[1] VÁGÁSI C I. The origin of feather holes: a word of caution [J]. Avian Biol, 2014, 45(5): 431-436. [2] JOVANI R, DIAZ-REAL J. Fault bars timing and duration: the power of studying feather fault bars and growth bands together [J]. Avian Biol, 2012, 43(2): 97-101. [3] JOVANI R, ROHWER S. Fault bars in bird feathers: mechanisms, and ecological and evolutionary causes and consequences [J]. Biol Rev Camb Philos Soc, 2017, 92(2): 1113-1127. [4] SERRANO D, JOVANI R. Adaptive fault bar distribution in a long-distance migratory, aerial forager passerine? [J]. Bio J Linn Soc, 2005, 85(4): 455-461. [5] SARASOLA J H, JOVANI R. Risk of feather damage explains fault bar occurrence in a migrant hawk, the Swainson's hawk Buteo swainsoni [J]. Avian Biol, 2006, 37(1): 29-35. [6] ARRAZOLA A, TORREY S. The development of fault bars in domestic chickens (Gallus gallus domesticus) increases with acute stressors and individual propensity: implications for animal welfare [J]. Anim Welf, 2019, 28(3): 279-286. [7] REIMERT I, WEBB L E, VAN MARWIJK M A, et al. Review: Towards an integrated concept of animal welfare [J]. Animal, 2023, 17(4): 100838. [8] TAINIKA B, ŞEKEROǦLU A, AKYOL A, et al. Welfare issues in broiler chickens: overview [J]. World Poultry Sci J, 2023, 79(2): 285-329. [9] STROCHLIC D E, ROMERO L M. The effects of chronic psychological and physical stress on feather replacement in European starlings (Sturnus vulgaris) [J]. Comp Biochem Phys A, 2008, 149(1): 68-79. [10] SEARCY W A, PETERS S, NOWICKI S. Effects of early nutrition on growth rate and adult size in song sparrows Melospiza melodia [J]. Avian Biol, 2004, 35(3): 269-279. [11] MURPHY M E, MILLER B T, KING J R. A structural comparison of fault bars with feather defects known to be nutritionally induced [J]. Can J Zoo, 1989, 67(5): 1311-1317. [12] RIDDLE O. The genesis of fault-bars in feathers and the cause of alternation in light and dark fundamental bars [J]. Biol Bull-us, 1908, 14(6): 328-370. [13] JOVANI R, MONTALVO T, SABATÉ S. Fault bars and bacterial infection [J]. J Ornithol, 2014, 155(3): 819-823. [14] SLAGSVOLD T. Sex, size, and natural selection in the hooded crow corvus corone cornix [J]. Ornis Scand, 1982, 13(3): 165-175. [15] BORTOLOTTI G R, DAWSON R D, MURZA G L. Stress during feather development predicts fitness potential [J]. J Anim Ecol, 2002, 71(2): 333-342. [16] FREED L A, MEDEIROS M C, BODNER G R. Explosive increase in ectoparasites in Hawaiian forest birds [J]. J Parasitol, 2008, 94(5): 1009-1021. [17] YETHON J A, WHITFIELD C. Lipopolysaccharide as a target for the development of novel therapeutics in gram-negative bacteria [J]. Curr Drug Targets Infect Disord, 2001, 1(2): 91-106. [18] ROMANO A, RUBOLINI D, CAPRIOLI M, et al. Sex-related effects of an immune challenge on growth and begging behavior of barn swallow nestlings [J]. PLoS One, 2011, 6(7): e22805. [19] WARNER N L. The immunological role of the avian thymus and bursa of fabricius [J]. Folia Biol (Praha), 1967, 13(1): 1-17. [20] MØLLER A P, KIMBALL R T, ERRITZØE J. Sexual ornamentation, condition, and immune defence in the house sparrow Passer domesticus [J]. Behav Ecol Sociobiol, 1996, 39(5): 317-322. [21] HOULE C, PELLETIER F, BÉLISLE M, et al. Impacts of environmental heterogeneity on natural selection in a wild bird population [J]. Evolution, 2020, 74(6): 1142-1154. [22] DE AYALA R M, MARTINELLI R, SAINO N. Vitamin E supplementation enhances growth and condition of nestling barn swallows (Hirundo rustica) [J]. Behav Ecol Sociobiol, 2006, 60(5): 619-630. [23] MØLLER A P, ERRITZØE J, NIELSEN J T. Frequency of fault bars in feathers of birds and susceptibility to predation [J]. Bio J Linn Soc, 2009, 97(2): 334-345. [24] SAPOLSKY R M, ROMERO L M, MUNCK A U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions [J]. Endocr Rev, 2000, 21(1): 55-89. [25] BORTOLOTTI G R, MARCHANT T A, BLAS J, et al. Corticosterone in feathers is a long-term, integrated measure of avian stress physiology [J]. Funct Ecol, 2008, 22(3): 494-500. [26] DESROCHERS D W, REED J M, AWERMAN J, et al. Exogenous and endogenous corticosterone alter feather quality [J]. Comp Biochem Phys A, 2009, 152(1): 46-52. [27] BORTOLOTTI G R, MARCHANT T, BLAS J, et al. Tracking stress: localisation, deposition and stability of corticosterone in feathers [J]. J Exp Biol, 2009, 212(Pt 10): 1477-1482. [28] FAIRHURST G D, DAWSON R D, OORT H V, et al. Synchronizing feather-based measures of corticosterone and carotenoid-dependent signals: what relationships do we expect? [J]. Oecologia, 2014, 174(3): 689-698. [29] LEISHMAN E M, VANDERHOUT R J, ABDALLA E A, et al. Genetic parameters of feather corticosterone and fault bars and correlations with production traits in turkeys (Meleagris gallopavo) [J]. Sci Rep, 2023, 13(1): 38-48. [30] SODHI N S, SOH M C K, PRAWIRADILAGA D M, et al. Persistence of lowland rainforest birds in a recently logged area in central Java [J]. Bird Conserv Int, 2005, 15(2): 173-191. [31] GRIESSER M, NYSTRAND M, EKMAN J. Reduced mortality selects for family cohesion in a social species [J]. Proc Biol Sci, 2006, 273(1596): 1881-1886. [32] EGGERS S, LOW M. Differential demographic responses of sympatric Parids to vegetation management in boreal forest [J]. For Ecol Manage, 2014, 319: 169-175. [33] MADERSON P F, HILLENIUS W J, HILLER U, et al. Towards a comprehensive model of feather regeneration [J]. J Morphol, 2009, 270(10): 1166-1208. [34] RIDDLE O. A study of fundamental bars in feathers. [J]. Biol Bull-us, 1907, 12(3): 165-174. [35] DUERDEN J E. Experiments with ostriches - X [J]. Agri J Union S Afr, 1909, 35(4): 474-487. [36] MURPHY M E, KING J R, LU J. Malnutrition during the postnuptial molt of White-crowned Sparrows: feather growth and quality [J]. Can J Zoo, 1988, 66(6): 1403-1413. [37] KING J R, MURPHY M E. Fault bars in the feathers of white-crowned sparrows: Dietary deficiency or stress of captivity and handling? [J]. The Auk, 1984, 101(1): 168-169. [38] MØLLER A P, NIELSEN J T, ERRITZØE J. Losing the last feather: feather loss as an antipredator adaptation in birds [J]. Behav Ecol, 2006, 17(6): 1046-1056. [39] MICHENER H, MICHENER J R. Bars in Flight Feathers [J]. Condor, 1938, 40(4): 149-160. [40] FRANKLIN D C, LEGGE S, SKROBLIN A, et al. Wings of tropical finches: interspecific differences in shape are consistent with levels of mobility, but moult and feather fault patterns are more complex [J]. EMU, 2017, 117(4): 370-381. [41] LEESON S, WALSH T. Feathering in commercial poultry I. Feather growth and composition [J]. World Poultry Sci J, 2004, 60(1): 42-51. [42] RIBER A B, TAHAMTANI F M, STEENFELDT S. Effects of qualitative feed restriction in broiler breeder pullets on behaviour in the home environment [J]. Front Vet Sci, 2020, 7(1): 316-327. [43] ARRAZOLA A, MOSCO E, WIDOWSKI T M, et al. The effect of alternative feeding strategies for broiler breeder pullets: 1. Welfare and performance during rearing [J]. Poult Sci, 2019, 98(9): 3377-3390. [44] PAP P L, BARTA Z, TÖKÖLYI J, VÁGÁSI I C. Increase of feather quality during moult: a possible implication of feather deformities in the evolution of partial moult in the great tit Parus major [J]. Avian Biol, 2007, 38(4): 471-478. [45] RIBER A B, WURTZ K E. Impact of growth rate on the welfare of broilers [J]. Animals, 2024, 14(22): 3330-3352. [46] TUCKER V A. The effect of molting on the gliding performance of a Harris' Hawk (Parabuteo unicinctus) [J]. The Auk, 1991, 108(1): 108-113. [47] MACHMER M M, ESSELINK H, STEEGERI C, et al. The occurrence of fault bars in the plumage of nestling Ospreys [J]. Ardea, 1991, 80(2): 261-272. [48] JOVANI R, BLAS J. Adaptive allocation of stress-induced deformities on bird feathers [J]. J Evol Biol, 2004, 17(2): 294-301. [49] HEWSON C J. Can we assess welfare? [J]. Can Vet J, 2003, 44(9): 749-753. [50] BOZZO G, DIMUCCIO M M. Implementation of animal welfare: Pros and cons [J]. Agriculture, 2023, 13(4): 748-751. [51] VAN DER STAAY F J, GOERLICH V C, MEIJBOOM F L, et al. Animal welfare definitions, frameworks, and assessment tools: Advancing the measurement and laying the foundation for improved animal welfare through a three-step approach [J]. Anim Welf, 2025, 34: e30. [52] HEMSWORTH P H, MELLOR D J, CRONIN G M, et al. Scientific assessment of animal welfare [J]. N Z Vet J, 2015, 63(1): 24-30. [53] KWON B Y, LEE H G, JEON Y S, et al. Research Note: Welfare and stress responses of broiler chickens raised in conventional and animal welfare-certified broiler farms [J]. Poult Sci, 2024, 103(3): 103402. [54] WEIMER S L, WIDEMAN R F, SCANES C G, et al. An evaluation of methods for measuring stress in broiler chickens [J]. Poult Sci, 2018, 97(10): 3381-3389. [55] COTTER P F. An examination of the utility of heterophil-lymphocyte ratios in assessing stress of caged hens [J]. Poult Sci, 2015, 94(3): 512-517. [56] RIBEIRO L R R, SANS E C O, SANTOS R M, et al. Will the white blood cells tell? A potential novel tool to assess broiler chicken welfare [J]. Front Vet Sci, 2024, 11(1): 1384802. [57] ROMERO L M, FAIRHURST G D. Measuring corticosterone in feathers: Strengths, limitations, and suggestions for the future [J]. Comp Biochem Phys A, 2016, 202: 112-122. [58] WILSON S C, CUNNINGHAM F J. Effect of photoperiod on the concentrations of corticosterone and luteinizing hormone in the plasma of the domestic hen [J]. J Endocrinol, 1981, 91(1): 135-143. [59] ARRAZOLA A, TORREY S. Welfare and performance of slower growing broiler breeders during rearing [J]. Poult Sci, 2021, 100(11): 101434. [60] HOCKING P M, JONES E K. On-farm assessment of environmental enrichment for broiler breeders [J]. Br Poult Sci, 2006, 47(4): 418-425. [61] KWON B Y, LEE H G, JEON Y S, et al. Effects of grain-based pecking blocks on productivity and welfare indicators in commercial broiler chickens [J]. Anim Biosci, 2024, 37(3): 536-546. |