1 |
WANG N , ZHAO D M , WANG J L , et al. Architecture of African swine fever virus and implications for viral assembly[J]. Science, 2019, 366 (6465): 640- 644.
|
2 |
GAUDREAULT N N , MADDEN D W , WILSON W C , et al. African swine fever virus: an emerging DNA arbovirus[J]. Front Vet Sci, 2020, 7, 215.
|
3 |
GE S Q , LI J M , FAN X X , et al. Molecular characterization of African swine fever virus, China, 2018[J]. Emerg Infect Dis, 2018, 24 (11): 2131- 2133.
|
4 |
向国庆, 连聪, 孙栋, 等. 化学发光免疫分析法及在动物生产领域检测中的应用进展[J]. 中国兽医科学, 2023, 53 (10): 1320- 1325.
|
|
XIANG G Q , LIANG C , SUN D , et al. Progress of chemiluminescence immunoassay and its application in the detection of animal production[J]. Chinese Veterinary Science, 2023, 53 (10): 1320- 1325.
|
5 |
赵协, 安利民, 高沙沙, 等. 化学发光免疫分析技术在动物疫病检测中的应用[J]. 中国动物检疫, 2020, 37 (8): 82- 87.
|
|
ZHAO X , AN L M , GAO S S , et al. Application of chemiluminescence immunoassay in detection of animal diseases[J]. China Animal Health Inspection, 2020, 37 (8): 82- 87.
|
6 |
LIU B J , SU X B , YU G , et al. An automated chemiluminescent immunoassay (CLIA) detects SARS-CoV-2 neutralizing antibody levels in COVID-19 patients and vaccinees[J]. Int J Infect Dis, 2022, 115, 116- 125.
|
7 |
MOELLER M E , ENGSIG F N , BADE M , et al. Rapid quantitative point-of-care diagnostic test for post COVID-19 vaccination antibody monitoring[J]. Microbiol Spectr, 2022, 10 (2): e0039622.
doi: 10.1128/spectrum.00396-22
|
8 |
孙雨, 宋晓晖, 王睿男, 等. A型口蹄疫病毒抗体化学发光免疫分析检测方法的建立[J]. 动物医学进展, 2020, 41 (8): 29- 36.
|
|
SUN Y , SONG X H , WANG R N , et al. Establishment of chemiluminescent immunoassay for detection of type A FMDV antibody[J]. Progress in Veterinary Medicine, 2020, 41 (8): 29- 36.
|
9 |
马震原, 王淑娟, 闫若潜, 等. 猪伪狂犬病病毒gB蛋白抗体竞争化学发光酶联免疫检测方法的建立[J]. 畜牧兽医学报, 2020, 51 (3): 574- 583.
doi: 10.11843/j.issn.0366-6964.2020.03.017
|
|
MA Z Y , WANG S J , YAN R Q , et al. Establishment of competitive chemiluminescent enzyme immunoassay for detecting antibodies against gB protein of pseudorabies virus[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (3): 574- 583.
doi: 10.11843/j.issn.0366-6964.2020.03.017
|
10 |
ALONSO C , BORCA M , DIXON L , et al. ICTV virus taxonomy profile: Asfarviridae[J]. J Gen Virol, 2018, 99 (5): 613- 614.
|
11 |
DIXON L K , CHAPMAN D A G , NETHERTON C L , et al. African swine fever virus replication and genomics[J]. Virus Res, 2013, 173 (1): 3- 14.
|
12 |
LIU Q , MA B T , QIAN N C , et al. Structure of the African swine fever virus major capsid protein p72[J]. Cell Res, 2019, 29 (11): 953- 955.
|
13 |
ALEJO A , MATAMOROS T , GUERRA M , et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92 (23): e01293- 18.
|
14 |
LIU W M , LI H C , LIU B , et al. A new vaccination regimen using adenovirus-vectored vaccine confers effective protection against African swine fever virus in swine[J]. Emerg Microbes Infect, 2023, 12 (2): 2233643.
|
15 |
CHEN X X , YANG J F , JI Y H , et al. Recombinant Newcastle disease virus expressing African swine fever virus protein 72 is safe and immunogenic in mice[J]. Virol Sin, 2016, 31 (2): 150- 159.
|
16 |
WANG L , LI D , LIU Y L , et al. Development of an effective one-step double-antigen sandwich ELISA based on p72 to detect antibodies against African swine fever virus[J]. Front Vet Sci, 2023, 10, 1160583.
|
17 |
LIU F F , ZOU J J , LUO X X , et al. A point-of-care chemiluminescence immunoassay for pepsinogen I enables large-scale community health screening[J]. Anal Bioanal Chem, 2021, 413 (17): 4493- 4500.
|
18 |
WANG W W , OUYANG H , YANG S J , et al. Multiplexed detection of two proteins by a reaction kinetics-resolved chemiluminescence immunoassay strategy[J]. Analyst, 2015, 140 (4): 1215- 1220.
|
19 |
柳方方. 胃蛋白酶原I磁微粒化学发光检测方法的建立与应用评价[D]. 广州: 华南理工大学, 2021.
|
|
LIU F F. Establishment and evaluation of the magnetic particle-based chemiluminescence immunoassay for pepsinogen Ⅰ[D]. Guangzhou: South China University of Technology, 2021. (in Chinese)
|
20 |
KHRAMTSOV P , BARKINA I , KROPANEVA M , et al. Magnetic nanoclusters coated with albumin, casein, and gelatin: size tuning, relaxivity, stability, protein corona, and application in nuclear magnetic resonance immunoassay[J]. Nanomaterials (Basel), 2019, 9 (9): 1345.
|
21 |
LIU W , SHAO J J , ZHANG G L , et al. Development of an indirect chemiluminescence immunoassay using a multiepitope recombinant protein to specifically detect antibodies against foot-and-mouth disease virus serotype O in swine[J]. J Clin Microbiol, 2021, 59 (3): e02464- 20.
|
22 |
LIU Z Z , SHAO J J , ZHAO F R , et al. Chemiluminescence immunoassay for the detection of antibodies against the 2C and 3ABC nonstructural proteins induced by infecting pigs with foot-and-mouth disease virus[J]. Clin Vaccine Immunol, 2017, 24 (8): e00153- 17.
|
23 |
ZHOU Y , ZHOU T , ZHOU R , et al. Chemiluminescence immunoassay for the rapid and sensitive detection of antibody against porcine parvovirus by using horseradish peroxidase/detection antibody-coated gold nanoparticles as nanoprobes[J]. Luminescence, 2014, 29 (4): 338- 343.
|
24 |
YE K , SHI D W , ZHANG Z G , et al. A chemiluminescence immunoassay for precise automatic quality control of glycoprotein in human rabies vaccine[J]. Vaccine, 2021, 39 (51): 7470- 7476.
|
25 |
QIN Y J , SHA R C , FENG Y C , et al. Comparison of double antigen sandwich and indirect enzyme-linked immunosorbent assay for the diagnosis of hepatitis C virus antibodies[J]. J Clin Lab Anal, 2020, 34 (11): e23481.
|
26 |
YANG Y , LV C J , FAN J Q , et al. Development of a chemiluminescence immunoassay to accurately detect African swine fever virus antibodies in serum[J]. J Virol Methods, 2021, 298, 114269.
|
27 |
SHI Z W , CAO L Y , LUO J C , et al. A chemiluminescent magnetic microparticle immunoassay for the detection of antibody against African swine fever virus[J]. Appl Microbiol Biotechnol, 2023, 107 (11): 3779- 3788.
doi: 10.1007/s00253-023-12518-z
|
28 |
CINQUANTA L , FONTANA D E , BIZZARO N . Chemiluminescent immunoassay technology: what does it change in autoantibody detection?[J]. Autoimmun Highlights, 2017, 8 (1): 9.
|
29 |
银凤桂, 侯力丹, 魏艳秋, 等. 鸭甲型肝炎病毒1型抗体CLEIA检测方法的建立[J]. 中国预防兽医学报, 2017, 39 (6): 451-455, 460.
|
|
YIN F G , HOU L D , WEI Y Q , et al. Development of chemiluminescent enzyme immunoassay for detection of antibodies against duck hepatitis A virus type 1[J]. Chinese Journal of Preventive Veterinary Medicine, 2017, 39 (6): 451-455, 460.
|
30 |
PEGHIN M , BONTEMPO G , DE MARTINO M , et al. Evaluation of qualitative and semi-quantitative cut offs for rapid diagnostic lateral flow test in relation to serology for the detection of SARS-CoV-2 antibodies: findings of a prospective study[J]. BMC Infect Dis, 2022, 22 (1): 810.
|
31 |
TANNOUS B A , VERHAEGEN M , CHRISTOPOULOS T K , et al. Combined flash- and glow-type chemiluminescent reactions for high-throughput genotyping of biallelic polymorphisms[J]. Anal Biochem, 2003, 320 (2): 266- 272.
|