

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4796-4806.doi: 10.11843/j.issn.0366-6964.2025.10.004
董建华1,2(
), 杨柏高1, 张笑梦1, 冯肖艺1, 宋浩然1, 刘阳1, 王子卓1, 王彦博1, 李崇阳1, 吕丽华2, 赵学明1,*(
)
收稿日期:2025-03-10
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
赵学明
E-mail:15143173829@163.com;zhaoxueming@caas.cn
作者简介:董建华(2000-),男,吉林长春人,硕士生,主要从事动物繁殖的研究,E-mail:15143173829@163.com
基金资助:
DONG Jianhua1,2(
), YANG Baigao1, ZHANG Xiaomeng1, FENG Xiaoyi1, SONG Haoran1, LIU Yang1, WANG Zizhuo1, WANG Yanbo1, LI Chongyang1, LÜ Lihua2, ZHAO Xueming1,*(
)
Received:2025-03-10
Online:2025-10-23
Published:2025-11-01
Contact:
ZHAO Xueming
E-mail:15143173829@163.com;zhaoxueming@caas.cn
摘要:
取样后胚胎冷冻保存技术是胚胎植入前遗传学检测(preimplantation genetic testing,PGT)的重要组成部分,在胚胎性别控制、基因筛查、基因组选择及辅助生殖领域具有重要应用价值。然而,胚胎取样操作可能导致透明带损伤、细胞数量减少及表观遗传异常等问题,限制了冷冻保存效率。近年来,通过优化取样方法(如极体活检、卵裂球活检及滋养外胚层活检)、改进培养基成分(如添加L-精氨酸、谷胱甘肽等)以及优化冷冻程序(如玻璃化冷冻技术),显著提高了取样后胚胎的冷冻保存效率。此外,非侵入性技术(如胚胎培养液中的游离DNA分析)和表观遗传修饰(如DNA甲基化调控)为减少胚胎损伤提供了新思路。本文综述了取样后胚胎冷冻保存的损伤机制及保护措施,重点探讨了透明带修复、表观遗传调控及冷冻效率提升的最新研究进展。通过总结现有技术的优势与不足,旨在为开发高效、安全的取样后胚胎冷冻保存技术提供理论依据和技术参考,推动其在畜牧业和辅助生殖领域的应用与推广。
中图分类号:
董建华, 杨柏高, 张笑梦, 冯肖艺, 宋浩然, 刘阳, 王子卓, 王彦博, 李崇阳, 吕丽华, 赵学明. 取样后动物胚胎的冷冻保存技术研究进展[J]. 畜牧兽医学报, 2025, 56(10): 4796-4806.
DONG Jianhua, YANG Baigao, ZHANG Xiaomeng, FENG Xiaoyi, SONG Haoran, LIU Yang, WANG Zizhuo, WANG Yanbo, LI Chongyang, LÜ Lihua, ZHAO Xueming. Research Progress on Cryopreservation Technology of Animal Embryos after Sampling[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4796-4806.
表 1
不同动物胚胎取样时间表"
| 物种 Species | 推荐活检阶段 Recommendation for biopsy stage | 取样细胞类型 Sample cell type | 技术特点 Technical characteristics | 参考文献 Reference |
| 牛Cattle | 囊胚期 | 滋养外胚层(TE) | 激光辅助透明带打孔,取5~8个细胞;玻璃化冷冻技术成熟。 | [ |
| 小鼠Mouse | 卵裂期(8细胞) | 卵裂球 | 显微操作针机械取样,单细胞活检;冻存耐受性差,需改良冷冻液。 | [ |
| 人类Human | 囊胚期 | 滋养外胚层(TE) | 激光脉冲精准切割,取5~10个细胞;玻璃化冷冻后存活率可达90%以上。 | [ |
| 猪Pig | 囊胚期 | 滋养外胚层(TE) | 透明带厚且弹性差,需高强度激光或酶解法辅助打孔;冷冻保存技术落后。 | [ |
| 绵羊Sheep | 囊胚期 | 滋养外胚层(TE) | 激光辅助取样,活检后短期培养(5~8 h)可提升冷冻存活率。 | [ |
| 山羊Goat | 囊胚期 | 滋养外胚层(TE) | 透明带较薄,激光打孔后机械吸取;冷冻耐受性中等。 | [ |
| 兔Rabbit | 卵裂期(8细胞) | 卵裂球 | 胚胎体积较大(120~150 μm),操作相对容易;冻存耐受性中等。 | [ |
| 猴Monkey | 囊胚期 | 滋养外胚层(TE) | 非侵入性cfDNA分析为主,避免伦理争议;激光取样技术成熟。 | [ |
| 斑马鱼Zebrafish | 卵裂期(16-32细胞) | 卵裂球 | 胚胎透明,易于观察;显微注射技术成熟。 | [ |
| 1 |
FERRE L B , KJELLAND M E , STROBECH L B , et al. Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods[J]. Animal, 2020, 14 (5): 991- 1004.
doi: 10.1017/S1751731119002775 |
| 2 |
RHON-CALDERON E A , HEMPHILL C N , VROOMAN L A , et al. Trophectoderm biopsy of blastocysts following IVF and embryo culture increases epigenetic dysregulation in a mouse model[J]. Hum Reprod, 2024, 39 (1): 154- 176.
doi: 10.1093/humrep/dead238 |
| 3 |
MARIN D , XU J , TREFF N R . Preimplantation genetic testing for aneuploidy: A review of published blastocyst reanalysis concordance data[J]. Prenat Diagn, 2021, 41 (5): 545- 553.
doi: 10.1002/pd.5828 |
| 4 | TWISK M , MASTENBROEK S , VAN WELY M , et al. Preimplantation genetic screening for abnormal number of chromosomes(aneuploidies) in in vitro fertilisation or intracytoplasmic sperm injection[J]. Cochrane Database Syst Rev, 2006 (1): CD005291. |
| 5 | CORNELISSE S , ZAGERS M , KOSTOVA E , et al. Preimplantation genetic testing for aneuploidies (abnormal number of chromosomes) in in vitro fertilisation[J]. Cochrane Database Syst Rev, 2020, 9 (9): CD005291. |
| 6 |
FRIEDENTHAL J , MAXWELL S M , TIEGS A W , et al. Clinical error rates of next generation sequencing and array comparative genomic hybridization with single thawed euploid embryo transfer[J]. Eur J Med Genet, 2020, 63 (5): 103852.
doi: 10.1016/j.ejmg.2020.103852 |
| 7 |
MANDLIK J S , PATIL A S , SINGH S . Next-generation sequencing (NGS): Platforms and applications[J]. J Pharm Bioallied Sci, 2024, 16 (Suppl 1): S41- S45.
doi: 10.4103/jpbs.jpbs_838_23 |
| 8 | BADEAU M , LINDSAY C , BLAIS J , et al. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women[J]. Cochrane Database Syst Rev, 2017, 11 (11): CD11767. |
| 9 |
MORALES C . Current applications and controversies in preimplantation genetic testing for aneuploidies (PGT-A) in in vitrofertilization[J]. Reprod Sci, 2024, 31 (1): 66- 80.
doi: 10.1007/s43032-023-01301-0 |
| 10 |
LI S , LI H , GAO Y , et al. Identification of cryptic balanced translocations in couples with unexplained recurrent pregnancy loss based upon embryonic PGT-A results[J]. J Assist Reprod Genet, 2024, 41 (1): 171- 184.
doi: 10.1007/s10815-023-02999-2 |
| 11 |
MADRITSCH S , ARNOLD V , HAIDER M , et al. Aneuploidy detection in pooled polar bodies using rapid nanopore sequencing[J]. J Assist Reprod Genet, 2024, 41 (5): 1261- 1271.
doi: 10.1007/s10815-024-03108-7 |
| 12 | AGHAJANI S , SALEHZADEH A , GHASEMIAN F , et al. TEffect of single embryo blastomere biopsy from human frozen embryos on assisted reproductive outcomes[J]. Cell J, 2022, 24 (10): 628- 636. |
| 13 |
GERAEDTS J , COLLINS J , GIANAROLI L , et al. What next for preimplantation genetic screening? A polar body approach![J]. Hum Reprod, 2010, 25 (3): 575- 577.
doi: 10.1093/humrep/dep446 |
| 14 |
DAWSON A , GRIESINGER G , DIEDRICH K . Screening oocytes by polar body biopsy[J]. Reprod Biomed Online, 2006, 13 (1): 104- 109.
doi: 10.1016/S1472-6483(10)62023-8 |
| 15 |
HU X , HE W B , ZHANG S P , et al. Next-generation sequence-based preimplantation genetic testing for monogenic disease resulting from maternal mosaicism[J]. Mol Genet Genomic Med, 2021, 9 (5): e1662.
doi: 10.1002/mgg3.1662 |
| 16 |
SCHMUTZLER A G . Theory and practice of preimplantation genetic screening (PGS)[J]. Eur J Med Genet, 2019, 62 (8): 103670.
doi: 10.1016/j.ejmg.2019.103670 |
| 17 | DELHANTY J D . Is the polar body approach best for pre-implantation genetic screening?[J]. Placenta, 2011, 32 (Suppl 3): S268- S270. |
| 18 |
NEUMANN K , SERMON K , BOSSUYT P , et al. An economic analysis of preimplantation genetic testing for aneuploidy by polar body biopsy in advanced maternal age[J]. BJOG, 2020, 127 (6): 710- 718.
doi: 10.1111/1471-0528.16089 |
| 19 |
HARTON G L , MAGLI M C , LUNDIN K , et al. ESHRE PGD consortium/embryology special interest Group-- best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS)[J]. Hum Reprod, 2011, 26 (1): 41- 46.
doi: 10.1093/humrep/deq265 |
| 20 |
NOMM M , IVASK M , PARN P , et al. Detecting embryo developmental potential by single blastomere RNA-Seq[J]. Genes (Basel), 2023, 14 (3): 569.
doi: 10.3390/genes14030569 |
| 21 |
CAPALBO A , BONO S , SPIZZICHINO L , et al. Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development[J]. Hum Reprod, 2013, 28 (2): 509- 518.
doi: 10.1093/humrep/des394 |
| 22 |
SCOTT K L , HONG K H , SCOTT R J . Selecting the optimal time to perform biopsy for pre-implantation genetic testing[J]. Fertil Steril, 2013, 100 (3): 608- 614.
doi: 10.1016/j.fertnstert.2013.07.004 |
| 23 |
SCOTT R J , UPHAM K M , FORMAN E J , et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial[J]. Fertil Steril, 2013, 100 (3): 697- 703.
doi: 10.1016/j.fertnstert.2013.04.035 |
| 24 |
De VOS A , STAESSEN C , De RYCKE M , et al. Impact of cleavage-stage embryo biopsy in view of PGD on human blastocyst implantation: a prospective cohort of single embryo transfers[J]. Hum Reprod, 2009, 24 (12): 2988- 2996.
doi: 10.1093/humrep/dep251 |
| 25 |
PARK J , BANG S , LEE W , et al. Sex ratio and conception rates of fresh/vitrified embryos at different developmental stages by ovum pick up in Hanwoo cows[J]. J Anim Sci Technol, 2024, 66 (5): 920- 935.
doi: 10.5187/jast.2023.e98 |
| 26 |
MIZOBE Y , KUWATSURU Y , KUROKI Y , et al. A novel trophectoderm biopsy technique for all blastocyst stages[J]. Reprod Med Biol, 2022, 21 (1): e12418.
doi: 10.1002/rmb2.12418 |
| 27 |
MCARTHUR S J , LEIGH D , MARSHALL J T , et al. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts[J]. Fertil Steril, 2005, 84 (6): 1628- 1636.
doi: 10.1016/j.fertnstert.2005.05.063 |
| 28 |
MARTINEZ-RODERO I , SALAS-HUETOS A , DIAZ-MUNOZ J , et al. Blastocoel fluid aspiration improves vitrification outcomes and produces similar sexing results of in vitro-produced cattle embryos compared to microblade biopsy[J]. Theriogenology, 2024, 218, 142- 152.
doi: 10.1016/j.theriogenology.2024.01.042 |
| 29 |
RUBINO P , TAPIA L , RUIZ D A A R , et al. Trophectoderm biopsy protocols can affect clinical outcomes: time to focus on the blastocyst biopsy technique[J]. Fertil Steril, 2020, 113 (5): 981- 989.
doi: 10.1016/j.fertnstert.2019.12.034 |
| 30 |
MICHAELI J , GE N , HUSZTI E , et al. Is a day 7 blastocyst predictive of the reproductive potential of sibling day 5 and day 6 blastocysts?[J]. J Assist Reprod Genet, 2024, 41 (7): 1835- 1842.
doi: 10.1007/s10815-024-03129-2 |
| 31 |
PICCOLOMINI M M , NICOLIELO M , BONETTI T C , et al. Does slow embryo development predict a high aneuploidy rate on trophectoderm biopsy?[J]. Reprod Biomed Online, 2016, 33 (3): 398- 403.
doi: 10.1016/j.rbmo.2016.06.005 |
| 32 |
TAYLOR T H , PATRICK J L , GITLIN S A , et al. Comparison of aneuploidy, pregnancy and live birth rates between day 5 and day 6 blastocysts[J]. Reprod Biomed Online, 2014, 29 (3): 305- 310.
doi: 10.1016/j.rbmo.2014.06.001 |
| 33 |
HERNANDEZ-NIETO C , LEE J A , SLIFKIN R , et al. What is the reproductive potential of day 7 euploid embryos?[J]. Hum Reprod, 2019, 34 (9): 1697- 1706.
doi: 10.1093/humrep/dez129 |
| 34 |
POLI M , ORI A , CHILD T , et al. Characterization and quantification of proteins secreted by single human embryos prior to implantation[J]. EMBO Mol Med, 2015, 7 (11): 1465- 1479.
doi: 10.15252/emmm.201505344 |
| 35 |
MARCOS J , PEREZ-ALBALA S , MIFSUD A , et al. Collapse of blastocysts is strongly related to lower implantation success: a time-lapse study[J]. Hum Reprod, 2015, 30 (11): 2501- 2508.
doi: 10.1093/humrep/dev216 |
| 36 |
BODRI D , SUGIMOTO T , YAO S J , et al. Blastocyst collapse is not an independent predictor of reduced live birth: a time-lapse study[J]. Fertil Steril, 2016, 105 (6): 1476- 1483.
doi: 10.1016/j.fertnstert.2016.02.014 |
| 37 |
JOCHEMS R , CANEDO-RIBEIRO C , SILVESTRI G , et al. Preimplantation genetic testing for aneuploidy (PGT-A) reveals high levels of chromosomal errors in in vivo-derived pig embryos, with an increased incidence when produced in vitro[J]. Cells, 2023, 12 (5): 790.
doi: 10.3390/cells12050790 |
| 38 |
De MARTIN H , BONETTI T , NISSEL C , et al. Association of early cleavage, morula compaction and blastocysts ploidy of IVF embryos cultured in a time-lapse system and biopsied for genetic test for aneuploidy[J]. Sci Rep, 2024, 14 (1): 739.
doi: 10.1038/s41598-023-51087-z |
| 39 |
GLEICHER N , PATRIZIO P , BRIVANLOU A . Preimplantation genetic testing for aneuploidy - a castle built on sand[J]. Trends Mol Med, 2021, 27 (8): 731- 742.
doi: 10.1016/j.molmed.2020.11.009 |
| 40 |
NAJAFZADEH V , BOJSEN-MOLLER S J , PIHL M , et al. Vitrification yields higher cryo-survival rate than slow freezing in biopsied bovine in vitro produced blastocysts[J]. Theriogenology, 2021, 171, 44- 54.
doi: 10.1016/j.theriogenology.2021.04.020 |
| 41 |
CHANG S , FULMER D , HUR S K , et al. Dysregulated H19/Igf2 expression disrupts cardiac-placental axis during development of Silver-Russell syndrome-like mouse models[J]. Elife, 2022, 11, e78754.
doi: 10.7554/eLife.78754 |
| 42 |
TOCCI A . The unknown human trophectoderm: implication for biopsy at the blastocyst stage[J]. J Assist Reprod Genet, 2020, 37 (11): 2699- 2711.
doi: 10.1007/s10815-020-01925-0 |
| 43 |
ZHANG Y , YANG L , ZHANG Y , et al. Identification of important factors causing developmental arrest in cloned pig embryos by embryo biopsy combined with microproteomics[J]. Int J Mol Sci, 2022, 23 (24): 15975.
doi: 10.3390/ijms232415975 |
| 44 | FALCHI L , LEDDA S , ZEDDA M T . Embryo biotechnologies in sheep: Achievements and new improvements[J]. Reprod Domest Anim, 2022, 57 (Suppl 5): 22- 33. |
| 45 |
JIMENEZ-MACEDO A R , PARAMIO M T , ANGUITA B , et al. Effect of ICSI and embryo biopsy on embryo development and apoptosis according to oocyte diameter in prepubertal goats[J]. Theriogenology, 2007, 67 (8): 1399- 1408.
doi: 10.1016/j.theriogenology.2007.03.003 |
| 46 | HONDA A . Gene targeting in rabbits: single-step generation of knockout rabbits by microinjection of CRISPR/Cas9 plasmids[J]. Methods Mol Biol, 2023, 2637, 255- 267. |
| 47 |
HUANG B , LUO X , WU R , et al. Evaluation of non-invasive gene detection in preimplantation embryos: a systematic review and meta-analysis[J]. J Assist Reprod Genet, 2023, 40 (6): 1243- 1253.
doi: 10.1007/s10815-023-02760-9 |
| 48 | ENGLAND S J , ADAMS R J . Blastomere injection of cleavage-stage zebrafish embryos and imaging of labeled cells[J]. Cold Spring Harb Protoc, 2011, 2011 (8): 958- 966. |
| 49 | WASSARMAN P M , LITSCHER E S . The mouse egg′s zona pellucida[J]. Curr Top Dev Biol, 2018, 130, 331- 356. |
| 50 | MANTIKOU E , JONKER M J , WONG K M , et al. Factors affecting the gene expression of in vitro cultured human preimplantation embryos[J]. Hum Reprod, 2016, 31 (2): 298- 311. |
| 51 |
WANG Y , LV C , HUANG H L , et al. Influence of mouse defective zona pellucida in folliculogenesis on apoptosis of granulosa cells and developmental competence of oocytesdagger[J]. Biol Reprod, 2019, 101 (2): 457- 465.
doi: 10.1093/biolre/ioz093 |
| 52 |
HONG B , HAO Y . The outcome of human mosaic aneuploid blastocysts after intrauterine transfer: A retrospective study[J]. Medicine (Baltimore), 2020, 99 (9): e18768.
doi: 10.1097/MD.0000000000018768 |
| 53 |
GRECO E , MINASI M G , FIORENTINO F . Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts[J]. N Engl J Med, 2015, 373 (21): 2089- 2090.
doi: 10.1056/NEJMc1500421 |
| 54 | WALDVOGEL S M , POSEY J E , GOODELL M A . Human embryonic genetic mosaicism and its effects on development and disease[J]. Nat Rev Genet, 2024, 25 (10): 698- 714. |
| 55 |
RIVERA R M , ROSS J W . Epigenetics in fertilization and preimplantation embryo development[J]. Prog Biophys Mol Biol, 2013, 113 (3): 423- 432.
doi: 10.1016/j.pbiomolbio.2013.02.001 |
| 56 |
SANGALLI J R , NOCITI R P , CHIARATTI M R , et al. Beta-hydroxybutyrate alters bovine pre-implantation embryo development through transcriptional and epigenetic mechanismsdagger[J]. Biol Reprod, 2025, 112 (2): 253- 272.
doi: 10.1093/biolre/ioae175 |
| 57 |
FEINBERG A P . Phenotypic plasticity and the epigenetics of human disease[J]. Nature, 2007, 447 (7143): 433- 440.
doi: 10.1038/nature05919 |
| 58 |
BELL C G . Epigenomic insights into common human disease pathology[J]. Cell Mol Life Sci, 2024, 81 (1): 178.
doi: 10.1007/s00018-024-05206-2 |
| 59 |
KRISHER R L , HERRICK J R . Bovine embryo production in vitro: evolution of culture media and commercial perspectives[J]. Anim Reprod, 2024, 21 (3): e20240051.
doi: 10.1590/1984-3143-ar2024-0051 |
| 60 |
RHON-CALDERON E A , VROOMAN L A , RIESCHE L , et al. The effects of Assisted Reproductive Technologies on genomic imprinting in the placenta[J]. Placenta, 2019, 84, 37- 43.
doi: 10.1016/j.placenta.2019.02.013 |
| 61 |
SCIORIO R , TRAMONTANO L , RAPALINI E , et al. Risk of genetic and epigenetic alteration in children conceived following ART: Is it time to return to nature whenever possible?[J]. Clin Genet, 2023, 103 (2): 133- 145.
doi: 10.1111/cge.14232 |
| 62 |
IHIRWE R G , MARTEL J , RAHIMI S , et al. Protective and sex-specific effects of moderate dose folic acid supplementation on the placenta following assisted reproduction in mice[J]. FASEB J, 2023, 37 (1): e22677.
doi: 10.1096/fj.202201428R |
| 63 |
AGCA Y , MONSON R L , NORTHEY D L , et al. Normal calves from transfer of biopsied, sexed and vitrified IVP bovine embryos[J]. Theriogenology, 1998, 50 (1): 129- 145.
doi: 10.1016/S0093-691X(98)00120-4 |
| 64 |
WANG X , ZHANG S , GU Y , et al. The impact of blastocyst freezing and biopsy on the association of blastocyst morphological parameters with live birth and singleton birthweight[J]. Fertil Steril, 2023, 119 (1): 56- 66.
doi: 10.1016/j.fertnstert.2022.09.030 |
| 65 |
HUANG J , LU Y , HE Y , et al. Trophectoderm grade is associated with the risk of placenta previa in frozen-thawed single-blastocyst transfer cycles[J]. Hum Reprod, 2024, 39 (10): 2249- 2258.
doi: 10.1093/humrep/deae172 |
| 66 |
NAGATOMO H , YAO T , ARAKI Y , et al. Agarose capsules as new tools for protecting denuded mouse oocytes/embryos during handling and freezing-thawing and supporting embryonic development in vivo[J]. Sci Rep, 2017, 7 (1): 17960.
doi: 10.1038/s41598-017-18365-z |
| 67 |
PALINI S , GALLUZZI L , DE STEFANI S , et al. Genomic DNA in human blastocoele fluid[J]. Reprod Biomed Online, 2013, 26 (6): 603- 610.
doi: 10.1016/j.rbmo.2013.02.012 |
| 68 |
TOBLER K J , ZHAO Y , ROSS R , et al. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis[J]. Fertil Steril, 2015, 104 (2): 418- 425.
doi: 10.1016/j.fertnstert.2015.04.028 |
| 69 |
HANDYSIDE A H . Noninvasive preimplantation genetic testing: dream or reality?[J]. Fertil Steril, 2016, 106 (6): 1324- 1325.
doi: 10.1016/j.fertnstert.2016.08.046 |
| 70 |
GIANAROLI L , MAGLI M C , POMANTE A , et al. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study[J]. Fertil Steril, 2014, 102 (6): 1692- 1699.
doi: 10.1016/j.fertnstert.2014.08.021 |
| 71 |
ZHANG B , ZHENG H , HUANG B , et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development[J]. Nature, 2016, 537 (7621): 553- 557.
doi: 10.1038/nature19361 |
| 72 |
WANG L , ZHANG J , DUAN J , et al. Programming and inheritance of parental DNA methylomes in mammals[J]. Cell, 2014, 157 (4): 979- 991.
doi: 10.1016/j.cell.2014.04.017 |
| 73 |
LIU X S , WU H , JI X , et al. Editing DNA methylation in the mammalian genome[J]. Cell, 2016, 167 (1): 233- 247.
doi: 10.1016/j.cell.2016.08.056 |
| 74 |
KAZUMI ITO A S M H . Effect of time interval between biopsy and vitrification on survival of in vitro-produced bovine blastocysts[J]. J Reprod Dev, 1999, 45 (5): 351- 355.
doi: 10.1262/jrd.45.351 |
| 75 |
AGERHOLM J S , MADSEN S E , KROGH A , et al. Health assessment of Holstein calves born after in vitro fertilization, biopsy-based genotyping at the blastocyst stage and subsequent embryo transfer[J]. Theriogenology, 2023, 211, 76- 83.
doi: 10.1016/j.theriogenology.2023.08.005 |
| 76 | CENARIU M , PALL E , CERNEA C , et al. Evaluation of bovine embryo biopsy techniques according to their ability to preserve embryo viability[J]. J Biomed Biotechnol, 2012, 2012, 541384. |
| 77 |
KASAVEN L S , MARCUS D , THEODOROU E , et al. Systematic review and meta-analysis: does pre-implantation genetic testing for aneuploidy at the blastocyst stage improve live birth rate?[J]. J Assist Reprod Genet, 2023, 40 (10): 2297- 2316.
doi: 10.1007/s10815-023-02866-0 |
| 78 |
MONTJEAN D , GEOFFROY-SIRAUDIN C , GERVOISE-BOYER M J , et al. Competence of embryos showing transient developmental arrest during in vitro culture[J]. J Assist Reprod Genet, 2021, 38 (4): 857- 863.
doi: 10.1007/s10815-021-02090-8 |
| [1] | 王彦博, 张笑梦, 景秀娟, 冯肖艺, 张元庆, 赵学明. 纳米粒子在动物种质资源冷冻保存的研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4156-4164. |
| [2] | 李宇, 别志文, 陈帅, 李炳志, 侯金星, 任科润, 邓彦卓, 吴强, 胡建宏. 家畜精液冷冻保存技术研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3591-3600. |
| [3] | 吴斯林, 杨本顺, 叶苗苗, 梁恩堂, 李付强, 马伟东, 昝林森, 赵春平, 杨武才. 木犀草素对秦川牛精子冷冻保存的影响[J]. 畜牧兽医学报, 2025, 56(7): 3244-3251. |
| [4] | 马应天, 姜璐瑶, 李增开, 秦剑平, 赵建华, 贺玉芳, 宋宇轩, 张磊. 矢车菊素-3-芸香糖苷对奶绵羊精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(4): 1768-1778. |
| [5] | 张鸿岩, 王善鹏, 曹海梁, 闵令江, 周开锋, 朱振东. 猪精子耐冻性与脂肪酸组成的研究[J]. 畜牧兽医学报, 2025, 56(4): 1755-1767. |
| [6] | 梁恩堂, 李化轩, 陈帅成, 李果, 孙格格, 昝林森. 染料木素对牛精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(2): 700-710. |
| [7] | 董建华, 冯肖艺, 杨柏高, 李崇阳, 潘红梅, 吕丽华, 赵学明. 猪胚胎冷冻保存的研究进展[J]. 畜牧兽医学报, 2024, 55(11): 4796-4807. |
| [8] | 冯肖艺, 徐茜, 张航, 杨柏高, 张培培, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 牛体外胚胎冷冻保存的研究进展[J]. 畜牧兽医学报, 2023, 54(2): 451-462. |
| [9] | 李春艳, 张彦, 吕春荣, 邓卫东, 权国波. 褪黑素的抗氧化机制及其在哺乳动物精子冷冻保存中的应用研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4468-4476. |
| [10] | 蔡绍莉, 徐皆欢, 何孟纤, 张德福, 孙玲伟, 张树山, 李婉君, 吴彩凤, 主性, 戴建军. 毛喉素对猪卵母细胞降脂及冷冻保护效果研究[J]. 畜牧兽医学报, 2023, 54(1): 178-188. |
| [11] | 王萌, 杨超群, 吴斯林, 谭建兵, 杜鑫泽, 李振兴, 昝林森, 杨武才. 番茄红素对秦川牛精液冷冻保存及鲜精品质影响[J]. 畜牧兽医学报, 2022, 53(12): 4507-4517. |
| [12] | 汪棋, 汪长建, 魏宗友, 陆汉希, 姚晓磊, 杨花, 王锋, 张艳丽. AMPK激活剂在绵羊精液冷冻保存中的作用研究[J]. 畜牧兽医学报, 2020, 51(12): 3033-3045. |
| [13] | 栗瑞兰, 张通, 刘志红, 王瑞军, 李金泉, 张家新. 葡萄糖对绒山羊精子冷冻保存及代谢的影响[J]. 畜牧兽医学报, 2018, 49(9): 2054-2062. |
| [14] | 王坤,张佰忠,易康乐,朱立军,蒋隽,燕海峰. 鸡囊胚细胞DMSO细管冷冻保存技术研究[J]. 畜牧兽医学报, 2015, 46(10): 1775-1783. |
| [15] | 李碧春;周冠月;陈国宏;孙国波;孙鹏翔;徐琪;刘铁铮. 鸡胚精原干细胞体外保存能力的研究[J]. 畜牧兽医学报, 2007, 38(7): 657-662. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||