

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4973-4987.doi: 10.11843/j.issn.0366-6964.2025.10.018
李亚旋1(
), 邵长亮2, 高浩冉1, 伍金山1, 徐梦琦1, 王一鹏1, 刘皓君1, 苏靖宇1, 陈俊华1, 李梦欣1, 马英杰1,*(
), 单文娟1,*(
)
收稿日期:2025-03-11
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
马英杰,单文娟
E-mail:107552201006@stu.xju.edu.cn;mayingjie@xju.edu.cn;swj@xju.edu.cn
作者简介:李亚旋(1997-),女,重庆人,硕士生,主要从事分子遗传学研究,E-mail:107552201006@stu.xju.edu.cn
基金资助:
LI Yaxuan1(
), SHAO Changliang2, GAO Haoran1, WU Jinshan1, XU Mengqi1, WANG Yipeng1, LIU Haojun1, SU Jingyu1, CHEN Junhua1, LI Mengxin1, MA Yingjie1,*(
), SHAN Wenjuan1,*(
)
Received:2025-03-11
Online:2025-10-23
Published:2025-11-01
Contact:
MA Yingjie, SHAN Wenjuan
E-mail:107552201006@stu.xju.edu.cn;mayingjie@xju.edu.cn;swj@xju.edu.cn
摘要:
旨在综合评估新疆卡拉麦里山有蹄类野生动物自然保护区(以下简称:卡山)蒙古野驴种群的遗传多样性与遗传结构,提供保护管理的分子遗传学依据。本研究采用非损伤性取样法,通过PCR扩增及测序技术,对卡山161份成功提取基因组DNA的蒙古野驴新鲜粪便样本进行个体识别、遗传多样性指标计算和遗传结构分析。结果显示:基于10个微卫星位点检测到159头遗传学上相互独立的蒙古野驴个体共123个等位基因,平均多态信息含量PIC=0.634,平均观测杂合度Ho=0.533,平均期望杂合度He=0.658,近交系数Fis=0.140(P < 0.01)。CYTB、D-LOOP及串联基因(CYTB+D-LOOP)单倍型多样性分别为0.63、0.82、0.84,核苷酸多样性Pi分别为0.005 24、0.020 63、0.012 54,卡山蒙古野驴种群的遗传多样性指标低于蒙古国蒙古野驴种群,高于伊朗、印度、土库曼斯坦的蒙古野驴种群,综合评估其遗传多样性处于中等偏上水平。遗传结构与系统发育分析,当K=2时,卡山蒙古野驴种群有最优群体结构划分。线粒体系统发育和单倍型网络分布分析揭示:卡山蒙古野驴内部的2个主要支系(Clade Ⅰ、Clade Ⅱ)均与蒙古国蒙古野驴种群具有较近的亲缘关系,共享单倍型Hap 21、Hap 23、Hap 24。群体历史动态分析,微卫星基因频率呈“L”型分布,线粒体中性检验Tajima’s D、Fu’s Fs均为正值(P>0.05),错配分布呈多峰分布,贝叶斯天际线趋势相对平缓,两类分子标记均表明卡山蒙古野驴种群未经历扩张或收缩,处于稳定状态。综合分析,卡山蒙古野驴种群具有较高的遗传多样性水平,种群内部存在2个祖先血统,且当前种群数量稳定。本研究结果为卡山蒙古野驴后续可持续保护提供了分子遗传学依据,有助于制定科学合理的保护管理措施。
中图分类号:
李亚旋, 邵长亮, 高浩冉, 伍金山, 徐梦琦, 王一鹏, 刘皓君, 苏靖宇, 陈俊华, 李梦欣, 马英杰, 单文娟. 卡拉麦里山蒙古野驴遗传多样性与遗传结构分析[J]. 畜牧兽医学报, 2025, 56(10): 4973-4987.
LI Yaxuan, SHAO Changliang, GAO Haoran, WU Jinshan, XU Mengqi, WANG Yipeng, LIU Haojun, SU Jingyu, CHEN Junhua, LI Mengxin, MA Yingjie, SHAN Wenjuan. Genetic Diversity and Structure Analysis of the Equus hemionus hemionus in Kalamaili[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4973-4987.
表 1
蒙古野驴微卫星位点引物信息"
| 位点 Locus | 荧光 Dye | 引物序列(5'→3') Primers sequence | 等位基因大小/bp Allele range | 退火温度/℃ Annealing temperature |
| AHT040 | HEX | GCAAGTTCAGCACCTCCCT TTTATGACACCTGCTGAGAACG | 230 | 58 |
| COR053 | HEX | AATTGACTGTGGAAGCCTTG GGCTGAGGAGTAAGCTGAAAG | 173~197 | 55 |
| AHT021 | TAMRA | TCCAAGTTGCTGAATGGATC ACGGCCTGATTCTCTCTTTG | 199~215 | 58 |
| HMS02 | FAM | ACGGTGGCAACTGCCAAGGAAG CTTGCAGTCGAATGTGTATTAAATG | 218~236 | 63 |
| 1CA41 | TAMRA | CTGGTCAGGCCTATTACCCA AGATATTGGGGGCGGAAG | 245 | 58 |
| 1CA25 | HEX | TCCAATTTTCCCCAATGGTA CTGCATTTTGACAATGGTGG | 206 | 58 |
| 1CA43 | FAM | ATGGCATGATTTGCTTCTCC TGGAAACAACCTAAATGTCCA | 122 | 58 |
| COR082 | HEX | GCTTTTGTTTCTCAATCCTAGC TGAAGTCAAATCCCTGCTTC | 196~226 | 58 |
| 1CA32 | TAMRA | AGTTACCAAATGTCGCATTGC TTCATCTGTAAAATGGGCAGG | 107 | 58 |
| 1CA44 | TAMRA | GGCAGCACACCAAATCAAGT TCCTGCAAAACAACAGAGGA | 203 | 58 |
表 2
蒙古野驴线粒体分子标记引物信息及扩增条件"
| 基因 Gene | 引物(5'→3') Primer | 扩增条件 Annealing condition |
| CYTB | AACTGCAGTCATCTCCGGTTTACAAGAC CGAAGCTTGATATGAAAAACCATCGTTG | 95 ℃ 4 min; 35 cycles: 95 ℃ 30 s, 50 ℃ 30 s, 72 ℃ 30 s; 72 ℃ 5 min. |
| CYTB* | ATGACAAACATCCGAAAGTC ACTACAGGGACTCTTCACTT | |
| D-LOOP | CTTGTAAACCAGGAAAGGGGGAAAC ATTTAGAGGGCATTCTCACTGGGAT | 95 ℃ 4 min; 35 cycles: 95 ℃ 30 s, 60 ℃ 30 s, 72 ℃ 30 s; 72 ℃ 5 min. |
表 3
基于微卫星分子标记的蒙古野驴遗传多样性指标值"
| 位点 Locus | 个体数 N | 等位基因数Na | 有效等位基因数Ne | 香农指数 I | 多态信息含量PIC | 观测杂合度Ho | 期望杂合度He | 近交系数 Fis | 哈迪-温伯格平衡检测 P-value HWE |
| AHT40 | 159 | 22 | 8.032 | 2.391 | 0.864 | 0.711 | 0.875 | 0.159** | 0.000** |
| COR053 | 159 | 20 | 8.689 | 2.387 | 0.874 | 0.736 | 0.885 | 0.109** | 0.016* |
| AHT021 | 159 | 16 | 6.303 | 2.234 | 0.829 | 0.698 | 0.841 | 0.166** | 0.000** |
| HMS2 | 159 | 14 | 5.896 | 1.992 | 0.810 | 0.836 | 0.830 | -0.010 | 0.466 |
| 1CA41 | 159 | 13 | 4.715 | 1.825 | 0.757 | 0.547 | 0.788 | 0.196** | 0.000** |
| 1CA25 | 159 | 10 | 2.079 | 1.087 | 0.483 | 0.321 | 0.519 | 0.323** | 0.000** |
| 1CA43 | 159 | 10 | 1.515 | 0.835 | 0.331 | 0.277 | 0.340 | 0.103* | 0.035* |
| COR082 | 159 | 9 | 3.709 | 1.548 | 0.696 | 0.654 | 0.730 | 0.072 | 0.000** |
| 1CA32 | 159 | 6 | 2.213 | 1.076 | 0.500 | 0.522 | 0.548 | 0.045 | 0.000** |
| 1CA44 | 159 | 3 | 1.283 | 0.393 | 0.198 | 0.025 | 0.221 | 0.826** | 0.000** |
| Mean | 159 | 12.3 | 4.444 | 1.577 | 0.634 | 0.533 | 0.658 | 0.140** | / |
| SE | 0 | 1.88 | 0.858 | 0.222 | 0.080 | 0.075 | 0.080 | / |
| 1 | KACZENSKY P, BAYARBAATAR B, PAYNE J, et al. A conservation strategy for khulan in Mongolia: background and key considerations[R]. NINA Report 1889. Trondheim: Norwegian Institute for Nature Research, 2020. |
| 2 | 中华人民共和国国务院. 国家重点保护野生动物名录[S]. 北京: 中华人民共和国国务院, 2021. |
| The State Council of the people's republic of China. National Key Protected Wildlife List[S]. Beijing: The State Council of the People's Republic of China, 2021. (in Chinese) | |
| 3 | KACZENSKY P, LKHAGVASUREN B, PERELADOVA O, et al. Equus hemionus (amended version of 2015 assessment)[S]. The IUCN Red List of Threatened Species, 2020: eT7951A166520460. |
| 4 | KING S R B, KACZENSKY P. Equus hemionus (Green Status assessment)[S]. The IUCN Red List of Threatened Species 2024: e. T7951A795120251. |
| 5 | XUW,LIUW,MAW,et al.Current status and future challenges for khulan (Equus hemionus) conservation in China[J].Glob Ecol Conserv,2022,37,e02156. |
| 6 | DINGJ J,ZHOUY Y,XUW X,et al.Synergistic effects of climate and land use change on khulan (Equus hemionus hemionus) habitat in China[J].Glob Ecol Conserv,2024,54,123-135. |
| 7 | 张晓晨,邵长亮,葛炎,等.新疆卡拉麦里山有蹄类野生动物自然保护区夏季蒙古野驴适宜生境与种群数量评估[J].应用生态学报,2020,31(9):2993-3004. |
| ZHANGX C,SHAOC L,GEY,et al.Assessment of suitable habitat and population size of khulan (Equus hemionus) in summer in the Kalamaili Mountain Ungulate Nature Reserve, Xinjiang, China[J].Chinese Journal of Applied Ecology,2020,31(9):2993-3004. | |
| 8 |
KACZENSKYP,KOVTENE,HABIBRAKHMANOVR,et al.Genetic characterization of free-ranging Asiatic wild ass in Central Asia as a basis for future conservation strategies[J].Conserv Genet,2018,19(5):1169-1184.
doi: 10.1007/s10592-018-1086-3 |
| 9 |
DEVENDRAK,ASHWINA,SAMEERAF,et al.Mitochondrial DNA analyses revealed low genetic diversity in the endangered Indian wild ass Equus hemionus khur[J].Mitochondrial DNA, Part A,2017,28(5):681-686.
doi: 10.3109/24701394.2016.1174221 |
| 10 | DEVENDRAK,ASHWINA,SAMEERAF,et al.Low genetic diversity of the endangered Indian wild ass Equus hemionus khur, as revealed by microsatellite analyses[J].J Genet,2017,96(2):e31-34. |
| 11 | ROSENBOMS,COSTAV,CHENS,et al.Reassessing the evolutionary history of ass-like equids: Insights from patterns of genetic variation in contemporary extant populations[J].Mol Phylogenet Evol,2015,8588-8596. |
| 12 |
BENNETTA E,CHAMPLOTS,PETERSJ,et al.Taming the late quaternary phylogeography of the Eurasiatic wild ass through ancient and modern DNA[J].PLoS One,2017,12(4):e0174216.
doi: 10.1371/journal.pone.0174216 |
| 13 | OAKENFULLE A,LIMH N,RYDERO A,et al.A survey of equid mitochondrial DNA: Implications for the evolution, genetic diversity and conservation of Equus[J].Conserv Genet,2000,341-355. |
| 14 |
VILSTRUPJ T,ANDAINEA O,STILLERM,et al.Mitochondrial phylogenomics of modern and ancient equids[J].PLoS One,2013,8(2):e55950.
doi: 10.1371/journal.pone.0055950 |
| 15 | 冯锦,初雯雯,端肖楠,等.新疆卡拉麦里山有蹄类自然保护区蒙古野驴mtDNA D-LOOP区的遗传多样性及系统发育研究[J].野生动物学报,2018,39(4):737-744. |
| FENGJ,CHUW W,DUANX N,et al.Genetic diversity and the phylogenetic status of the mtDNA D-LOOP of Khulan (Equus hemionus) at the Mountain Kalamaili Ungulate Nature Reserve, Xinjiang[J].Wildlife Science Bulletin,2018,39(4):737-744. | |
| 16 | 魏辅文,马天笑,胡义波.中国濒危兽类保护遗传学研究进展与展望[J].兽类学报,2021,41(5):571-580. |
| WEIF W,MAT X,HUY B.Research advances and perspectives of conservation genetics of threatened mammals in China[J].Acta Theriologica Sinica,2021,41(5):571-580. | |
| 17 |
CUIL Y,LIUB Y,LIH M,et al.A simple and effective method to enrich endogenous DNA from mammalian faeces[J].Mol Ecol Resour,2024,24(4):e13939.
doi: 10.1111/1755-0998.13939 |
| 18 | 褚佳宁,徐海涛,何志健,等.我国圈养和野生东北虎种群线粒体基因组遗传多样性的比较研究[J].野生动物学报,2024,45(2):231-241. |
| CHUJ N,XUH T,HEZ J,et al.A comparative Study on mitochondrial genetic diversity between captive and wild Amur Tigers in China[J].Wildlife Science Bulletin,2024,45(2):231-241. | |
| 19 | 周颖娜,李金霖,马跃,等.基于微卫星标记的雪豹种群结构及遗传多样性[J].野生动物学报,2024,45(4):699-708. |
| ZHOUY N,LIJ L,MAY,et al.Population structure and genetic diversity of snow leopard based on microsatellite markers[J].Wildlife Science Bulletin,2024,45(4):699-708. | |
| 20 | YINQ Q,RENZ,WENX Y,et al.Assessment of population genetic diversity and genetic structure of the North Chinese leopard (Panthera pardus japonensis) in fragmented habitats of the Loess Plateau, China[J].Glob Ecol Conserv,2023,42,e02416. |
| 21 |
KATEA,JAPNINGJ R R,GIARATN A N A,et al.Emerging patterns of genetic diversity in the critically endangered Malayan tiger (Panthera tigris jacksoni)[J].Biodivers Conserv,2024,33(4):1325-1349.
doi: 10.1007/s10531-024-02799-9 |
| 22 | 李威. 海南长臂猿Nomascus hainanus种群扩大后的遗传变化分析[D]. 贵州: 贵州师范大学, 2024. |
| LI W. Genetic changes of hainan gibbon Nomascus hainanus after population expansion[D]. Guizhou: Guizhou Normal University, 2024. (in Chinese) | |
| 23 | 王思维. 黔金丝猴(Rhinopithecus brelichi)种群遗传学研究[D]. 贵州: 贵州师范大学, 2022. |
| WANG S W. Population genetics study of Rhinopithecus brelichi[D]. Guizhou: Guizhou Normal University, 2022. (in Chinese) | |
| 24 | ZHANGL,SUNG,AZHANHANE,et al.Genetic diversity assessment for reintroduced Przewalski's horse (Equus ferus) based on newly developed SSR markers[J].Conserv Genet Resour,2024,16(1):89-101. |
| 25 |
KACZENSKYP,KUEHNR,LHAGVASURENB,et al.Connectivity of the Asiatic wild ass population in the Mongolian Gobi[J].Biol Conserv,2011,144(2):920-929.
doi: 10.1016/j.biocon.2010.12.013 |
| 26 | 新疆维吾尔自治区林业和草原局. 关于新疆卡拉麦里山有蹄类野生动物自然保护区面积范围及功能分区的函[S]. 乌鲁木齐: 新疆维吾尔自治区林业和草原局, 2024. |
| Xinjiang Uygur Autonomous Region Forestry and Grassland Bureau. Letter on the area scope and functional zoning of the Xinjiang Kalamaili Ungulate Nature Reserve [S]. Urumqi: Xinjiang Uygur Autonomous Region Forestry and Grassland Bureau, 2024. (in Chinese) | |
| 27 | 新疆维吾尔自治区林业和草原局. 新疆卡拉麦里山自然保护区尽显生态之美[R]. 乌鲁木齐: 新疆维吾尔自治区林业和草原局, 2024. |
| Xinjiang Uygur Autonomous Region Forestry and Grassland Bureau. The ecological beauty of Xinjiang Kalamaili Nature Reserve[R]. Urumqi: Xinjiang Uygur Autonomous Region Forestry and Grassland Bureau, 2024. (in Chinese) | |
| 28 |
CHOWDHARYB P,RAUDSEPPT,KATAS R,et al.The first-generation whole-genome radiation hybrid map in the horse identifies conserved segments in human and mouse genomes[J].Genome Res,2003,13(4):742-751.
doi: 10.1101/gr.917503 |
| 29 | 杨方园, 巫鹏翔. 微卫星标记的开发和数据分析流程[R]. |
| Bio-101 e1010608, 2021. YANG F Y, WU P Y. Protocol for Development, Genotyping and Data Analysis of Microsatellite Maker[R]. Bio-101 e1010608, 2021. (in Chinese) | |
| 30 |
STEINERC C,RYDERA O.Molecular phylogeny and evolution of the Perissodactyla[J].Zool J Linn Soc,2011,163(4):1289-1303.
doi: 10.1111/j.1096-3642.2011.00752.x |
| 31 |
ITOH Y,LANGENHORSTT,OGDENR,et al.Population genetic diversity and hybrid detection in captive zebras[J].Sci Rep,2015,5(1):e13171.
doi: 10.1038/srep13171 |
| 32 |
KOTZEA,SMITHR M,MOODLEYY,et al.Lessons for conservation management: Monitoring temporal changes in genetic diversity of cape mountain zebra (Equus zebra zebra)[J].PloS one,2019,14(7):e0220331.
doi: 10.1371/journal.pone.0220331 |
| 33 |
SHIL P,YANGX F,CHAM H,et al.Genetic diversity and structure of mongolian gazelle (Procapra gutturosa) populations in fragmented habitats[J].BMC genomics,2023,24(1):507.
doi: 10.1186/s12864-023-09574-0 |
| 34 | 李峥. 大兴安岭南麓东北马鹿遗传结构及景观与遗传分化格局的关系[D]. 黑龙江: 东北林业大学, 2023. |
| LI Z. Genetic structure of red deer and the relationship between landscape and genetic differentiation pattern in the southern of Greater Khingan Mountains, China[D]. Heilongjiang: Northeast Forestry University, 2023. (in Chinese) | |
| 35 |
DUY R,ZOUX Y,XUY T,et al.Microsatellite Loci Analysis Reveals Post-bottleneck recovery of genetic diversity in the tibetan antelope[J].Sci Rep,2016,6,e35501.
doi: 10.1038/srep35501 |
| 36 | FANUELK,SONIAR,LEILIK,et al.Genetic diversity of the Ethiopian Grevy′s zebra (Equus grevyi) populations that includes a unique population of the Alledeghi Plain[J].Mitochondrial DNA A DNA Mapp Seq Anal,2016,27(1):397-400. |
| 37 |
MOODLEYY S,HARLEYH E.Population structuring in mountain zebras (Equus zebra): The molecularconsequences of divergent demographic histories[J].Conserva Genet,2006,6(6):953-968.
doi: 10.1007/s10592-005-9083-8 |
| 38 |
ELINED L,PETERA,HANSR S.High variation and very low differentiation in wide ranging plains zebra (Equus quagga): Insights from mtDNA and microsatellites[J].Mol Ecol,2008,17(12):2812-2824.
doi: 10.1111/j.1365-294X.2008.03781.x |
| 39 |
AHMADK,KUMARVP,JOSHIB D,et al.Genetic diversity of the Tibetan antelope (Pantholops hodgsonii) population of Ladakh, India, its relationship with other populations and conservation implications[J].BMC Res Notes,2016,9(1):e477.
doi: 10.1186/s13104-016-2271-4 |
| 40 | 董潭成,初红军,陈勇,等.新疆卡拉麦里山有蹄类自然保护区鹅喉羚遗传多样性及系统发育地位[J].兽类学报,2016,36(1):77-86. |
| DONGT C,CHUH J,CHENY,et al.Genetic diversity and phylogenetic status of Gazella subgutturosa at the Mountain Kalamaili Ungulate Nature Reserve, Xinjiang[J].Acta Theriologica Sinica,2016,36(1):77-86. | |
| 41 |
米热姑丽·麦麦提,周世玉,刘鹏,等.基于线粒体基因的新疆托氏兔遗传多样性和种群遗传结构评价[J].畜牧兽医学报,2022,53(1):112-121.
doi: 10.11843/j.issn.0366-6964.2022.01.011 |
|
MAMAT M,ZHOUS Y,LIUP,et al.Evaluation of genetic diversity and population genetic structure of Tolai Hare in Xinjiang based on mitochondrial DNA[J].Acta Veterinaria et Zootechnica Sinica,2022,53(1):112-121.
doi: 10.11843/j.issn.0366-6964.2022.01.011 |
|
| 42 | SHAWE R,FARQUHARSONA K,BRUFORDW M,et al.Global meta-analysis shows action is needed to halt genetic diversity loss[J].Nature,2025(prepublish):1-7. |
| 43 |
JHALAV Y,MUNGIA N,GOPALR,et al.Tiger recovery amid people and poverty[J].Science,2025,387(6733):505-510.
doi: 10.1126/science.adk4827 |
| 44 |
LUOY,CHENY,LIUF,JIANGC,et al.Mitochondrial genome sequence of the Tibetan wild ass (Equus kiang)[J].Mitochondrial DNA,2011,22(1-2):6-8.
doi: 10.3109/19401736.2011.588221 |
| 45 |
MUSTAFAO,KANATG,ERENY,et al.The first complete genome of the extinct European wild ass (Equus hemionus hydruntinus)[J].Mol Ecol,2024,33(14):e17440.
doi: 10.1111/mec.17440 |
| 46 | 初红军,蒋志刚,葛炎,等.卡拉麦里山有蹄类自然保护区蒙古野驴和鹅喉羚种群密度和数量[J].生物多样性,2009,17(4):414-422. |
| CHUH J,JIANGZ G,GEY,et al.Population density and abundance of khulan (Equus hemionus) and goitered gazelle (Gazella subgutturosa) in the Kalamaili Mountain Ungulate Nature Reserve[J].Biodiversity Science,2009,17(4):414-422. | |
| 47 | 初雯雯. 新疆卡山自然保护区蒙古野驴和鹅喉羚资源现状和社区牧民保护意识研究[D]. 北京: 北京林业大学, 2019. |
| CHU W W. Resource status of khulan (Equus hemionus) and goitered gazelle (Gazella subgutturosa) and conservation awareness of local herders in the Kalamaili Mountain Nature Reserve, Xinjiang [D]. Beijing: Beijing Forestry University, 2019. (in Chinese) | |
| 48 | 陈艳秋,初雯雯,李基才,等.新疆卡拉麦里山有蹄类自然保护区夏季鹅喉羚和蒙古野驴的生境适宜性和重叠性分析[J].四川动物,2024,43(3):264-273. |
| CHENY Q,CHUW W,LIJ C,et al.Habitat suitability and overlap analysis of goitered gazelle (Gazella subgutturosa) and khulan (Equus hemionus) in summer in the Kalamaili Mountain Ungulate Nature Reserve, Xinjiang[J].Sichuan Journal of Zoology,2024,43(3):264-273. |
| [1] | 刘莎, 杨彩春, 张晓雨, 陈琼, 刘雄, 陈洪波, 周焕焕, 史良玉. 基于80K SNP芯片的梅花星猪群体遗传结构解析及全基因组连续纯合片段特征研究[J]. 畜牧兽医学报, 2025, 56(8): 3749-3760. |
| [2] | 任千姿, 张佰忠, 王真勍, 王向林, 龚颖, 胡仁科, 浦亚斌, 苏鹏, 李业芳, 马月辉, 李昊帮, 蒋琳. 基于全基因组重测序对武雪山羊的遗传进化分析[J]. 畜牧兽医学报, 2025, 56(8): 3787-3801. |
| [3] | 张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176. |
| [4] | 缪俊杰, 张日泉, 吴厚义, 游新明, 黄奕雯, 黄小英, 郭震洋, 刘建林, 肖卫华, 郭田华, 陈浩, 康冬柳. 全基因组SNPs揭示井冈黑掌鹅种质资源特性与遗传多样性特征[J]. 畜牧兽医学报, 2025, 56(7): 3199-3209. |
| [5] | 王雨晴, 邢娅, 周小艺, 龚海洲, 赵敏孟, 刘龙, 龚道清, 葛晶, 耿拓宇. mAMPK调控线粒体功能参与鹅肥肝的形成[J]. 畜牧兽医学报, 2025, 56(7): 3210-3225. |
| [6] | 王勤倩, 高振东, 陆颖, 马若珊, 邓卫东, 和晓明. 全基因组重测序在中国地方黄牛上的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2026-2037. |
| [7] | 姚婷婷, 李昊, 阎卉萱, 曹一凡, 次仁罗布, 索朗曲吉, 尼玛仓决, 赵丽, 旦增洛桑, 斯朗旺姆, 巴桑珠扎, 陈宁博. 西藏自治区10个黄牛群体的mtDNA遗传多样性与母系起源研究[J]. 畜牧兽医学报, 2025, 56(5): 2194-2202. |
| [8] | 王浩宇, 马克岩, 李讨讨, 栗登攀, 赵箐, 马友记. 基于简化基因组测序评估小骨山羊群体遗传多样性和群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1170-1179. |
| [9] | 胡鑫, 游伟, 姜富贵, 成海建, 孙志刚, 宋恩亮. 基于全基因组重测序分析西门塔尔牛遗传多样性与群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1189-1202. |
| [10] | 万伟粲, 何旭, 刘洋, 马玉勇, 蒋玉章, 戴求仲, 燕海峰, 蒋桂韬, 李闯. 基于全基因组重测序分析道州灰鹅保种效果[J]. 畜牧兽医学报, 2025, 56(2): 633-642. |
| [11] | 梁恩堂, 李化轩, 陈帅成, 李果, 孙格格, 昝林森. 染料木素对牛精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(2): 700-710. |
| [12] | 冯达, 魏趁, 胡思怡, 杜春梅, 马健, 吴江, 周光现, 甘尚权. 基于全基因组重测序分析雷州山羊群体遗传多样性和群体结构[J]. 畜牧兽医学报, 2025, 56(10): 4947-4962. |
| [13] | 吴平先, 王俊戈, 刁淑琪, 柴捷, 查琳, 郭宗义, 陈红跃, 龙熙. 基于填充测序数据的荣昌猪群体遗传结构和选择信号分析[J]. 畜牧兽医学报, 2025, 56(1): 147-158. |
| [14] | 杨硕, 霍敏, 苏子轩, 石玉祥. 线粒体质量控制对畜禽氧化应激影响的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3769-3776. |
| [15] | 刘思宇, 张曼, 张岩, 魏稚彤, 祁兴磊, 高腾云, 刘贤, 梁栋, 付彤. 基于重测序数据评估南阳牛保种效果[J]. 畜牧兽医学报, 2024, 55(9): 3876-3886. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||