畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (8): 3127-3138.doi: 10.11843/j.issn.0366-6964.2023.08.001
王慧1, 冯保亮2, 吴丹2, 向光明1, 王楠1, 牟玉莲1, 李奎1,3, 刘志国1*
收稿日期:
2023-01-16
出版日期:
2023-08-23
发布日期:
2023-08-22
通讯作者:
刘志国,主要从事动物遗传育种与繁殖研究,E-mail:liuzhiguo@caas.cn
作者简介:
王慧(1998-),女,山西忻州人,硕士生,主要从事畜牧研究,Tel:010-62813339,E-mail:wang2728037554@163.com;冯保亮(1986-),男,天津宁河人,畜牧师,主要从事畜牧兽医工作,Tel:010-62813339,E-mail:527989544@qq.com。
基金资助:
WANG Hui1, FENG Baoliang2, WU Dan2, XIANG Guangming1, WANG Nan1, MU Yulian1, LI Kui1,3, LIU Zhiguo1*
Received:
2023-01-16
Online:
2023-08-23
Published:
2023-08-22
摘要: 清道夫受体超家族是一个结构相关的跨膜糖蛋白家族,其特征是包含高度保守的富含半胱氨酸的清道夫受体(scavenger receptor cysteine-rich,SRCR)结构域。CD163蛋白为清道夫受体超家族的B型成员,包含9个SRCR结构域,富含半胱氨酸序列,主要在单核细胞和巨噬细胞中表达。研究发现CD163蛋白是猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)的必需受体,参与PRRSV的脱衣壳过程,而且可能参与非洲猪瘟病毒(African swine fever virus,ASFV)的吸附和内化过程。除此之外,CD163蛋白还在免疫生理等多种重要的生物学过程中发挥不可替代的作用。本综述就CD163分子的基本信息、相关生理功能及其在猪繁殖与呼吸综合征抗病育种中的研究进展做综合介绍,为抗病动物新品种培育提供参考。
中图分类号:
王慧, 冯保亮, 吴丹, 向光明, 王楠, 牟玉莲, 李奎, 刘志国. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3127-3138.
WANG Hui, FENG Baoliang, WU Dan, XIANG Guangming, WANG Nan, MU Yulian, LI Kui, LIU Zhiguo. Research Progress of CD163 Gene and Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3127-3138.
[1] | TABAN Q, MUMTAZ P T, MASOODI K Z, et al.Scavenger receptors in host defense:From functional aspects to mode of action[J]. Cell Commun Signal, 2022, 20(1):2. |
[2] | CHENG C, ZHENG E L, YU B W, et al.Recognition of lipoproteins by scavenger receptor class A members[J].J Biol Chem, 2021, 297(2):100948. |
[3] | VAN GORP H, VAN BREEDAM W, VAN DOORSSELAERE J, et al.Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus[J].J Virol, 2010, 84(6):3101-3105. |
[4] | NIELSEN M J, MØLLER H J, MOESTRUP S K.Hemoglobin and heme scavenger receptors[J].Antioxid Redox Signal, 2010, 12(2):261-273. |
[5] | NIELSEN M J, MADSEN M, MøLLER H J, et al.The macrophage scavenger receptor CD163:Endocytic properties of cytoplasmic tail variants[J].J Leukoc Biol, 2006, 79(4):837-845. |
[6] | STOIAN A M M, ROWLAND R R R, BRANDARIZ-NUÑEZ A.Identification of CD163 regions that are required for porcine reproductive and respiratory syndrome virus (PRRSV) infection but not for binding to viral envelope glycoproteins[J]. Virology, 2022, 574:71-83. |
[7] | HUANG Y J, LIN C H, YANG H Y, et al.Urine soluble CD163 is a promising biomarker for the diagnosis and evaluation of lupus nephritis[J].Front Immunol, 2022, 13:935700. |
[8] | DAVID C, DIVARD G, ABBAS R, et al.Soluble CD163 is a biomarker for accelerated atherosclerosis in systemic lupus erythematosus patients at apparent low risk for cardiovascular disease[J].Scand J Rheumatol, 2020, 49(1):33-37. |
[9] | BUECHLER C, RITTER M, ORSÓ E, et al.Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro-and antiinflammatory stimuli[J].J Leukoc Biol, 2000, 67(1):97-103. |
[10] | VAN DEN HEUVEL M M, TENSEN C P, VAN AS J H, et al.Regulation of CD163 on human macrophages:Cross-linking of CD163 induces signaling and activation[J].J Leukoc Biol, 1999, 66(5):858-866. |
[11] | BORGES M D, SESTI-COSTA R.Macrophages:Key players in erythrocyte turnover[J].Hematol Transfus Cell Ther, 2022, 44(4):574-581. |
[12] | GUTIÉRREZ-MUÑOZ C, MÉNDEZ-BARBERO N, SVENDSEN P, et al.CD163 deficiency increases foam cell formation and plaque progression in atherosclerotic mice[J].FASEB J, 2020, 34(11):14960-14976. |
[13] | SIWAN E, TWIGG S M, MIN D Q.Alterations of CD163 expression in the complications of diabetes:A systematic review[J].J Diabetes Complicat, 2022, 36(4):108150. |
[14] | 成红军, 潘志昂, 祝成楼, 等.CD163在常见肿瘤中的临床意义及研究进展[J].临床荟萃, 2022, 37(7):653-657.CHENG H J, PAN Z A, ZHU C L, et al.Clinical significance and research progress of CD163 in common tumors[J].Clinical Focus, 2022, 37(7):653-657.(in Chinese) |
[15] | TROIANO G, CAPONIO V C A, ADIPIETRO I, et al.Prognostic significance of CD68+ and CD163+ tumor associated macrophages in head and neck squamous cell carcinoma:A systematic review and meta-analysis[J].Oral Oncol, 2019, 93:66-75. |
[16] | BURKARD C, LILLICO S G, REID E, et al.Precision engineering for PRRSV resistance in pigs:Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J].PLoS Pathog, 2017, 13(2):e1006206. |
[17] | DUAN X, NAUWYNCK H J, PENSAERT M B.Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV)[J].Arch Virol, 1997, 142(12):2483-2497. |
[18] | XU K, ZHOU Y R, MU Y L, et al.CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J].Elife, 2020, 9:e57132. |
[19] | YANG H Q, ZHANG J, ZHANG X W, et al.CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J].Antiviral Res, 2018, 151:63-70. |
[20] | PRATHER R S, WELLS K D, WHITWORTH K M, et al.Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV)[J].Sci Rep, 2017, 7(1):13371. |
[21] | WHITWORTH K M, ROWLAND R R R, EWEN C L, et al.Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J].Nat Biotechnol, 2016, 34(1):20-22. |
[22] | VANDERHEIJDEN N, DELPUTTE P L, FAVOREEL H W, et al.Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages[J].J Virol, 2003, 77(15):8207-8215. |
[23] | VAN GORP H, VAN BREEDAM W, DELPUTTE P L, et al.The porcine reproductive and respiratory syndrome virus requires trafficking through CD163-positive early endosomes, but not late endosomes, for productive infection[J].Arch Virol, 2009, 154(12):1939-1943. |
[24] | YUSTE M, FERNÁNDEZ-CABALLERO T, PRIETO C, et al.Splenic CD163+ macrophages as targets of porcine reproductive and respiratory virus:Role of siglecs[J].Vet Microbiol, 2017, 198:72-80. |
[25] | DELPUTTE P L, VANDERHEIJDEN N, NAUWYNCK H J, et al.Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages[J].J Virol, 2002, 76(9):4312-4320. |
[26] | KIM J K, FAHAD A M, SHANMUKHAPPA K, et al.Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10[J].J Virol, 2006, 80(2):689-696. |
[27] | LI L L, XUE B Y, SUN W Y, et al.Recombinant MYH9 protein C-terminal domain blocks porcine reproductive and respiratory syndrome virus internalization by direct interaction with viral glycoprotein 5[J].Antiviral Res, 2018, 156:10-20. |
[28] | GAO J M, XIAO S Q, XIAO Y H, et al.MYH9 is an essential factor for porcine reproductive and respiratory syndrome virus infection[J].Sci Rep, 2016, 6(1):25120. |
[29] | HUANG Y W, DRYMAN B A, LI W, et al.Porcine DC-SIGN:Molecular cloning, gene structure, tissue distribution and binding characteristics[J].Dev Comp Immunol, 2009, 33(4):464-480. |
[30] | XIE J X, CHRISTIAENS I, YANG B, et al.Molecular cloning of porcine siglec-3, siglec-5 and siglec-10, and identification of siglec-10 as an alternative receptor for porcine reproductive and respiratory syndrome virus (PRRSV)[J].J Gen Virol, 2017, 98(8):2030-2042. |
[31] | WANG H T, SHEN L C, CHEN J Y, et al.Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs[J].Int J Biol Sci, 2019, 15(9):1993-2005. |
[32] | GUO C H, WANG M, ZHU Z B, et al.Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to porcine reproductive and respiratory syndrome virus 2 infection[J].Front Immunol, 2019, 10:1846. |
[33] | CHEN J Y, WANG H T, BAI J H, et al.Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J].Int J Biol Sci, 2019, 15(2):481-492. |
[34] | BURKARD C, OPRIESSNIG T, MILEHAM A J, et al.Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J].J Virol, 2018, 92(16):e00415-18. |
[35] | WELLS K D, BARDOT R, WHITWORTH K M, et al.Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus[J].J Virol, 2017, 91(2):e01521-16. |
[36] | WU J J, PENG X W, ZHOU A, et al.Mir-506 inhibits PRRSV replication in MARC-145 cells via CD151[J].Mol Cell Biochem, 2014, 394(1):275-281. |
[37] | SHANMUKHAPPA K, KIM J K, KAPIL S.Role of CD151, a tetraspanin, in porcine reproductive and respiratory syndrome virus infection[J].Virol J, 2007, 4(1):62. |
[38] | HOU G P, XUE B Y, LI L L, et al.Direct interaction between CD163 N-terminal domain and MYH9 c-terminal domain contributes to porcine reproductive and respiratory syndrome virus internalization by permissive cells[J].Front Microbiol, 2019, 10:1815. |
[39] | CALVERT J G, SLADE D E, SHIELDS S L, et al.CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses[J].J Virol, 2007, 81(14):7371-7379. |
[40] | WANG X P, WEI R F, LI Q Y, et al.PK-15 cells transfected with porcine CD163 by PiggyBac transposon system are susceptible to porcine reproductive and respiratory syndrome virus[J].J Virol Methods, 2013, 193(2):383-390. |
[41] | LI L L, WU C Y, HOU G P, et al.Generation of murine macrophage-derived cell lines expressing porcine CD163 that support porcine reproductive and respiratory syndrome virus infection[J].BMC Biotechnol, 2017, 17(1):77. |
[42] | WANG T Y, LIU Y G, LI L, et al.Porcine alveolar macrophage CD163 abundance is a pivotal switch for porcine reproductive and respiratory syndrome virus infection[J].Oncotarget, 2018, 9(15):12174-12185. |
[43] | XU Y L, WU S P, LI Y G, et al.A porcine alveolar macrophage cell line stably expressing CD163 demonstrates virus replication and cytokine secretion characteristics similar to primary alveolar macrophages following PRRSV infection[J].Vet Microbiol, 2020, 244:108690. |
[44] | LI N, HUANG K, CHEN Y J, et al.MicroRNA ssc-miR-124a exhibits antiviral activity against porcine reproductive and respiratory syndrome virus via suppression of host genes CD163[J].Vet Microbiol, 2021, 261:109216. |
[45] | YU P, WEI R P, DONG W J, et al.CD163ΔSRCR5 MARC-145 cells resist PRRSV-2 infection via inhibiting virus uncoating, which requires the interaction of CD163 with Calpain 1[J].Front Microbiol, 2020, 10:3115. |
[46] | XIA W L, WU Z, GUO C M, et al.Recombinant adenovirus-delivered soluble CD163 and sialoadhesin receptors protected pigs from porcine reproductive and respiratory syndrome virus infection[J].Vet Microbiol, 2018, 219:1-7. |
[47] | CHEN Y, GUO R, HE S, et al.Additive inhibition of porcine reproductive and respiratory syndrome virus infection with the soluble sialoadhesin and CD163 receptors[J].Virus Res, 2014, 179:85-92. |
[48] | XU H L, LIU Z H, ZHENG S Y, et al.CD163 antibodies inhibit PRRSV infection via receptor blocking and transcription suppression[J].Vaccines (Basel), 2020, 8(4):592. |
[49] | 刘 铃, 王丹丹, 崔 凯, 等.猪繁殖与呼吸综合征抗病育种研究进展[J].畜牧兽医学报, 2023, 54(2):434-442.LIU L, WANG D D, CUI K, et al.Advances of disease-resistant breeding on porcine reproductive and respiratory syndrome[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2):434-442.(in Chinese) |
[50] | 魏迎辉, 刘志国, 徐 奎, 等.CD163双等位基因编辑猪的制备及传代[J].中国农业科学, 2018, 51(4):770-777.WEI Y H, LIU Z G, XU K, et al.Generation and propagation of cluster of differentiation 163 biallelic gene editing pigs[J]. Scientia Agricultura Sinica, 2018, 51(4):770-777.(in Chinese) |
[51] | 韩晓松, 高 杨, 刘海龙, 等.利用CRISPR/Cas9技术制备CD163基因SRCR5序列敲除猪[J].农业生物技术学报, 2020, 28(9):1535-1542.HAN X S, GAO Y, LIU H L, et al.Generation of CD163 gene SRCR5 deleted pig (Sus scrofa) via CRISPR/Cas9[J].Journal of Agricultural Biotechnology, 2020, 28(9):1535-1542.(in Chinese) |
[52] | 赵为民, 王慧利, 曹少先, 等.猪CD163基因的单碱基编辑研究[J].畜牧兽医学报, 2022, 53(4):1041-1050.ZHAO W M, WANG H L, CAO S X, et al.The study of base editing of porcine CD163 gene[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(4):1041-1050.(in Chinese) |
[53] | XU K, ZHOU Y R, SHANG H T, et al.Pig macrophages with site-specific edited CD163 decrease the susceptibility to infection with porcine reproductive and respiratory syndrome virus[J/OL].J Int Agricul, 2022.(2022-11-29). https://doi.org/10.1016/j.jia.2022.11.010. |
[54] | 张 健, 吴珍芳, 杨化强.CD163基因敲除大白猪的抗蓝耳病性能和主要生产性能研究[J].华南农业大学学报, 2023, 44(3):333-339.ZHANG J, WU Z F, YANG H Q.Resistance to blue ear disease and production performance assessment of CD163 gene-edited Large White pigs[J].Journal of South China Agricultural University, 2023, 44(3):333-339.(in Chinese) |
[55] | MA H F, LI R, JIANG L G, et al.Structural comparison of CD163 SRCR5 from different species sheds some light on its involvement in porcine reproductive and respiratory syndrome virus-2 infection in vitro[J].Vet Res, 2021, 52(1):97. |
[56] | 赵旭阳, 靳家鑫, 路闻龙, 等.非洲猪瘟病毒免疫逃逸分子机制研究进展[J].畜牧兽医学报, 2022, 53(7):2074-2082.ZHAO X Y, JIN J X, LU W L, et al.Advances in the molecular mechanism of immune escape of African swine fever virus[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(7):2074-2082. (in Chinese) |
[57] | GAO Q, YANG Y L, LUO Y Z, et al.Adaptation of African swine fever virus to porcine kidney cells stably expressing CD163 and Siglec1[J].Front Immunol, 2022, 13:1015224. |
[58] | SÁNCHEZ E G, PÉREZ-NÚÑEZ D, REVILLA Y.Mechanisms of entry and endosomal pathway of African swine fever virus[J].Vaccines (Basel), 2017, 5(4):42. |
[59] | LITHGOW P, TAKAMATSU H, WERLING D, et al.Correlation of cell surface marker expression with African swine fever virus infection[J].Vet Microbiol, 2014, 168(2-4):413-419. |
[60] | 李 玲, 夏应菊, 宋新宇, 等.非洲猪瘟病毒细胞嗜性的研究进展[J].中国兽医科学, 2023, 53(4):514-519.LI L, XIA Y J, SONG X Y, et al.Research progress on cytotoxicity of African swine fever virus[J].Chinese Veterinary Science, 2023, 53(4):514-519.(in Chinese) |
[61] | HWANG P K, GREER J.Interaction between hemoglobin subunits in the hemoglobin.haptoglobin complex[J].J Biol Chem, 1980, 255(7):3038-3041. |
[62] | BUEHLER P W, ABRAHAM B, VALLELIAN F, et al.Haptoglobin preserves the CD163 hemoglobin scavenger pathway by shielding hemoglobin from peroxidative modification[J].Blood, 2009, 113(11):2578-2586. |
[63] | MADSEN M, MØLLER H J, NIELSEN M J, et al.Molecular characterization of the haptoglobin·Hemoglobin receptor CD163:Ligand binding properties of the scavenger receptor cysteine-rich domain region[J].J Biol Chem, 2004, 279(49):51561-51567. |
[64] | BELCHER J D, BECKMAN J D, BALLA G, et al.Heme degradation and vascular injury[J].Antioxid Redox Signal, 2010, 12(2):233-248. |
[65] | BELCHER J D, MAHASETH H, WELCH T E, et al.Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice[J].J Clin Invest, 2006, 116(3):808-816. |
[66] | LIM Y K, JENNER A, ALI A B, et al.Haptoglobin reduces renal oxidative DNA and tissue damage during phenylhydrazine-induced hemolysis[J].Kidney Int, 2000, 58(3):1033-1044. |
[67] | PHILIPPIDIS P, MASON J C, EVANS B J, et al.Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis:Antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery[J].Circ Res, 2004, 94(1):119-126. |
[68] | SCHAER D J, SCHAER C A, BUEHLER P W, et al.CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin[J].Blood, 2006, 107(1):373-380. |
[69] | FABRIEK B O, POLFLIET M M J, VLOET R P M, et al.The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor[J].Blood, 2007, 109(12):5223-5229. |
[70] | MORENO J A, MUÑOZ-GARCÍA B, MARTÍN-VENTURA J L, et al.The CD163-expressing macrophages recognize and internalize TWEAK:Potential consequences in atherosclerosis[J].Atherosclerosis, 2009, 207(1):103-110. |
[71] | RATAJCZAK W, ATKINSON S D, KELLY C.The TWEAK/Fn14/CD163 axis-implications for metabolic disease[J].Rev Endocr Metab Disord, 2022, 23(3):449-462. |
[72] | ETZERODT A, MOESTRUP S K.CD163 and inflammation:Biological, diagnostic, and therapeutic aspects[J].Antioxid Redox Signal, 2013, 18(17):2352-2363. |
[73] | OTTERBEIN L E, BACH F H, ALAM J, et al.Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway[J].Nat Med, 2000, 6(4):422-428. |
[74] | POLFLIET M M J, FABRIEK B O, DANIËLS W P, et al.The rat macrophage scavenger receptor CD163:Expression, regulation and role in inflammatory mediator production[J].Immunobiology, 2006, 211(6-8):419-425. |
[75] | YANG H, WANG H C, LEVINE Y A, et al.Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes[J].JCI Insight, 2016, 1(7):e85375. |
[76] | 侯亚芝, 张晋欣, 陈小飞.可溶性血红蛋白清道夫受体163在不同疾病中的研究进展[J].中西医结合心脑血管病杂志, 2022, 20(18):3341-3348.HOU Y Z, ZHANG J X, CHEN X F.Research progress of soluble hemoglobin scavenger receptor 163 in different diseases[J]. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease, 2022, 20(18):3341-3348.(in Chinese) |
[77] | 刘志国, 王冰源, 牟玉莲, 等.分子编写育种——动物育种的发展方向[J].中国农业科学, 2018, 51(12):2398-2409.LIU Z G, WANG B Y, MU Y L, et al.Breeding by molecular writing (BMW):The future development of animal breeding[J]. Scientia Agricultura Sinica, 2018, 51(12):2398-2409.(in Chinese) |
[1] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[2] | 荆扬, 王玉淼, 李洋, 常辉, 马志倩, 李志伟, 肖书奇. 稳定表达PRRSV M蛋白的MARC-145ORF6细胞系的构建及其对PRRSV增殖的影响[J]. 畜牧兽医学报, 2024, 55(3): 1159-1169. |
[3] | 闫文倩, 侯景, 杨金柯, 郝雨, 杨行, 史喜绢, 张大俊, 别鑫恬, 陈国辉, 陈玲玲, 何路, 赵美玉, 赵思越, 郑海学, 张克山. 非洲猪瘟病毒D1133 L蛋白单克隆抗体抑制其复制[J]. 畜牧兽医学报, 2024, 55(2): 854-859. |
[4] | 宋雯妍, 张瀚文, 吴澳迪, 张丽燕, 刘照, 叶桐桐, 陈创夫, 盛金良. 猪繁殖与呼吸综合征病毒GP5蛋白纳米抗体的筛选及其对病毒复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(1): 258-270. |
[5] | 刘传霞, 王晓, 李雪雯, 鲍苗菲, 李婷婷, 陈欣, 翁长江, 郑君. 非洲猪瘟病毒pE120R蛋白单克隆抗体的制备[J]. 畜牧兽医学报, 2024, 55(1): 388-394. |
[6] | 王志远, 刘博奇, 许志颖, 徐思佳, 邢家宝, 张桂红, 王衡, 孙彦阔. 2021—2022年我国部分地区猪繁殖与呼吸综合征病毒ORF5基因变异分析[J]. 畜牧兽医学报, 2023, 54(9): 3812-3823. |
[7] | 冯永智, 龚婷, 吴东东, 高琦, 郑晓宇, 张桂红, 孙彦阔. 影响非洲猪瘟病毒对培养细胞感染性的因素分析[J]. 畜牧兽医学报, 2023, 54(8): 3406-3414. |
[8] | 刘桃雪, 苏冰倩, 齐艳丽, 郭江涛, 刘忠虎, 褚贝贝, 王江, 曾磊. 非洲猪瘟病毒p30蛋白单克隆抗体制备及其抗原表位鉴定[J]. 畜牧兽医学报, 2023, 54(8): 3415-3423. |
[9] | 袁丽, 孙杨杨, 张路捷, 张杰, 孙海凤, 白娟, 姜平. 猪繁殖与呼吸综合征病毒GP3蛋白单克隆抗体制备及抗原表位鉴定[J]. 畜牧兽医学报, 2023, 54(8): 3424-3434. |
[10] | 丁晓艳, 何久香, 周晓杨, 周伃欣, 李晋涛. 非洲猪瘟病毒感染相关调控基因以及毒力基因初步筛选[J]. 畜牧兽医学报, 2023, 54(7): 2964-2971. |
[11] | 王映, 朱家宏, 赵加凯, 纪品品, 陈旭, 张路, 刘宝元, 孙亚妮, 赵钦. 抗非洲猪瘟病毒NP419L蛋白纳米抗体的筛选鉴定及其在抗体检测中的初步应用[J]. 畜牧兽医学报, 2023, 54(6): 2509-2520. |
[12] | 刘文豪, 朱彦策, 张冬萱, 王智豪, 张超. 稳定表达非洲猪瘟病毒E165R蛋白PK 15细胞系的构建[J]. 畜牧兽医学报, 2023, 54(6): 2662-2666. |
[13] | 王国超, 赵亚茹, 张忠辉, 张玉龙, 白鸽, 耿抒贤, 樊洁, 杨吉飞, 关贵全, 殷宏, 罗建勋, 牛庆丽. 非洲猪瘟病毒RNA聚合酶亚基D205R基因生物信息学分析及多克隆抗体制备[J]. 畜牧兽医学报, 2023, 54(5): 2042-2049. |
[14] | 刘建奎, 徐叶, 刘辰, 于慧, 杨圆, 何乐, 李佳睿, 但惠娟, 戴爱玲, 杨小燕, 魏春华. 基于全基因组分析2017—2021年福建省猪繁殖与呼吸综合征病毒基因组特征[J]. 畜牧兽医学报, 2023, 54(4): 1579-1589. |
[15] | 李倬伟, 王方, 王君君, 陈祯涵, 李焕荣, 周双海, 刘雪威. 双香豆素对猪繁殖与呼吸综合征病毒的体外抑制作用[J]. 畜牧兽医学报, 2023, 54(3): 1160-1168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||