1 |
牛一凡, 杨柏高, 张培培, 等. 牛胚胎基因组选择研究进展[J]. 畜牧兽医学报, 2023, 54 (11): 4449- 4457.
doi: 10.11843/j.issn.0366-6964.2023.11.002
|
|
NIU Y F , YANG B G , ZHANG P P , et al. Advances in bovine embryo genome selection[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (11): 4449- 4457.
doi: 10.11843/j.issn.0366-6964.2023.11.002
|
2 |
OLIVEIRA C S , DA SILVA M V G B , QUINTÃO C C , et al. Imputation accuracy for genomic selection using embryo biopsy samples in Gir[J]. Reprod Biol, 2023, 23 (2): 100765.
doi: 10.1016/j.repbio.2023.100765
|
3 |
MULLAART E, WELLS D. Embryo biopsies for genomic selection[M] //NIEMANN H, WRENZYCKI C. Animal Biotechnology 2: Emerging Breeding Technologies. Cham: Springer, 2018: 81-94.
|
4 |
OLIVEIRA C S , CAMARGO L S A , DA SILVA M V G B , et al. Embryo biopsies for genomic selection in tropical dairy cattle[J]. Anim Reprod, 2023, 20 (2): e20230064.
doi: 10.1590/1984-3143-ar2023-0064
|
5 |
LU N , QIAO Y , LU Z H , et al. Chimera: the spoiler in multiple displacement amplification[J]. Comput Struct Biotechnol J, 2023, 21, 1688- 1696.
doi: 10.1016/j.csbj.2023.02.034
|
6 |
ALMODIN C G , MORON A F , KULAY L JR , et al. A bovine protocol for training professionals in preimplantation genetic diagnosis using polymerase chain reaction[J]. Fertil Steril, 2005, 84 (4): 895- 899.
doi: 10.1016/j.fertnstert.2005.02.051
|
7 |
POLISSENI J , DE SÁ W F , DE OLIVEIRA GUERRA M , et al. Post-biopsy bovine embryo viability and whole genome amplification in preimplantation genetic diagnosis[J]. Fertil Steril, 2010, 93 (3): 783- 788.
doi: 10.1016/j.fertnstert.2008.10.023
|
8 |
GAWAD C , KOH W , QUAKE S R . Single-cell genome sequencing: current state of the science[J]. Nat Rev Genet, 2016, 17 (3): 175- 188.
doi: 10.1038/nrg.2015.16
|
9 |
JÄGER R . New perspectives for whole genome amplification in forensic STR analysis[J]. Int J Mol Sci, 2022, 23 (13): 7090.
doi: 10.3390/ijms23137090
|
10 |
WANG X Y , LIU Y P , LIU H N , et al. Recent advances and application of whole genome amplification in molecular diagnosis and medicine[J]. MedComm (2020), 2022, 3 (1): e116.
|
11 |
HUANG L , MA F , CHAPMAN A , et al. Single-cell whole-genome amplification and sequencing: methodology and applications[J]. Annu Rev Genomics Hum Genet, 2015, 16, 79- 102.
doi: 10.1146/annurev-genom-090413-025352
|
12 |
RAZ O , TAO L M , BIEZUNER T , et al. Whole-genome amplification-surveying yield, reproducibility, and heterozygous balance, reported by STR-targeting MIPs[J]. Int J Mol Sci, 2022, 23 (11): 6161.
doi: 10.3390/ijms23116161
|
13 |
姚雅馨, 喇永富, 狄冉, 等. 不同单细胞全基因组扩增方法的比较及MALBAC在辅助生殖中的应用[J]. 遗传, 2018, 40 (8): 620- 631.
|
|
YAO Y X , LA Y F , DI R , et al. Comparison of different single cell whole genome amplification methods and MALBAC applications in assisted reproduction[J]. Hereditas (Beijing), 2018, 40 (8): 620- 631.
|
14 |
ZHOU X X , XU Y , ZHU L B , et al. Comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in limited DNA sequencing based on tube and droplet[J]. Micromachines (Basel), 2020, 11 (7): 645.
doi: 10.3390/mi11070645
|
15 |
DEAN F B , HOSONO S , FANG L H , et al. Comprehensive human genome amplification using multiple displacement amplification[J]. Proc Natl Acad Sci U S A, 2002, 99 (8): 5261- 5266.
doi: 10.1073/pnas.082089499
|
16 |
ORDÓÑEZ C D , REDREJO-RODRÍGUEZ M . DNA polymerases for whole genome amplification: considerations and future directions[J]. Int J Mol Sci, 2023, 24 (11): 9331.
doi: 10.3390/ijms24119331
|
17 |
HUTCHISON III C R , SMITH H O , PFANNKOCH C , et al. Cell-free cloning using φ29 DNA polymerase[J]. Proc Natl Acad Sci U S A, 2005, 102 (48): 17332- 17336.
doi: 10.1073/pnas.0508809102
|
18 |
PATRO S C , NIYONGABO A , MALDARELLI F , et al. New approaches to multi-parametric HIV-1 genetics using multiple displacement amplification: determining the what, how, and where of the HIV-1 reservoir[J]. Viruses, 2021, 13 (12): 2475.
doi: 10.3390/v13122475
|
19 |
VOLOZONOKA L , MISKOVA A , GAILITE L . Whole genome amplification in preimplantation genetic testing in the era of massively parallel sequencing[J]. Int J Mol Sci, 2022, 23 (9): 4819.
doi: 10.3390/ijms23094819
|
20 |
LI N , WANG L , WANG H , et al. The performance of whole genome amplification methods and next-generation sequencing for pre-implantation genetic diagnosis of chromosomal abnormalities[J]. J Genet Genomics, 2015, 42 (4): 151- 159.
doi: 10.1016/j.jgg.2015.03.001
|
21 |
CHEN M F , SONG P F , ZOU D , et al. Comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in single-cell sequencing[J]. PLoS One, 2014, 9 (12): e114520.
doi: 10.1371/journal.pone.0114520
|
22 |
LYU L , ASGHAR U , FU J Y , et al. Comparative analysis of single-cell genome sequencing techniques toward the characterization of germline and somatic genomes in ciliated protists[J]. Eur J Protistol, 2023, 88, 125969.
doi: 10.1016/j.ejop.2023.125969
|
23 |
HE F , ZHOU W J , CAI R , et al. Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and β-thalassemia genotyping[J]. J Hum Genet, 2018, 63 (4): 407- 416.
doi: 10.1038/s10038-018-0411-5
|
24 |
LIU W Q , ZHANG H M , HU D , et al. The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels[J]. J Clin Lab Anal, 2018, 32 (2): e22267.
doi: 10.1002/jcla.22267
|
25 |
FU Y , SHEN X T , WU H T , et al. Preimplantation genetic testing for monogenic disease of spinal muscular atrophy by multiple displacement amplification: 11 unaffected livebirths[J]. Int J Med Sci, 2019, 16 (9): 1313- 1319.
doi: 10.7150/ijms.32319
|
26 |
LAURI A , LAZZARI G , GALLI C , et al. Assessment of MDA efficiency for genotyping using cloned embryo biopsies[J]. Genomics, 2013, 101 (1): 24- 29.
doi: 10.1016/j.ygeno.2012.09.002
|
27 |
SOBOL M S , KASTER A K . Back to basics: a simplified improvement to multiple displacement amplification for microbial single-cell genomics[J]. Int J Mol Sci, 2023, 24 (5): 4270.
doi: 10.3390/ijms24054270
|
28 |
DE BOURCY C F A , DE VLAMINCK I , KANBAR J N , et al. A quantitative comparison of single-cell whole genome amplification methods[J]. PLoS One, 2014, 9 (8): e105585.
doi: 10.1371/journal.pone.0105585
|
29 |
PAN X H , URBAN A E , PALEJEV D , et al. A procedure for highly specific, sensitive, and unbiased whole-genome amplification[J]. Proc Natl Acad Sci U S A, 2008, 105 (40): 15499- 15504.
doi: 10.1073/pnas.0808028105
|
30 |
LASKEN R S . Single-cell sequencing in its prime[J]. Nat Biotechnol, 2013, 31 (3): 211- 212.
doi: 10.1038/nbt.2523
|
31 |
ZONG C H , LU S J , CHAPMAN A R , et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell[J]. Science, 2012, 338 (6114): 1622- 1626.
doi: 10.1126/science.1229164
|
32 |
CHEN C Y , XING D , TAN L Z , et al. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI)[J]. Science, 2017, 356 (6334): 189- 194.
doi: 10.1126/science.aak9787
|
33 |
ZHAO X M , HAO H S , DU W H , et al. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes[J]. J Pineal Res, 2016, 60 (2): 132- 141.
doi: 10.1111/jpi.12290
|
34 |
HOU Y , WU K , SHI X L , et al. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing[J]. GigaScience, 2015, 4 (1): s13742-015-0068-3.
doi: 10.1186/s13742-015-0068-3
|
35 |
TREFF N R , SU J , TAO X , et al. Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses[J]. Mol Hum Reprod, 2011, 17 (6): 335- 343.
doi: 10.1093/molehr/gaq103
|
36 |
HUMBLOT P , LE BOURHIS D , FRITZ S , et al. Reproductive technologies and genomic selection in cattle[J]. Vet Med Int, 2010, 2010, 192787.
|
37 |
HELLANI A , COSKUN S , TBAKHI A , et al. Clinical application of multiple displacement amplification in preimplantation genetic diagnosis[J]. Reprod Biomed Online, 2005, 10 (3): 376- 380.
doi: 10.1016/S1472-6483(10)61799-3
|
38 |
REN Z , ZHOU C Q , XU Y W , et al. Mutation and haplotype analysis for Duchenne muscular dystrophy by single cell multiple displacement amplification[J]. Mol Hum Reprod, 2007, 13 (6): 431- 436.
doi: 10.1093/molehr/gam020
|
39 |
RENWICK P J , LEWIS C M , ABBS S , et al. Determination of the genetic status of cleavage-stage human embryos by microsatellite marker analysis following multiple displacement amplification[J]. Prenat Diagn, 2007, 27 (3): 206- 215.
doi: 10.1002/pd.1638
|
40 |
SPITS C , LE CAIGNEC C , DE RYCKE M , et al. Optimization and evaluation of single-cell whole-genome multiple displacement amplification[J]. Hum Mutat, 2006, 27 (5): 496- 503.
doi: 10.1002/humu.20324
|
41 |
MACARTHUR D . Face up to false positives[J]. Nature, 2012, 487 (7408): 427- 428.
doi: 10.1038/487427a
|
42 |
YANG C H , XIAO Y , WANG X G , et al. Coordinated alternation of DNA methylation and alternative splicing of PBRM1 affect bovine sperm structure and motility[J]. Epigenetics, 2023, 18 (1): 2183339.
doi: 10.1080/15592294.2023.2183339
|
43 |
KENNY D , BERRY D P , PABIOU T , et al. Variation in the proportion of the segregating genome shared between full-sibling cattle and sheep[J]. Genet Sel Evol, 2023, 55 (1): 27.
doi: 10.1186/s12711-023-00802-5
|