018, 9, 61. |
26 | 陈思润, 李自梅, 董艳鹏, 等. AMPK信号通路在原始卵泡激活中的作用及机制的研究进展[J]. 中国细胞生物学学报, 2020, 42 (12): 2197- 2204. |
CHEN S R , LI Z M , DONG Y P , et al. Research progress on the role and mechanism of AMPK signaling pathway in primordial follicular activation[J]. Chinese Journal of Cell Biology, 2019, 42 (12): 2197- 2204. | |
27 | DE CIAN M C , PAUPER E , BANDIERA R , et al. Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary[J]. Oncogene, 2017, 36 (2): 208- 218. |
28 | FRASER H M , DUNCAN W C . SRB Reproduction, Fertility and Development Award Lecture 2008. Regulation and manipulation of angiogenesis in the ovary and endometrium[J]. Reprod Fertil Dev, 2009, 21 (3): 377- 392. |
29 | LAPOINTE E, BOERBOOM D. WNT signaling and the regulation of ovarian steroidogenesis[J/OL]. Front Biosci, 2011, 3(1): 276-285. |
30 | Cross-species analysis of ARPP19 phosphorylation during oocyte meiotic maturation charts the emergence of a new cAMP-dependent role in vertebrates[N]. Life Science Weekly, 2023-07-18(709). |
31 | RENGARAJ D , HAN J Y . Female germ cell development in chickens and humans: The chicken oocyte enriched genes convergent and divergent with the human oocyte[J]. Int J Mol Sci, 2022, 23 (19): 11412. |
32 | CONVERSE A , ZANIKER E J , AMARGANT F , et al. Recapitulating folliculogenesis and oogenesis outside the body: encapsulated in vitro follicle growth[J]. Biol Reprod, 2023, 108 (1): 5- 22. |
33 | GAN X , WANG Y , GAO S , et al. Co-culture model reveals the characteristics of theca cells and the effect of granulosa cells on theca cells at different stages of follicular development[J]. Reprod Domest Anim, 2021, 56 (1): 58- 73. |
34 | HUTT K J , MCLAUGHLIN E A , HOLLAND M K . Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis[J]. Mol Hum Reprod, 2006, 12 (2): 61- 69. |
35 | ZHANG H , RISALi S , GORRE N , et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice[J]. Curr Biol, 2014, 24 (21): 2501- 2508. |
36 | KIM M H , WANG S U , YOON J D , et al. Physiological and functional roles of neurotrophin-4 during in vitro maturation of porcine cumulus-oocyte complexes[J]. Front Cell Dev Biol, 2022, 10, 908992. |
37 | 王永胜. WDR62在小鼠卵母细胞减数分裂成熟和颗粒细胞中的功能及机制研究[D]. 武汉: 华中农业大学, 2022. |
WANG Y S. The functions and mechanism of WDR62 in mouse oocytes meiotic maturation and granulosa cells[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese) | |
38 | ZHANG H , LIU K . Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood[J]. Hum Reprod Update, 2015, 21 (6): 779- 786. |
39 | PAPAPANOU M , SYRISTATIDI K , GAZOULI M , et al. The effect of stimulation protocols (GnRH Agonist vs. Antagonist) on the activity of mTOR and Hippo pathways of ovarian granulosa cells and its potential correlation with the outcomes of in vitro fertilization: A hypothesis[J]. J Clin Med, 2022, 11 (20): 6131. |
40 | LIU G , ZHENG Y , GAO H , et al. Expression of ERβ induces bovine ovarian granulosa cell autophagy via the AKT/mTOR pathway[J]. Reprod Domest Anim, 2022, 57 (9): 989- 998. |
41 | ZHANG Y , YAN Z , QIN Q , et al. Transcriptome Landscape of Human Folliculogenesis Reveals Oocyte and Granulosa Cell Interactions[J]. Mol Cell, 2018, 72 (6): 1021- 1034. |
42 | TIAN S , ZHANG H , CHANG H M , et al. Activin A promotes hyaluronan production and upregulates versican expression in human granulosa cells[J]. Biol Reprod, 2022, 107 (2): 458- 473. |
43 | 郑雪. 脑源性神经营养因子促猪卵泡颗粒细胞增殖的作用机制研究[D]. 长春: 吉林大学, 2023. |
ZHENG X. The mechanism of brain-derived neurotrophic factor promoting proliferation of porcine follicular granulosa cells[D]. Changchun : Jilin University, 2023. (in Chinese) | |
44 | FUSHⅡ M , KYOGOKU H , LEE J , et al. Change in the ability of bovine granulosa cells to elongate transzonal projections and their transcriptome changes during follicle development[J]. J Reprod Dev, 2024, 70 (6): 362- 371. |
45 | 程立立, 刘少华, 刘珊, 等. 卵丘颗粒细胞中卵母细胞分泌因子表达水平对卵母细胞成熟度的影响[J]. 中国优生与遗传杂志, 2023, 31 (5): 951- 956. |
CHENG L L , LIU S H , LIU S , et al. Expression level of oocyte secreted in the cumulus cells and its relationship with oocyte maturation[J]. Chinese Journal of Birth Health & Heredity, 2023, 31 (5): 951- 956. | |
46 | 高二梦, 千日成. 人卵丘细胞与壁颗粒细胞的差异性研究进展[J]. 国际生殖健康/计划生育杂志, 2021, 40 (5): 386- 390. |
GAO E M , QIAN R C . The differences between cumulus cells and mural granulosa cells in human[J]. Journal of International Reproductive Health/Family Planning, 2021, 40 (5): 386- 390. | |
47 | YIZHI Y , YING W . Relevant factors affecting growing follicles[J]. Chinese Journal of Reproduction and Contraception, 2020, 40 (1): 69- 77. |
48 | CUADRO F , DOS SANTOS-NETO P C , PINCZAK A , et al. Serum progesterone concentrations during FSH superstimulation of the first follicular wave affect embryo production in sheep[J]. Anim Reprod Sci, 2018, 196, 205- 210. |
49 | 刘娇容. 陕北白绒山羊卵巢颗粒细胞的体外培养及其细胞系构建[D]. 榆林: 榆林学院, 2024. |
LIU J R. In vitro culture and cell line construction of ovarian granulosa cells from Shanbei white Cashmere goats[D]. Yulin: Yulin University, 2024. (in Chinese) | |
50 | WEI X , ZHENG L , TIAN Y , et al. Tyrosine phosphatase SHP2 in ovarian granulosa cells balances follicular development by inhibiting PI3K/AKT signaling[J]. J Mol Cell Biol, 2022, 14 (7): 0- 48. |
51 | SPICER L J , SCHÜTZ L F . Effects of grape phenolics, myricetin and piceatannol, on bovine granulosa and theca cell proliferation and steroid production in vitro[J]. Food Chem Toxicol, 2022, 167, 113- 288. |
52 | KRANC W , BR ZERT M , CELICHOWSKI P , et al. "Heart development and morphogenesis" is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach[J]. Mol Med Rep, 2019, 19 (3): 1705- 1715. |
53 | 宋浩然, 冯肖艺, 张培培, 等. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55 (6): 2313- 2324. |
SONG H R , FENG X Y , ZHANG P P , et al. The mechanism of follicular granulocyte cells in follicle development in dairy cow[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (6): 2313- 2324. | |
54 | 杨耀宗. 不同鹅品种卵泡组织学差异及产蛋量候选SNPs位点鉴定[D]. 扬州: 扬州大学, 2019. |
YANG Y Z. Histology of ovarian follicles and identification of SNPs related tor egg production in different goose breeds[D]. Yangzhou: Yangzhou University, 2019. (in Chinese) | |
55 | YAMOCHI T , HASHIMOTO S , MORIMOTO Y . Mural granulosa cells support to maintain the viability of growing porcine oocytes and its developmental competence after insemination[J]. J Assist Reprod Genet, 2021, 38 (10): 2591- 2599. |
56 | STRĄCZYŃSKA P , PAPIS K , MORAWIEC E , et al. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes[J]. Reprod Biol Endocrinol, 2022, 20 (1): 12- 37. |
57 | TIAN H , REN P , LIU K , et al. Transcriptomic comparison of ovarian granulosa cells between adult sheep and prepubertal lambs[J]. BMC Genomics, 2022, 23, 151. |
58 | BAKER T G . A quantitative and cytological study of germ cells in human ovaries.[J]. Proc R Soc Lond B Biol Sci, 1964, 19 (4): 700. |
59 | 于昊. NR4A1参与调控猪卵巢颗粒细胞分化和颗粒-黄体细胞退化的机制研究[D]. 南京: 南京农业大学, 2020. |
YU H. The involvement of NR4A1 in the Mechanism of porcine ovarian granulosa cell differentiation and granulosa-lutein cells degradation[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese) | |
60 | 郭晓飞. FecB基因影响小尾寒羊繁殖力的分子机制研究[D]. 北京: 中国农业大学, 2018. |
GUO X F. Study on molecular mechanism of FecB gene for fecundity in small tail han sheep[D]. Beijing: China Agricultural University, 2018. (in Chinese) | |
61 | DIAZ F J , WIGGLESWORTH K , EPPIG J J . Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice[J]. Dev Bioly, 2007, 305 (1): 300- 311. |
62 | WANG F , CHANG H M , et al. TGF-β1 promotes hyaluronan synthesis by upregulating hyaluronan synthase 2 expression in human granulosa-lutein cells[J]. Cell Signal, 2019, 63, 109392. |
63 | NAGYOVA E , MLYNARCIKOVA A B , NEMCOVA L , et al. Unique hyaluronan structure of expanded oocyte-cumulus extracellular matrix in ovarian follicles[J]. Endocr Regul, 2024, 58 (1): 174- 180. |
64 | SUGIMOTO A , INOUE Y , TANAKA K , et al. Effects of a gel culture system made of polysaccharides (xanthan gum and locust bean gum) on in vitro bovine oocyte development and gene expression of the granulosa cells[J]. Mol Reprod Dev, 2021, 88 (7): 516- 524. |
65 | ZHOU Y , ZHANG S , JIA Y , et al. Regulation and role of adiponectin secretion in rat ovarian granulosa cells[J]. Int J Mol Sci, 2024, 25 (10): 5155. |
66 | WANG Y , HUANG H , ZENG M , et al. Mutation of rat Zp2 causes ROS-mediated oocyte apoptosis[J]. Reproduction, 2020, 160 (3): 353- 365. |
67 | TIAN C , LIU L , YE X , et al. Functional oocytes derived from granulosa cells[J]. Cell Rep, 2019, 29 (13): 4256- 4267. |
68 | 王立斌, 王萌, 孙莹, 等. CYP19A1调控内源性雌激素合成促进牦牛COCs细胞自噬和早期发育能力[J]. 畜牧兽医学报, 2022, 53 (12): 4283- 4295. |
WANG L B , WANG M , SUN Y , et al. CYP19A1 promotes autophagy and early developmental ability of yak oocytes by regulating the levels of endogenous estradiol[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (12): 4283- 4295. |
[1] | 闫瑞, 贾朝阳, 马静, 杨娟, 刘新峰, 陈强. 3D培养在家畜卵母细胞及胚胎培养的研究现状与应用前景[J]. 畜牧兽医学报, 2025, 56(4): 1494-1507. |
[2] | 王莹, 张姣姣, 王鲜忠, 权富生. 卵巢颗粒细胞自噬研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1508-1517. |
[3] | 李笑微, 田微, 刘媛, 李惠侠. 高温应激下湖羊卵巢颗粒细胞m6A甲基化修饰差异研究[J]. 畜牧兽医学报, 2025, 56(4): 1712-1721. |
[4] | 叶润根, 刘渊博, 路丽丽, Collins Amponsah Asiamah, 苏瑛. miR-215-5p在雷州黑鸭组织中的表达及其对卵泡颗粒细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2025, 56(4): 1722-1730. |
[5] | 灭列·马达尼牙提, 孙萌, 褚瑰燕. Hedgehog信号通路在动物卵巢卵泡发育和类固醇生成中的调控作用[J]. 畜牧兽医学报, 2025, 56(3): 969-978. |
[6] | 刘晨龙, 季华员, 卢丹, 万明春, 胡耀, 周泉勇. FST对猪卵巢颗粒细胞增殖凋亡及激素分泌的影响[J]. 畜牧兽医学报, 2025, 56(3): 1242-1251. |
[7] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
[8] | 卢建, 马猛, 郭军, 王星果, 窦套存, 胡玉萍, 王强, 李永峰, 邵丹, 童海兵, 郭杰, 曲亮. 育成期能量限饲及转换为自由采食调控开产时蛋鸡生殖器官发育的关键基因和信号通路研究[J]. 畜牧兽医学报, 2025, 56(2): 737-754. |
[9] | 孙雅雯, 陈思颍, 李伉, 冷璇, 王栋, 庞云渭. 猪卵母细胞玻璃化冷冻损伤的缓解策略[J]. 畜牧兽医学报, 2025, 56(1): 36-44. |
[10] | 王磊, 白少成, 王森, 鲍志远, 蔡佳炜, 刘燕, 赵博昊, 吴信生, 陈阳. SRD5A2对兔颗粒细胞增殖、凋亡和类固醇激素合成相关基因表达的影响[J]. 畜牧兽医学报, 2025, 56(1): 259-268. |
[11] | 古丽米热·阿布都热依木, 张欣如, 吴阳升, 陈莹, 汪立芹, 徐新明, 黄俊成, 林嘉鹏. FKBP5基因对绵羊卵泡颗粒细胞功能的影响[J]. 畜牧兽医学报, 2024, 55(9): 3947-3956. |
[12] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. |
[13] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[14] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
[15] | 吕世琪, 周荣艳, 田树军, 陈晓勇. 线粒体tRNA-Lys(T7719G)基因变异影响绵羊颗粒细胞凋亡生理机制研究[J]. 畜牧兽医学报, 2024, 55(5): 2011-2021. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||