

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (11): 5367-5378.doi: 10.11843/j.issn.0366-6964.2025.11.003
宋浩然1,2(
), 冯肖艺1, 张笑梦1, 杨柏高1, 李崇阳1, 董建华1, 刘阳1,2, 王子卓1,2, 王昆3, 崔凯2, 赵学明1,*(
)
收稿日期:2025-03-31
出版日期:2025-11-23
发布日期:2025-11-27
通讯作者:
赵学明
E-mail:1315503802@qq.com;zhaoxueming@caas.cn
作者简介:宋浩然(2001-),男,山东泰安人,硕士生,主要从事动物繁殖研究,E-mail: 1315503802@qq.com
基金资助:
SONG Haoran1,2(
), FENG Xiaoyi1, ZHANG Xiaomeng1, YANG Baigao1, LI Chongyang1, DONG Jianhua1, LIU Yang1,2, WANG Zizhuo1,2, WANG Kun3, CUI Kai2, ZHAO Xueming1,*(
)
Received:2025-03-31
Online:2025-11-23
Published:2025-11-27
Contact:
ZHAO Xueming
E-mail:1315503802@qq.com;zhaoxueming@caas.cn
摘要:
胚胎植入前基因检查(preimplantation genetic testing,PGT)不仅在人类生殖医学上发挥着重要作用,还在畜牧业上有重要的应用。家畜良种繁育过程中,PGT可用于引入理想性状,增强遗传多样性,提高整体畜群质量。通过选择具有特定遗传特征的胚胎,可以提高诸如抗病性、生产力和寿命等性状,促进畜牧育种计划进步。基于基因组评估的胚胎选择通过增加选择强度,缩短世代间隔,从而增加遗传增益。然而,当前PGT主要采用有创检查,这会对胚胎结构完整性造成破坏。因此,最大程度地保存胚胎结构完整性能够更好地维持其活力,目前已开始探究采用无创检查(ni-PGT)来评估胚胎植入前的发育潜能,包括检测囊胚液和胚胎培养基中无细胞DNA(cell-free DNA,cfDNA)。本文概述了PGT和无创胚胎进行PGT方法,整理了现有PGT在畜牧业及人类辅助生殖方面的应用进展,以期为ni-PGT在畜牧领域广泛应用提供理论参考。
中图分类号:
宋浩然, 冯肖艺, 张笑梦, 杨柏高, 李崇阳, 董建华, 刘阳, 王子卓, 王昆, 崔凯, 赵学明. 无创胚胎植入前遗传学检查研究进展[J]. 畜牧兽医学报, 2025, 56(11): 5367-5378.
SONG Haoran, FENG Xiaoyi, ZHANG Xiaomeng, YANG Baigao, LI Chongyang, DONG Jianhua, LIU Yang, WANG Zizhuo, WANG Kun, CUI Kai, ZHAO Xueming. Research Progress of Noninvasive Preimplantation Genetic Examination[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5367-5378.
表 2
PGT相关技术的应用及优点"
| 名称 Name | 技术应用 Technology application | 优点 Advantage | 参考文献 Reference |
| WGA | 对样本中全部基因组序列进行非选择性的、均匀性扩增的技术 | 提高了可用于后续检测的遗传数据的数量和质量 | [ |
| SNP | 检查基因组DNA序列中由于某个核苷酸突变引起的多态性 | SNP分析能提供完整的数据信息和具有极高的分辨率,可用于优良畜种的筛选 | [ |
| NGS | 单次生化反应中同时检测几十万至数百万DNA模板上碱基序列的DNA测序技术 | 高通量测序技术,边合成边测序,检测效率高,应用范围广 | [ |
| aCGH | 一种基于微阵列的技术,将待测DNA与正常对照DNA样本进行杂交比较,以检测出待测样本重复或缺失的区域 | 能够在整个基因组范围内检测出染色体异常, 包括染色体非整倍体、缺失和重复 | [ |
| RT-qPCR | 在PCR体系中加入特定荧光染料或探针,扩增过程中通过荧光信号累积对PCR进程进行实时检测的技术 | 可以实时监控反应产物,提供准确的定量,消除了反应后凝胶分析的需要 | [ |
表 3
囊胚液检查相关研究"
| 胚胎数量及类型 Number and type of embryos | 采样时期 Sampling period | 采样内容及体积 Sampling content and volume | 扩增方法及成功率 Amplification method and success rate | 检测内容及一致性 Testing content and consistency | 参考文献 Reference |
| 116新鲜人类胚胎 116 fresh human embryos | D5 | 0.01 μL 囊胚液 | SurePlex (82%,95/116) | PGT-A BF vs. TE(97.1%,67/69) | [ |
| PGT-A BF vs. BM(94.4%,34/36) | |||||
| PGT-A BF vs. PB(94.1%,32/34) | |||||
| 16冷冻人类胚胎 16 frozen human embryos | D5 | 0.01 μL 囊胚液 | PicoPlex (62.5%,10/16) | PGT-A BF vs. TE(40%,4/10) | [ |
| 96冷冻人类胚胎 96 frozen human embryos | D5 | 1 μL 囊胚液 | SurePlex (63%,60/96) | PGT-A BF vs. TE(40%,29/60) | [ |
| 23新鲜人类胚胎 23 fresh human embryos | D5 | 约0.01 μL 囊胚液 | SurePlex (34.8%,8/23) | PGT-A BF vs. TE(37.5%,3/8) | [ |
表 4
囊胚液+胚胎培养基检查相关研究"
| 胚胎数量及类型 Number and type of embryos | 采样时期 Sampling period | 采样内容及体积 Sampling content and volume | 扩增方法及成功率 Amplification method and success rate | 检测内容及一致性 Testing content and consistency | 参考文献 Reference |
| 53冷冻人类胚胎 53 frozen human embryos | D5/D6 | SCM+BF | MALBAC (88%,46/52) | D5,PGT-A SCM+BF vs. WEs(45%,5/11) | [ |
| D6,PGT-A SCM+BF vs. WE(66%,23/35) | |||||
| 62冷冻人类胚胎 62 frozen human embryos | D5/D6 | SCM+BF 10 μL | MALBAC (100%,62/62) | PGT-A SCM+BF vs. TE(90.48%,19/21) SCM+BF vs. WE(85.71%,18/21) | [ |
| PGT-SR SCM+BF vs. TE(90.24%,37/41) SCM+BF vs. WE(100%,41/41) | |||||
| 145新鲜人类胚胎 145 fresh human embryos | D5/D6 | SCM+BF 5 μL | SurePlex (93%,40/43) | PGT-A SCM+BF vs. TE(97.4%,37/38) | [ |
| 19新鲜人类胚胎 19 fresh human embryos | D5/D6 | SCM+BF | SurePlex (100%,19/19) | PGT-A SCM+BF vs. TE(100%,19/19) | [ |
表 5
胚胎培养基检查相关研究"
| 胚胎数量及类型 Number and type of embryos | 采样时期 Sampling period | 采样内容及体积 Sampling content and volume | 扩增方法及成功率 Amplification method and success rate | 检测内容及一致性 Testing content and consistency | 参考文献 Reference |
| 28新鲜人类胚胎 28 fresh human embryos | D5/D6 | SCM 2.5 μL | SurePlex (92.86%,26/28) | PGT-A SCM vs. TE(50%,13/26) | [ |
| 28冷冻人类胚胎 28 frozen human embryos | D5/D6 | SCM | SurePlex (100%,28/28) | PGT-A SCM vs. WE(96.4%,27/28) | [ |
| PGT-A SCM vs. TE(87.5%,21/24) | |||||
| 60新鲜人类胚胎 60 fresh human embryos | D6 | SCM | SurePlex (91.67%,55/60) | PGT-A SCM vs. TE(94.5%,52/55) | [ |
| 56冷冻人类胚胎 56 frozen human embryos | D5 | SCM | MALBAC (100%,56/56) | PGT-A SCM vs. WE(94.64%,53/56) | [ |
| 52冷冻人类胚胎 52 frozen human embryos | D5/D6 | SCM 10 μL | MALBAC (92.3%,48/52) | PGT-A SCM vs. WE(93.8%,45/48) | [ |
| 26新鲜、9冷冻人类胚胎 26 fresh, 9 frozen human embryos | D5/D6 | SCM 15 μL | PicoPlex (74.3%,26/35) | PGT-A SCM vs. ICM(58.33%,14/24) | [ |
| 1 301新鲜人类胚胎 1 301 fresh human embryos | D5/D6 | SCM 10 μL | ReproSeq PGS Kit (92%,1 197/1 301) | PGT-A SCM vs. TE(78.2%,886/1108) | [ |
| 20冷冻人类胚胎 20 frozen human embryos | D6 | SCM | SurePlex (95%,19/20) | PGT-A SCM vs. TE(55.6%,10/18) | [ |
| 27新鲜人类胚胎 27 fresh human embryos | D5/D6 | SCM 25 μL | NICs inst (96.3%,26/27) | PGT-A SCM vs. TE(69.2%,18/26) | [ |
| 1 |
DELARCO DE LA PAZ A,GIMÉNEZ-RODRÍGUEZC,SELNTIGIAA,et al.Advancements and challenges in preimplantation genetic testing for aneuploidies: in the pathway to non-invasive techniques[J].Genes,2024,15(12):1613.
doi: 10.3390/genes15121613 |
| 2 |
RULEK,CHOSEDR J,ARTHURCHANG T,et al.Relationship between blastocoel cell-free DNA and day-5 blastocyst morphology[J]. J Assist Reprod Genet,2018,35(8):1497-1501.
doi: 10.1007/s10815-018-1223-4 |
| 3 |
BAYRAMA,ELKHATIBI,KALAFATE,et al.Steady morphokinetic progression is an independent predictor of live birth: A descriptive reference for euploid embryos[J].Hum Reprod Open,2024,2024(4):hoae059.
doi: 10.1093/hropen/hoae059 |
| 4 |
OMESC,CONTIA,BENEDETTIL,et al.Expression of miRNA from spent pre-implantation embryos culture media[J].Reprod Biol,2024,24(2):100847.
doi: 10.1016/j.repbio.2023.100847 |
| 5 |
LEIC,FUJ,LIX,et al.Re-denudation of residual cumulus cells on day 3 increases the accuracy of cell-free DNA detection in spent embryo culture medium[J].J Assist Reprod Genet,2022,39(7):1653-1660.
doi: 10.1007/s10815-022-02511-2 |
| 6 | HOCHBERGA,AMOURAL,ZHANGX Y,et al.The correlation between blastocyst morphological parameters and chromosomal euploidy, aneuploidy and other chromosomal abnormalities following pre-implantation genetic testing—a single center retrospective study[J].Arch Gynecol Obstet,2025,311(3):1-13. |
| 7 |
ZHANGY,LIN,WANGL,et al.Molecular analysis of DNA in blastocoele fluid using next-generation sequencing[J].J Assist Reprod Genet,2016,33(5):637-645.
doi: 10.1007/s10815-016-0667-7 |
| 8 |
MONTAGM,VENK V D,RÖSINGB,et al.Polar body biopsy: A viable alternative to preimplantation genetic diagnosis and screening[J].Reprod Biomed Online,2009,18,6-11.
doi: 10.1016/S1472-6483(10)60109-5 |
| 9 |
AOYAMAN,KATOK.Trophectoderm biopsy for preimplantation genetic test and technical tips: A review[J].Reprod Med Biol,2020,19(3):222-231.
doi: 10.1002/rmb2.12318 |
| 10 |
PALINIS,GALLUZZIL,DE STEFANIS,et al.Genomic DNA in human blastocoele fluid[J].Reprod Biomed Online,2013,26(6):603-610.
doi: 10.1016/j.rbmo.2013.02.012 |
| 11 |
LAYEKS S,KANANIS,DOULTANIS,et al.Analyzing cell-free genomic DNA in spent culture media: noninvasive insight into the blastocysts[J].Glob Med Genet,2024,11(3):227-232.
doi: 10.1055/s-0044-1788260 |
| 12 |
CHENS,WANGL,HUY,et al.Noninvasive preimplantation genetic testing for aneuploidy using blastocyst spent culture medium may serve as a backup of trophectoderm biopsy in conventional preimplantation genetic testing[J].BMC Med Genomics,2025,18(1):34.
doi: 10.1186/s12920-025-02106-7 |
| 13 |
FANGH,XINY Y,JINGW,et al.Non-invasive chromosome screening for embryo preimplantation using cell-free DNA[J].Reprod Dev Med,2022,6(2):113-120.
doi: 10.1097/RD9.0000000000000023 |
| 14 |
JANINEA,HENRIETTEV D Z,ZARCOG,et al.Diagnostic applications and limitations for the use of cell-free fetal DNA (cffDNA) in animal husbandry and wildlife management[J].Res Vet Sci,2023,158,106-116.
doi: 10.1016/j.rvsc.2023.03.013 |
| 15 | ORIGINAL,AU,AU-AFF.Application of assisted reproductive technologies in cattle production[Primjena asistirane reprodukcije u govedarstvu][J].Veterinarska Stanica,2018,49(2):91-104. |
| 16 | CENARIUM,PALLE,CERNEAC,et al.Evaluation of bovine embryo biopsy techniques according to their ability to preserve embryo viability[J].J Biomed Biotechnol,2012,2012(VⅢ):541384. |
| 17 |
ALIZADEGANA,DIANAT-MOGHADAMH,SHADMANN,et al.Application of cell free DNA in ART[J].Placenta,2022,120,18-24.
doi: 10.1016/j.placenta.2022.02.003 |
| 18 |
BARANOVS V,KOGANY I,KNZNETZOVAV T,et al.Advances in developmental genetics and achievements in assisted reproductive technology[J].Russ J Genet,2019,55(10):1171-1182.
doi: 10.1134/S1022795419100028 |
| 19 | KARAMIN,IRAVANIF,BAKHSHANDEH BAVARSADS,et al.Comparing the advantages, disadvantages and diagnostic power of different non-invasive pre-implantation genetic testing: A literature review[J].Int J Reprod Biomed,2023,22(3):177-190. |
| 20 |
ORTEGA-JAéND,MORA-MARTINEZC,CAPALBOA,et al.A pilot study of transcriptomic preimplantation genetic testing (PGT-T): towards a new step in embryo selection?[J].Hum Reprod,2025,40(2):244-260.
doi: 10.1093/humrep/deae265 |
| 21 |
MIZOBEY,KUWATSURUY,KUROKIY,et al.A novel trophectoderm biopsy technique for all blastocyst stages[J].Reprod Med Biol,2022,21(1):e12418.
doi: 10.1002/rmb2.12418 |
| 22 |
FESAHATF,MONTAZERIF,HOSEINIS M.Preimplantation genetic testing in assisted reproduction technology[J].J Gynecol Obstet Hum Reprod,2020,49(5):101723.
doi: 10.1016/j.jogoh.2020.101723 |
| 23 |
SIK,MAB,BAIJ,et al.Preimplantation development analysis of aneuploid embryos with different chromosomal abnormalities[J].Heliyon,2024,10(23):e40686.
doi: 10.1016/j.heliyon.2024.e40686 |
| 24 |
ORVIETOR,AIZERA,GLEICHERN.Is there still a rationale for non-invasive PGT-A by analysis of cell-free DNA released by human embryos into culture medium?[J].Hum Reprod,2021,36(5):1186-1190.
doi: 10.1093/humrep/deab042 |
| 25 |
XIEP,ZHANGS,GUY,et al.Non-invasive preimplantation genetic testing for conventional IVF blastocysts[J].J Transl Med,2022,20(1):396.
doi: 10.1186/s12967-022-03596-0 |
| 26 |
CAMPOSG,NEL-THEMAATL.Blastocoel fluid as an alternative source of DNA for minimally invasive PGT and biomarker of embryo competence[J].Reprod Biomed Online,2024,49(4):104322.
doi: 10.1016/j.rbmo.2024.104322 |
| 27 |
GRATIF R,CAPALBOA,GABBIATOI,et al.Prenatal diagnosis following preimplantation genetic testing (PGT): recommendations of the Italian Society of Human Genetics (SIGU)[J].J Assist Reprod Genet,2025,42(3):1015-1024.
doi: 10.1007/s10815-024-03358-5 |
| 28 |
WANGL,HEX,HUANGX,et al.Preimplantation genetic testing in a family with neurofibromatosis Type 1[J].Genet Test Mol Biomarkers,2025,29(3):54-62.
doi: 10.1089/gtmb.2025.0031 |
| 29 |
LIUX,ZHANGQ,CAOK,et al.Preimplantation genetic testing for monogenic disorders (PGT-M) for monogenic nephropathy: a single-center retrospective cohort analysis[J].Clin Kidney J,2025,18(1):sfae356.
doi: 10.1093/ckj/sfae356 |
| 30 |
ZHANGZ,CHENJ,ZHANGL,et al.Influence of the sex of translocation carrier on clinical outcomes of couples undergoing preimplantation genetic testing[J].Mol Genet Genomic Med,2025,13(1):e70050.
doi: 10.1002/mgg3.70050 |
| 31 |
PETCHS,CROSBYD.Updates in preimplantation genetic testing (PGT)[J].Best Pract Res Clin Obstet Gynaecol,2024,96,102526.
doi: 10.1016/j.bpobgyn.2024.102526 |
| 32 |
LIUD,CHENC,ZHANGX,et al.Successful birth after preimplantation genetic testing for a couple with two different reciprocal translocations and review of the literature[J].Reprod Biol Endocrinol,2021,19(1):58.
doi: 10.1186/s12958-021-00731-2 |
| 33 | GLOTOV OLEGS,SAFIFITDINOVAALSU,PAVLOVA OLGAA,et al.Comparative analysis of the reliability of data on the molecular karyotype of the embryo obtained by whole-genome amplification methods based on NGS technology of trophectoderm of individual cells[J].Am J Obstet Gynecol,2024(6):66-74. |
| 34 |
HUANGP,LANY,ZHOUH,et al.Comprehensive application of multiple molecular diagnostic techniques in pre-implantation genetic testing for monogenic[J].Mol Genet Genomic Med,2024,12(1):e2293.
doi: 10.1002/mgg3.2293 |
| 35 |
MASLUBM G,DAUDN A A,RADWANM A,et al.CYP3A4*1B and CYP3A5*3 SNPs significantly impact the response of Egyptian candidates to high-intensity statin therapy to atorvastatin[J].Eur J Med Res,2024,29(1):539.
doi: 10.1186/s40001-024-02109-7 |
| 36 |
MOAWADM A,ABOSHADYH M,ABD-ALLAM S,et al.Genetic polymorphisms of the growth hormone (GH) gene in Damascus and Black Bengal male goats[J].Trop Anim Health Prod,2025,57(1):18.
doi: 10.1007/s11250-024-04253-y |
| 37 |
KIMS Y,CHUNGB,CHANGJ H,et al.Simultaneous identification of 13 foodborne pathogens by using capillary electrophoresis-single strand conformation polymorphism coupled with multiplex ligation-dependent probe amplification and its application in foods[J]. Foodborne Pathog Dis,2016,13(10):566-574.
doi: 10.1089/fpd.2016.2143 |
| 38 | YUANS,TIANS,MENGC,et al.The identification of functional genes affecting fat-related meat traits in meat-type pigeons using double-digest restriction-associated dna sequencing and molecular docking analysis[J].Animals (Basel),2023,13(20):3256. |
| 39 | MEKONNENK T,LEED H,CHOY G,et al.Genomic and conventional inbreeding coefficient estimation using different estimator models in korean duroc, landrace, and yorkshire breeds using 70K Porcine SNP BeadChip[J].Animals (Basel),2024,14(17):2621. |
| 40 |
GKIOKAV,BALAOURAO,GOULIELMAKIM,et al.The organization of contemporary biobanks for translational cancer research[J].Onco,2023,3(4):205-216.
doi: 10.3390/onco3040015 |
| 41 |
MACEDAI,LAOO.Analysis of the batch effect due to sequencing center in population statistics quantifying rare events in the 1000 genomes project[J].Genes,2021,13(1):44.
doi: 10.3390/genes13010044 |
| 42 |
LAHOUCINES I,CASELLASJ,LUD,et al.Distortion of mendelian segregation across angus cattle genome reveal novel lethal haplotype affecting reproduction[J].Sci Rep,2023,13(1):13393.
doi: 10.1038/s41598-023-37710-z |
| 43 |
GUSAKOVAM S,PATRUSHEVM V.Towards the implementation of high-throughput next-generation sequencing technology in clinical oncology. Where Are We Now?[J].Nanobiotechnology Reports,2024,19(3):329-341.
doi: 10.1134/S2635167624601062 |
| 44 |
RODRIGUEZR,KRISHNANY.The chemistry of next-generation sequencing[J].Nat Biotechnol,2023,41(12):1709-1715.
doi: 10.1038/s41587-023-01986-3 |
| 45 | JOHND,ZHENYAT,MEHMETA,et al.Detection of clinically actionable gene fusions by next-generation sequencing-based RNA sequencing of non-small cell lung cancer cytology specimens: A single-center experience with comparison to fluorescence in situ hybridization[J].Cancer Cytopathol,2023,132(1):41-49. |
| 46 |
BISWASS,AFROSES,MITAM A,et al.Next-generation sequencing: an advanced diagnostic tool for detection of pancreatic disease/disorder[J].JGH Open,2024,8(11):e70061.
doi: 10.1002/jgh3.70061 |
| 47 | VICTORIAT,PAULOC.32. Whole transcriptome sequencing as a diagnostic tool for AML[J].Cancer Genet,2023,278-279(S1) |
| 48 | EWAP,ADRIANAA-M,SHEIDAN,et al.Ultradense array CGH and discovery of micro-copy number alterations and gene fusions in the cancer genome[J].Methods Mol Biol,2013,973,15-38. |
| 49 |
JEANG,MAUDV,LYSANNEC,et al.Clinical validity of karyotyping for the diagnosis of chromosomal imbalance following array comparative genomic hybridisation[J].J Med Genet,2011,48(12):851-855.
doi: 10.1136/jmedgenet-2011-100304 |
| 50 | CHARANJEETS,SINCHITAR-C.Quantitative Real-Time PCR: Recent Advances[J].Methods Mol Biol,2016,1392,161-176. |
| 51 |
FUMINGS,ZHIZHOUZ,ZHONGX,et al.CdTe quantum dots enhance feasibility of EvaGreen-based real-time PCR with decent amplification fidelity[J].Mol Biotechnol,2013,54(3):969-976.
doi: 10.1007/s12033-013-9650-z |
| 52 | CZERWIŃSKAA B,STRYCHALSKAA,SIERKAW,et al.A comparative analysis of non-invasive preimplantation genetic testing for aneuploidies using next-generation sequencing on spent culture media versus trophectoderm[J].EUR J OBSTET GYN R B,2024,293,51. |
| 53 |
SAKKASD,NAVARRO-SÁNCHEZL,ARDESTANIG,et al.The impact of implementing a non-invasive preimplantation genetic testing for aneuploidies (niPGT-A) embryo culture protocol on embryo viability and clinical outcomes[J].Hum Reprod,2024,39(9):1952-1959.
doi: 10.1093/humrep/deae156 |
| 54 |
LEAVERM,WELLSD.Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics?[J].Hum Reprod Update,2020,26(1):16-42.
doi: 10.1093/humupd/dmz033 |
| 55 |
CINNIOGLUC,GLESSNERH,JORDANA,et al.A systematic review of noninvasive preimplantation genetic testing for aneuploidy[J].Fertil Steril,2023,120(2):235-239.
doi: 10.1016/j.fertnstert.2023.06.013 |
| 56 |
MAGLIM C,POMANTEA,CAFUERIG,et al.Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid?[J].Fertil Steril,2016,105(3):676-683.
doi: 10.1016/j.fertnstert.2015.11.018 |
| 57 |
TŠUIKOO,ZHIGALINAD I,JATSENKOT,et al.Karyotype of the blastocoel fluid demonstrates low concordance with both trophectoderm and inner cell mass[J].Fertil Steril,2018,109(6):1127-1134.
doi: 10.1016/j.fertnstert.2018.02.008 |
| 58 |
TOBLERK J,ZHAOY,ROSSR,et al.Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis[J].Fertil Steril,2015,104(2):418-425.
doi: 10.1016/j.fertnstert.2015.04.028 |
| 59 |
CAPALBOA,ROMANELLIV,PATASSINIC,et al.Diagnostic efficacy of blastocoel fluid and spent media as sources of DNA for preimplantation genetic testing in standard clinical conditions[J].Fertil Steril,2018,110(5):870-879.
doi: 10.1016/j.fertnstert.2018.05.031 |
| 60 | KHAJEHOSEINIF,NOORMOHAMMADIZ,YAZDIP E,et al.Evaluation of utilization of amplified blastocoel fluid DNA gel electrophoresis band intensity as an additional minimally invasive approach in embryo selection: A cross-sectional study[J].Int J Reprod Biomed,2024,22(11):907-918. |
| 61 | KHAJEHOSEINIF,NOORMOHAMMADIZ,EFTEKHARI-YAZDIP,et al.Correlation among blastocoel fluid DNA level, apoptotic genes expression and preimplantation aneuploidy[J].Reprod Fertil,2025,6(1):e240097. |
| 62 |
PHILLIPSK R B,HUNTA G K,NEALM S,et al.Temporal evaluation of a minimally invasive method of preimplantation genetic testing for aneuploidy (mi-PGT-A) in human embryos[J].J Reprod Med,2024,5(3):97-112.
doi: 10.3390/reprodmed5030011 |
| 63 |
JIAOJ,SHIB,SAGNELLIM,et al.Minimally invasive preimplantation genetic testing using blastocyst culture medium[J].Hum Reprod,2019,34(7):1369-1379.
doi: 10.1093/humrep/dez075 |
| 64 |
VALERIYK,SVETLANAM,RINAA,et al.Minimally invasive cell-free human embryo aneuploidy testing (miPGT-A) utilizing combined spent embryo culture medium and blastocoel fluid-towards development of a clinical assay[J].Sci Rep,2020,10(1):7244.
doi: 10.1038/s41598-020-64335-3 |
| 65 |
KUZNYETSOVV,MADJUNKOVAS,ANTESR,et al.Evaluation of a novel non-invasive preimplantation genetic screening approach[J].PLoS One,2018,13(5):e0197262.
doi: 10.1371/journal.pone.0197262 |
| 66 |
SHEERSHIKAS,RAMM.Advances in DNA extraction techniques: a comprehensive review of methods and applications[J].PCBMB,2024,25(5-6):30-42.
doi: 10.56557/pcbmb/2024/v25i5-68683 |
| 67 |
LIUY,ZHANGL,LEIW,et al.Development of a rapid and sensitive RPA-CRISPR/Cas12a assay for non-invasive pre-implantation genetic testing[J]. Anal Chim Acta,2025,1343,343687.
doi: 10.1016/j.aca.2025.343687 |
| 68 |
STIGLIANIS,ANSERINIP,VENTURINIP L,et al.Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation[J].Hum Reprod,2013,28(10):2652-2660.
doi: 10.1093/humrep/det314 |
| 69 | FRANCOJ G,PETERSENC G,VAGNINIL D,et al.Noninvasive preimplantation genetic testing for aneuploidies (NIPGT-A) X analysis of the whole embryo: high degree of concordance between the genetic results[J].Fertil Steril,2023,120(4):e215-e216. |
| 70 |
HUANGL,BOGALEB,TANGY,et al.Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy[J].Proc Natl Acad Sci U S A,2019,116(28):14105-14112.
doi: 10.1073/pnas.1907472116 |
| 71 | RUBIOC,NAVARRO-SÁNCHEZL,GARCÍA-PASCUALC M,et al.Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts[J].Am J Obstet Gynecol,2020,223(5):751. |
| 72 |
HANDAYANIN,AUBRYD,BOEDIONOA,et al.Non-invasive pre-implantation genetic testing's reliability for aneuploidy using cell-free dna in embryo culture media[J].J Gynecol Obstet Hum Reprod,2024,53(8):102808.
doi: 10.1016/j.jogoh.2024.102808 |
| 73 | LONGX C,QUANW Y,YINGT Q,et al.Concordance of PGT for aneuploidies between blastocyst biopsies and spent blastocyst culture medium[J].Reprod Biomed Online,2022,46(3):483-490. |
| 74 |
SHITARAA,TAKAHASHIK,GOTOM,et al.Cell-free DNA in spent culture medium effectively reflects the chromosomal status of embryos following culturing beyond implantation compared to trophectoderm biopsy[J].PLoS One,2021,16(2):e0246438.
doi: 10.1371/journal.pone.0246438 |
| 75 |
RUBIOC,RIENZIL,NAVARRO-SÁNCHEZL,et al.Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications[J].Fertil Steril,2019,112(3):510-519.
doi: 10.1016/j.fertnstert.2019.04.038 |
| 76 |
KHUDARIL,HALABIM,FAHOUMS A.Preimplantation aneuploidy screening using embryonic cell-free DNA isolated from spent culture medium: a case report[J].Egypt J Med Hum Genet,2025,26(1):24.
doi: 10.1186/s43042-025-00654-2 |
| 77 | LANEM,ZANDER-FOXD L,HAMILTONH,et al.Ability to detect aneuploidy from cell free DNA collected from media is dependent on the stage of development of the embryo[J].Fertil Steril,2017,108(3S):e61. |
| 78 |
HOJ R,ARRACHN,RHODES-LONGK,et al.Pushing the limits of detection: investigation of cell-free DNA for aneuploidy screening in embryos[J].Fertil Steril,2018,110(3):467-475.
doi: 10.1016/j.fertnstert.2018.03.036 |
| 79 |
CHOWJ C F,LAMK K W,CHENGH H Y,et al.Optimizing non-invasive preimplantation genetic testing: investigating culture conditions, sample collection, and IVF treatment for improved non-invasive PGT-A results[J].J Assist Reprod Genet,2024,41(2):465-472.
doi: 10.1007/s10815-023-03015-3 |
| 80 |
KEMALH A,FITRIAYUA A,ATIKAHS,et al.Embryo response to aneuploidy through self-correction mechanism: A literature review[J].Middle East Fertil Soc J,2024,29(1):16.
doi: 10.1186/s43043-024-00176-8 |
| 81 |
CAMPOSG,SCIORIOR,FLEMINGS.Healthy live births after the transfer of mosaic embryos: Self-correction or PGT-A overestimation?[J].Genes,2023,15(1):18.
doi: 10.3390/genes15010018 |
| 82 |
CZERWIŃSKAA B,DZIRBAJ S,STRYCHALSKAA,et al.Comparison of non-invasive and minimally invasive preimplantation genetic testing for aneuploidy using samples derived from the same embryo culture[J].J Clin Med,2024,14(1):33.
doi: 10.3390/jcm14010033 |
| 83 |
BOLTONH,GRAHAMS J L,VAN DERAA N,et al.Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential[J].Nat Commun,2016,7,11165.
doi: 10.1038/ncomms11165 |
| 84 | ATHAVALED M,BARREA,KRANYAKA C,et al.Pro-apoptotic gene expression in blastocoel fluid from euploid day-5 embryos is associated with negative pregnancy outcomes[J].Fertil Steril,2019,112(3S):e261. |
| 85 | GARDHERD K,SAKKASD.Making and selecting the best embryo in the laboratory[J].Fertil Steril,2022,120(3P1):457-466. |
| 86 |
HANSONB M,TAOX,HONGK H,et al.Noninvasive preimplantation genetic testing for aneuploidy exhibits high rates of deoxyribonucleic acid amplification failure and poor correlation with results obtained using trophectoderm biopsy[J].Fertil Steril,2021,115(6):1461-1470.
doi: 10.1016/j.fertnstert.2021.01.028 |
| 87 |
TOBLERK J,ZHAOY,ROSSR,et al.Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis[J].Fertil Steril,2015,104(2):418-425.
doi: 10.1016/j.fertnstert.2015.04.028 |
| 88 | WUX,PANJ,ZHUY,et al.Research progress and challenges of preimplantation genetic testing for polygenic diseases[J].Zhejiang Da Xue Xue Bao Yi Xue Ban,2023,53(3):280-287. |
| 89 | ALVESF J G,ELISAP,IANAS P,et al.Current applications and perspectives of genomic selection in Bos indicus (Nellore) cattle[J].Livestock Science,2022,263,54-69. |
| 90 |
LUYUY,WENHAOS,YAYUL,et al.SCM is potential resource for non-invasive preimplantation genetic testing based on human embryos single-cell sequencing[J].Gene,2023,882,147647.
doi: 10.1016/j.gene.2023.147647 |
| 91 |
WENX,LIZ,CHENGL,et al.Feasibility of preimplantation genetic testing for aneuploidy on frozen-thawed embryos following conventional IVF insemination[J].Front Endocrinol (Lausanne),2024,15,1441014.
doi: 10.3389/fendo.2024.1441014 |
| 92 |
HAMMONDE R,MCGILLIVRAYB C,WICKERS M,et al.Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified[J].Fertil Steril,2017,107(1):220-228.
doi: 10.1016/j.fertnstert.2016.10.015 |
| 93 |
BOL,DONGF,WUZ,et al.A method for determining potential parental contamination: linkage disequilibrium-based log-likelihood ratio analysis for IVF-PGT[J].Reprod Biol Endocrinol,2024,22(1):129.
doi: 10.1186/s12958-024-01300-z |
| 94 |
FERRICKL,LEEY S L,GARDNERD K.Reducing time to pregnancy and facilitating the birth of healthy children through functional analysis of embryo physiology†[J].Biol Reprod,2019,101(6):1124-1139.
doi: 10.1093/biolre/ioz005 |
| 95 |
ZMUIDINAITER,SHARARAF I,ILESR K.Current advancements in noninvasive profiling of the embryo culture media secretome[J].Int J Mol Sci,2021,22(5):2513.
doi: 10.3390/ijms22052513 |
| 96 | XINX,WUS,XUH,et al.Non-invasive prediction of human embryonic ploidy using artificial intelligence: a systematic review and meta-analysis[J].E Clinical Medicine,2024,77,102897. |
| 97 |
HORTAF,SAKKASD,LEDGERW,et al.Could metabolic imaging and artificial intelligence provide a novel path to non-invasive aneuploidy assessments? A certain clinical need[J].Reprod Fertil Dev,2025,37,RD24122.
doi: 10.1071/RD24122 |
| [1] | 李伉, 陈思颍, 孙雅雯, 冷璇, 王栋, 崔凯, 庞云渭. 甜菜碱对猪孤雌激活胚胎体外发育的影响[J]. 畜牧兽医学报, 2025, 56(8): 3826-3836. |
| [2] | 李庆云, 曹凤凤, 邢洲, 李卓颖, 陶金忠. 奶牛黄体的形成、溶解及其在维持妊娠中的作用研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3088-3095. |
| [3] | 熊铿, 范浩杰, 王杰, 赵善江, 朱庆利, 胡智辉, 罗昊澍, 朱化彬. 牛超数排卵重组促卵泡素研究进展及其应用[J]. 畜牧兽医学报, 2025, 56(5): 2047-2055. |
| [4] | 王佳美, 黄永震, 高晨, 李俊良, 陈燕, 朱波, 张路培, 王泽昭, 高会江, 李俊雅, 高雪. 多能性干细胞概述及其在家畜上的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1473-1483. |
| [5] | 闫瑞, 贾朝阳, 马静, 杨娟, 刘新峰, 陈强. 3D培养在家畜卵母细胞及胚胎培养的研究现状与应用前景[J]. 畜牧兽医学报, 2025, 56(4): 1494-1507. |
| [6] | 马秀玲, 张欣如, 陈莹, 梁红艳, 古丽米热·阿布都热依木, 汪立芹, 林嘉鹏, 李伟健, 王旭光, 吴阳升. 阿勒泰羊胚胎PDGFD基因编辑研究[J]. 畜牧兽医学报, 2025, 56(4): 1700-1711. |
| [7] | 李远方, 张鸿源, 李鸿泰, 李智, 魏千然, 王亚东, 李国喜, 王丹丹, 刘翘铭. 胚蛋给养核黄素对鸡骨骼肌发育的影响[J]. 畜牧兽医学报, 2025, 56(3): 1159-1169. |
| [8] | 董建华, 杨柏高, 张笑梦, 冯肖艺, 宋浩然, 刘阳, 王子卓, 王彦博, 李崇阳, 吕丽华, 赵学明. 取样后动物胚胎的冷冻保存技术研究进展[J]. 畜牧兽医学报, 2025, 56(10): 4796-4806. |
| [9] | 王子卓, 张笑梦, 冯肖艺, 宋浩然, 董建华, 崔凯, 赵学明. 牛胚胎早期流产研究进展[J]. 畜牧兽医学报, 2025, 56(10): 4807-4820. |
| [10] | 牛一凡, 李崇阳, 张培培, 张航, 冯肖艺, 余洲, 曹建华, 杜卫华, 万鹏程, 马友记, 赵学明. 牛活检胚胎细胞微量扩增体系效果评估[J]. 畜牧兽医学报, 2025, 56(1): 246-258. |
| [11] | 戴舒颖, 刘青, 李爱国, 余博, 陈洪波. 牛体外胚胎生产过程中培养液添加物研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3309-3320. |
| [12] | 郭子骄, 郑伟杰, 孙伟, 吴宝江, 包向男, 张琪, 贺巾锋, 包斯琴, 赵高平, 王子馨, 韩博, 李喜和, 孙东晓. 荷斯坦奶牛胚胎基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2940-2950. |
| [13] | 陈莹, 陈大勇, 乌日嘎, 仇春娟, 范利宏, 包梅荣, 岳媛, 梁红艳, 张家新, 田见晖, 安磊, 汪立芹. 肉羊体外胚胎生产技术规模化应用中品种的影响[J]. 畜牧兽医学报, 2024, 55(6): 2451-2459. |
| [14] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
| [15] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||