

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (11): 5839-5851.doi: 10.11843/j.issn.0366-6964.2025.11.040
郑晓茹(
), 王一丹, 张丽红, 杨莹莹, 赵欣如, 李敏, 黄娟, 张乔亚*(
), 曹志*(
)
收稿日期:2024-07-29
出版日期:2025-11-23
发布日期:2025-11-27
通讯作者:
张乔亚,曹志
E-mail:zzwyyxrr@163.com;201801056@qau.edu.cn;201901252@qau.edu.cn
作者简介:郑晓茹(2000-),女,山东聊城人,硕士,主要从事病毒感染与免疫调控机制研究,E-mail:zzwyyxrr@163.com
基金资助:
ZHENG Xiaoru(
), WANG Yidan, ZHANG Lihong, YANG Yingying, ZHAO Xinru, LI Min, HUANG Juan, ZHANG Qiaoya*(
), CAO Zhi*(
)
Received:2024-07-29
Online:2025-11-23
Published:2025-11-27
Contact:
ZHANG Qiaoya, CAO Zhi
E-mail:zzwyyxrr@163.com;201801056@qau.edu.cn;201901252@qau.edu.cn
摘要:
本研究旨在通过构建稳定表达的猪瘟病毒(classical swine fever virus, CSFV)NS3-NS4A和NS3pro-NS4A蛋白巨噬细胞系,以期更好地探索宿主天然免疫与CSFV的相互作用关系。利用琼脂糖凝胶电泳、连接与转化和提取质粒等方法对重组表达载体进行构建,将构建好的pCMV-CBH-GFP-2A-Puro-CSFV NS3pro-NS4A、pCMV-CBH-GFP-2A-Puro-CSFV NS3-NS4A和pCMV-CBH-GFP-2A-Puro重组表达载体分别感染HEK-293T细胞包装出慢病毒。然后利用包装成功的慢病毒感染猪肺泡巨噬细胞(3D4/21),对感染细胞进行单克隆筛选得到稳定转染细胞系,最后用Western blot方法验证稳定细胞系蛋白表达。对其进行蛋白组学分析,筛选出MAPK、PI3K通路的相互作用蛋白,并进行功能分析,利用Western blot检测CDK4、CDC37、CASP3、IKBKG、NFκB1蛋白表达量。结果表明,经MegAlign分析构建的过表达CSFV非结构蛋白NS3-NS4A以及NS3pro-NS4A慢病毒载体氨基酸序列全部正确,无移码;重组表达载体感染293T细胞24 h后,感染效率可达90%以上,慢病毒包装成功;Western blot分析成功获得稳定表达CSFV NS3-NS4A、NS3pro-NS4A巨噬细胞系;通过蛋白组学分析,筛选出NS3-NS4A/mock组中MAPK与PI3K通路中上调蛋白11个,下调蛋白24个;经Western blot检测CSFV NS3-NS4A显著降低了MAPK通路中CASP3、NFκB1、IKBKG的表达,PI3K通路中CDK4、CDC37的表达。本研究成功构建了稳定表达NS3-NS4A、NS3pro-NS4A蛋白的3D4/21细胞系,并对蛋白组学筛选的关键蛋白进行功能分析,为研究CSFV NS3-NS4A调控宿主天然免疫应答的机制提供物质基础。
中图分类号:
郑晓茹, 王一丹, 张丽红, 杨莹莹, 赵欣如, 李敏, 黄娟, 张乔亚, 曹志. 稳定表达猪瘟病毒NS3-NS4A和NS3pro-NS4A蛋白巨噬细胞系的构建及蛋白质组学分析[J]. 畜牧兽医学报, 2025, 56(11): 5839-5851.
ZHENG Xiaoru, WANG Yidan, ZHANG Lihong, YANG Yingying, ZHAO Xinru, LI Min, HUANG Juan, ZHANG Qiaoya, CAO Zhi. Construction and Proteomic Analysis of Macrophage Cell Lines Stably Expressing NS3-NS4A and NS3pro-NS4A of Classical Swine Fever Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5839-5851.
表 1
CSFV NS2-NS3与NS3-NS4A特异性引物"
| Primer名称 Primer name | 序列(5′→3′) Sequence |
| 2-3-F1 | GCTCTAGAATGGGAAAGATAGATGGCGG |
| 2-3-R1 | CAAACGGCAGGCCCTCTAAGCACCCAGC |
| 2-3-F2 | GCTGGGTGCTTAGAGGGCCTGCCGTTTG |
| 2-3-R2 | ATAAGAATGCGGCCGCTCATAGACCAACTAC |
| 2B-3pro-F1 | GCTCTAGAATGGAAGGGGTATACCTT |
| 2B-3pro-R2 | ATAAGAATGCGGCCGCTCAGTAGCAAGGGTT |
| 3-4A-F1 | GCTCTAGAATGGGGCCTGCCGTTTG |
| 3-4A-R1 | TTCTCAGCTGTTGATAGACCAACTACTT |
| 3-4A-F2 | AAGTAGTTGGTCTATCAACAGCTGAGAA |
| 3-4A-R2 | ATAAGAATGCGGCCGCTCATAGCTCCTTCAA |
| 3pro-4A-R1 | TTCTCAGCTGTTGAGTAGCAAGGGTTAT |
| 3pro-4A-F2 | ATAACCCTTGCTACTCAACAGCTGAGAA |
表 2
MAPK信号通路中差异蛋白"
| 通路 Pathway | 项目 Item | 蛋白序号 Protein No. | 蛋白名称 Protein name | 基因 Gene | NCBI蛋白登录号 NCBl protein accession No. | 置信度/% Max identity | |
| 人 Human | 猪 Pig | ||||||
| MAPK | 上调蛋白 Up-regulated protein | 1 | phospholipase A2 group IVA | PLA2G4A | NP_001298122.2 | XP_020919484.1 | 83 |
| 2 | amphiregulin | AREG | NP_001648.1 | NP_999541.1 | 90 | ||
| 3 | tumor protein p53 | P53 | NP_000537.3 | NP_998989.3 | 99 | ||
| 下调蛋白 Down-regulated protein | 4 | tumor protein p53 | P53 | NP_000537.3 | NP_998989.3 | 99 | |
| 5 | growth factor receptor bound protein 2 | GRB2 | NP_002077.1 | NP_001131100.1 | 98 | ||
| 6 | TNFRSF1A associated via death domain | TRADD | NP_001310481.1 | XP_020949709.1 | 99 | ||
| 7 | TAO kinase 3 | TAOK3 | NP_001333416.1 | XP_001924435.2 | 95 | ||
| 8 | serine/threonine kinase 3 | STK3 | NP_001243241.1 | XP_005655407.3 | 93 | ||
| 9 | stathmin 1 | STMN1 | NP_001138926.1 | XP_005665169.1 | 81 | ||
| 10 | protein phosphatase, Mg2+/Mn2+ dependent 1B | PPM1B | NP_001028729.1 | XP_003125227.2 | 91 | ||
| 11 | mitogen-activated protein kinase kinase 4 | MAP2K4 | NP_001268364.1 | XP_020923549.1 | 93 | ||
| 12 | inhibitor of nuclear factor kappa B kinase regulatory subunit gamma | IKBKG | NP_001093326.2 | NP_001106524.1 | 96 | ||
| 13 | amphiregulin | AREG | NP_001648.1 | NP_999541.1 | 90 | ||
| 14 | nuclear factor kappa B subunit 1 | NFKB1 | NP_001158884.1 | NP_001041697.1 | 90 | ||
| 15 | caspase 3 | CASP3 | NP_001341706.1 | NP_999296.1 | 91 | ||
表 3
PI3K信号通路中差异蛋白"
| 通路 Pathway | 项目 Item | 蛋白序号 Protein No. | 蛋白名称 Protein name | 基因 Gene | NCBI蛋白登录号 NCBl protein accession No. | 置信度/% Max identity | |
| 人 Human | 猪 Pig | ||||||
| P13K | 上调蛋白 Up-regulated protein | 1 | integrin subunit beta 5 | ITGB5 | NP_001341693.1 | NP_001233598.1 | 99 |
| 2 | BCL2 like 1 | BCL2L1 | NP_001182.1 | NP_999450.1 | 99 | ||
| 3 | phosphoenolpyruvate carboxykinase 2, mitochondrial | PCK2 | NP_001018083.2 | NP_001155225.1 | 96 | ||
| 4 | integrin subunit beta 5 | ITGB5 | NP_001341693.1 | NP_001233598.1 | 99 | ||
| 5 | thrombospondin 4 | THBS4 | NP_001293141.1 | XP_020940149.1 | 95 | ||
| 6 | amphiregulin | AREG | NP_001648.1 | NP_999541.1 | 90 | ||
| 7 | tumor protein p53 | P53 | NP_000537.3 | NP_998989.3 | 99 | ||
| 8 | collagen type Ⅵ alpha 2 chain | COL6A2 | NP_001840.3 | XP_020938158.1 | 93 | ||
| 下调蛋白 Down-regucated protein | 9 | tumor protein p53 | P53 | NP_000537.3 | NP_998989.3 | 99 | |
| 10 | collagen type Ⅵ alpha 2 chain | COL6A2 | NP_001840.3 | XP_020938158.1 | 93 | ||
| 11 | cyclin dependent kinase 4 | CDK4 | NP_000066.1 | NP_001116569.1 | 98 | ||
| 12 | growth factor receptor bound protein 2 | GRB2 | NP_002077.1 | NP_001131100.1 | 98 | ||
| 13 | protein tyrosine kinase 2 | PTK2 | NP_001186578.1 | XP_020944510.1 | 96 | ||
| 14 | protein phosphatase 2 regulatory subunit B’alpha | PPP2R5A | NP_001186685.1 | NP_001093662.1 | 99 | ||
| 15 | heat shock protein 90 alpha family class B member 1 | HSP90AB1 | NP_001258898.1 | NP_001231362.1 | 99 | ||
| 16 | cell division cycle 37, HSP90 cochaperone | CDC37 | NP_008996.1 | NP_001116568.1 | 99 | ||
| 17 | eukaryotic translation initiation factor 4B | EIF4B | NP_001287750.1 | XR_002343952.1 | 93 | ||
| 18 | inhibitor of nuclear factor kappa B kinase regulatory subunit gamma | IKBKG | NP_001093326.2 | NP_001106524.1 | 96 | ||
| 19 | amphiregulin | AREG | NP_001648.1 | NP_999541.1 | 90 | ||
| 20 | nuclear factor kappa B subunit 1 | NFKB1 | NP_001158884.1 | NP_001041697.1 | 90 | ||
| 21 | thrombospondin 1 | THBS1 | NP_003237.2 | NP_001231465.1 | 90 | ||
| 1 |
LI X W , SONG Y W , WANG X Y , et al. The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection[J]. Emerg Microbes Infect, 2023, 12 (1): 2164217.
doi: 10.1080/22221751.2022.2164217 |
| 2 |
LI W H , ZHANG Z L , ZHANG L L , et al. Antiviral role of serine incorporator 5 (SERINC5) proteins in classical swine fever virus infection[J]. Front Microbiol, 2020, 11, 17.
doi: 10.3389/fmicb.2020.00017 |
| 3 |
NING P B , ZHOU Y L , LIANG W L , et al. Different RNA splicing mechanisms contribute to diverse infective outcome of classical swine fever viruses of differing virulence: insights from the deep sequencing data in swine umbilical vein endothelial cells[J]. PeerJ, 2016, 4, e2113.
doi: 10.7717/peerj.2113 |
| 4 |
LI S , WANG J , YANG Q , NAVEED A M , et al. Complex virus-host interactions involved in the regulation of classical swine fever virus replication: A minireview[J]. Viruses, 2017, 9 (7): 171.
doi: 10.3390/v9070171 |
| 5 |
SUN J F , LI J Y , LI L M , et al. Classical swine fever virus NS5A protein antagonizes innate immune response by inhibiting the NF-xB signaling[J]. Virol Sin, 2023a, 38, 900- 910.
doi: 10.1016/j.virs.2023.09.002 |
| 6 |
SUN L D , NIU J Q , ZHANG J S , et al. Thermostable T cell multiepitope nanoparticle antigens inducing potent immune responses against the swine fever virus[J]. Acs Infect Dis, 2023b, 9, 2358- 2368.
doi: 10.1021/acsinfecdis.3c00506 |
| 7 | BORDON Y . Disturbance of cytoskeleton primes RIG-I-like receptors[J]. Nat Rev Immunol, 2022, 22, 654- 655. |
| 8 | CAO T , LI X Y , XU Y H , et al. Npro of Classical swine fever virus suppresses type Ⅲ interferon production by inhibiting IRF1 expression and its nuclear translocation[J]. Viruses-Basel, 2019a, 11, 18. |
| 9 | WALTHER T , BRUHN B , ISKEN O , et al. A novel NS3/4A protease dependent cleavage site within pestiviral NS2[J]. J Gen Virol, 2021, 102 (10): 119- 128. |
| 10 |
FELLENBERG J , DUBRAU D , ISKEN O , et al. Packaging defects in pestiviral NS4A can be compensated by mutations in NS2 and NS3[J]. J Virol, 2023, 97 (9): e0057223.
doi: 10.1128/jvi.00572-23 |
| 11 |
TAUTZ N , KAISER A , THIEL H J . NS3 serine protease of bovine viral diarrhea virus: characterization of active site residues, NS4A cofactor domain, and protease-cofactor interactions[J]. Virology, 2000, 273 (2): 351- 63.
doi: 10.1006/viro.2000.0425 |
| 12 | DUBRAN D , SCHWINDT S , KLEMENS O , et al. Determination of critical requirements for classical swine fever virus NS2-3-independent virion formation[J]. J Virol, 2019, 93 (18): e00679- 00619. |
| 13 | ABDULLAH M , MCWHIRTER S M , SUO Z C . Modulation of kinase activities in vitro by hepatitis C virus protease NS3/NS4A mediated-cleavage of key immune modulator kinases[J]. Cells, 2023, 12, 20. |
| 14 |
李易聪, 蒲飞洋, 冯茜莉, 等. 牛病毒性腹泻病毒蛋白的免疫学特性以及相关疫苗研究进展[J]. 畜牧兽医学报, 2023, 54 (4): 1381- 1391.
doi: 10.11843/j.issn.0366-6964.2023.04.004 |
|
LI Y C , PU F Y , FENG X L , et al. Research progress on immunological characteristics of bovine viral diarrhea virus protein and vaccines[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (4): 1381- 1391.
doi: 10.11843/j.issn.0366-6964.2023.04.004 |
|
| 15 | FAN S Q , WU K K , LUO C W , et al. Dual NDP52 function in persistent CSFV infection[J]. Front Microbiol, 2020, 10, 13. |
| 16 |
LAMOTHE-REYES Y , FIGUEROA M , SANCHEZ O . Host cell factors involved in classical swine fever virus entry[J]. Vet Res, 2023, 54 (1): 115.
doi: 10.1186/s13567-023-01238-x |
| 17 |
GVUONO E , RAMIREZ-MEDINA E , SILVA E , et al. Classical swine fever virus structural glycoprotein E2 interacts with host protein ACADM during the virus infectious cycle[J]. Viruses, 2023, 15 (5): 1036.
doi: 10.3390/v15051036 |
| 18 |
王向鹏, 魏蕊芳, 肖书奇, 等. 慢病毒载体介导稳定表达CD163的PAM细胞系的建立及对PRRSV感染的研究[J]. 畜牧兽医学报, 2013, 44 (11): 1797- 1804.
doi: 10.11843/j.issn.0366-6964.2013.11.014 |
|
WANG X P , WEI R F , XIAO S Q , et al. Establishment of a Lentivirus-mediated stable CD163-expressing PAM cell line and research on PRRSV infection[J]. Journal of Animal Husbandry and Veterinary Medicine, 2013, 44 (11): 1797- 1804.
doi: 10.11843/j.issn.0366-6964.2013.11.014 |
|
| 19 | 方鑫玉, 周磊, 杨汉春. 猪繁殖与呼吸综合征病毒受体CD163的研究进展[J]. 中国兽医杂志, 2024, 60 (12): 99- 105. |
| FANG X Y , ZHOU L , YANG H C . Research progress on CD163, the receptor of porcine reproductive and respiratory syndrome virus[J]. Chinese Veterinary Science, 2024, 60 (12): 99- 105. | |
| 20 | 周峰, 赵军, 常洪涛, 等. 稳定表达CD163的PAM细胞系的建立[C]. 中国畜牧兽医学会动物传染病学分会, 2015: 2. |
| ZHOU F, ZHAO J, CHANG H T, et al. Establishment of PAM cell lines stably expressing CD163[C]. Society of Animal Infectious Diseases, Chinese Association of Animal Husbandry and Veterinary Medicine, 2015: 2. (in Chinese) | |
| 21 |
DIEP N , HAYAKAWA-SUGAYA Y , ISHIKAWA S . Establishment of an immortalized porcine alveolar macrophage cell line that supports efficient replication of porcine reproductive and respiratory syndrome viruses[J]. Pathogens, 2024, 13 (12): 1026.
doi: 10.3390/pathogens13121026 |
| 22 |
刘元杰, 徐璐, 朱元源, 等. 猪瘟病毒C株表位突变毒株的构建及拯救[J]. 畜牧兽医学报, 2024, 55 (2): 698- 705.
doi: 10.11843/j.issn.0366-6964.2024.02.027 |
|
LIU Y J , XU L , ZHU Y Y , et al. Construction and rescue of epitope mutant of swine fever virus C strain[J]. Journal of Animal Husbandry and Veterinary Medicine, 2024, 55 (2): 698- 705.
doi: 10.11843/j.issn.0366-6964.2024.02.027 |
|
| 23 |
荆扬, 王玉淼, 李洋, 等. 稳定表达PRRSV M蛋白的MARC-145ORF6细胞系的构建及其对PRRSV增殖的影响[J]. 畜牧兽医学报, 2024, 55 (3): 1159- 1169.
doi: 10.11843/j.issn.0366-6964.2024.03.028 |
|
JING Y , WANG Y M , LI Y , et al. Construction of MARC-145ORF6 cell line stably overexpressing PRRSV M protein and its effect on PRRSV proliferation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 1159- 1169.
doi: 10.11843/j.issn.0366-6964.2024.03.028 |
|
| 24 |
ALBAMAZ J D , KITE J , OLIVEIRA M , et al. Quantitative proteomics defines mechanisms of antiviral defence and cell death during modified vaccinia Ankara infection[J]. Nat Commun, 2023, 14 (1): 8134.
doi: 10.1038/s41467-023-43299-8 |
| 25 | 蔡彬祥, 於子鼎, 曾显成, 等. 猪瘟病毒与宿主天然免疫系统的相互作用[J]. 微生物学通报, 2017, 44 (12): 2997- 3006. |
| CAI B X , YU Z A , ZENG X C , et al. Interaction between classical swine fever virus and host innate immune system[J]. Microbiology Bulletin, 2017, 44 (12): 2997- 3006. | |
| 26 |
PRESTI D , QUAQUARINI E . The PI3K/AKT/mTOR and CDK4/6 pathways in endocrine resistant HR+/HER2-metastatic breast cancer: biological mechanisms and new treatments[J]. Cancers, 2019, 11 (9): 1242.
doi: 10.3390/cancers11091242 |
| 27 | ESKANDARI E , NEGRI G L , TAN S , et al. Dependence of human cell survival and proliferation on the CASP3 prodomain[J]. Cell Death Discov, 2024, 10, 63. |
| 28 |
JELLUSOVA J , RICKERT R C . The PI3K pathway in B cell metabolism[J]. Crit Rev Biochem Mol Biol, 2016, 51 (5): 359- 378.
doi: 10.1080/10409238.2016.1215288 |
| [1] | 邓俊花, 李昊轩, 陈冬杰, 吕继洲, 王晶晶, 张舟, 袁向芬, 魏方, 吴绍强. 用于非洲猪瘟病毒多靶标核酸检测的DNA假病毒制备及定量[J]. 畜牧兽医学报, 2025, 56(7): 3555-3560. |
| [2] | 卢会鹏, 曹世诺, 吴植, 陈长春, 陈文玉, 成玉婷, 周晓慧, 孙怀昌, 朱善元. 表达非洲猪瘟病毒基因B602L-B646L的重组病毒免疫原性的初步分析[J]. 畜牧兽医学报, 2025, 56(6): 2816-2825. |
| [3] | 陈长春, 吴植, 任冠宇, 陈文玉, 曹世诺, 朱睿, 张力, 成玉婷, 朱善元, 卢会鹏. 表达非洲猪瘟pp62与Hsp70蛋白重组腺病毒对小鼠的免疫原性分析[J]. 畜牧兽医学报, 2025, 56(6): 3027-3031. |
| [4] | 张晓玲, 何兴林, 张梦迪, 李鹏飞, 孙玉梅, 马海龙, 朱红梅, 张梦佳, 李文涛. 猪瘟病毒E2蛋白纳米颗粒的制备及在家兔上的免疫原性分析[J]. 畜牧兽医学报, 2025, 56(5): 2301-2311. |
| [5] | 张越, 茹毅, 郝荣增, 杨锐, 赵陇和, 李亚军, 杨洋, 张荣, 蒋成辉, 郑海学. 非洲猪瘟病毒H108R蛋白的制备及其免疫原性评价[J]. 畜牧兽医学报, 2025, 56(3): 1344-1354. |
| [6] | 马晓莉, 李段, 曾道平, 刘燕玲, 王晓敏, 彭国良, 宋长绪, 王磊, 徐铮. 非洲猪瘟病毒p72蛋白抗体全自动化学发光酶免疫检测方法的建立[J]. 畜牧兽医学报, 2025, 56(3): 1355-1365. |
| [7] | 张素, 孙丽芳, 李兰兰, 吴琳娇, 陈磊清, 吴允昆. 非洲猪瘟病毒结构蛋白与宿主蛋白相互作用研究进展[J]. 畜牧兽医学报, 2025, 56(1): 95-106. |
| [8] | 冯露, 田宏, 郑海学, 石正旺, 罗俊聪, 张晓阳, 尉娟娟, 周静, 廖焕程, 王婉莹. 基于酶促重组酶扩增的非洲猪瘟病毒检测方法[J]. 畜牧兽医学报, 2024, 55(9): 4226-4231. |
| [9] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
| [10] | 刘元杰, 徐璐, 朱元源, 徐嫄, 张乾义, 李翠, 李明, 夏应菊, 王琴, 刘业兵, 赵启祖, 邹兴启. 猪瘟病毒C株表位突变毒株的构建及拯救[J]. 畜牧兽医学报, 2024, 55(2): 698-705. |
| [11] | 闫文倩, 侯景, 杨金柯, 郝雨, 杨行, 史喜绢, 张大俊, 别鑫恬, 陈国辉, 陈玲玲, 何路, 赵美玉, 赵思越, 郑海学, 张克山. 非洲猪瘟病毒D1133 L蛋白单克隆抗体抑制其复制[J]. 畜牧兽医学报, 2024, 55(2): 854-859. |
| [12] | 陈晓丽, 周佳浩, 周静, 屈倩, 王志华, 熊鹰, 朱咏琪, 贾伟新, 吕伟杰, 郭世宁. 改良育阴方对非洲猪瘟病毒感染PAMs的cGAS-STING通路影响[J]. 畜牧兽医学报, 2024, 55(12): 5839-5853. |
| [13] | 郭旺, 彭光众, 黄宏奥, 吴慧显, 胡序明, 张钰, 张扬, 陈国宏, 徐琪. 鸡marco稳转巨噬细胞系的构建与鉴定[J]. 畜牧兽医学报, 2024, 55(11): 5310-5316. |
| [14] | 夏应菊, 李琰, 刘俊, 徐嫄, 李芳韬, 邹兴启, 李琪, 李佳昕, 赵俊杰, 张乾义, 刘业兵, 徐璐. 猪瘟病毒中和抗体与E2蛋白抗体相关性分析[J]. 畜牧兽医学报, 2024, 55(10): 4590-4596. |
| [15] | 吴梦丽, 孙华林, 杨吉飞, 赵亚茹, 关贵全, 殷宏, 牛庆丽. 稳定表达猪BRD4-BD1/2蛋白的猪肺泡巨噬细胞传代细胞系的构建及其用于ASFV增殖的效果观察[J]. 畜牧兽医学报, 2024, 55(10): 4646-4659. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||