畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (1): 95-106.doi: 10.11843/j.issn.0366-6964.2025.01.009
张素(), 孙丽芳, 李兰兰, 吴琳娇, 陈磊清, 吴允昆*(
)
收稿日期:
2024-03-11
出版日期:
2025-01-23
发布日期:
2025-01-18
通讯作者:
吴允昆
E-mail:zs17630926690@163.com;wuyk@fjnu.cn
作者简介:
张素(1999-),女,河南南阳人,硕士,主要从事蛋白方向研究,E-mail:zs17630926690@163.com
ZHANG Su(), SUN Lifang, LI Lanlan, WU Linjiao, CHEN Leiqing, WU Yunkun*(
)
Received:
2024-03-11
Online:
2025-01-23
Published:
2025-01-18
Contact:
WU Yunkun
E-mail:zs17630926690@163.com;wuyk@fjnu.cn
摘要:
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)感染所引起的一种家猪和各种野猪急性出血的传染性疾病,由于高发病率和高致死性的特性对全球家猪养殖产业造成严重的经济损失。ASFV编码蛋白高达150多种,而ASFV结构蛋白作为病毒粒子的主要组成部分,在协助病毒吸附入侵宿主细胞、促进子代病毒颗粒复制、组装以及释放等过程发挥着重要作用。研究表明,病毒结构蛋白可通过与宿主蛋白的相互作用,促进病毒入侵、增殖、影响病毒毒力以及拮抗宿主免疫反应等。因此,本文通过概述ASFV结构蛋白与宿主蛋白的相互作用及其机制,为研究ASFV的致病机制以及ASF的防治提供参考。
中图分类号:
张素, 孙丽芳, 李兰兰, 吴琳娇, 陈磊清, 吴允昆. 非洲猪瘟病毒结构蛋白与宿主蛋白相互作用研究进展[J]. 畜牧兽医学报, 2025, 56(1): 95-106.
ZHANG Su, SUN Lifang, LI Lanlan, WU Linjiao, CHEN Leiqing, WU Yunkun. Research Progress on the Interactions of African Swine Fever Virus Structural Proteins with Host Proteins[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 95-106.
表 1
ASFV结构蛋白与宿主蛋白相互作用"
病毒蛋白 Viral protein | 蛋白类别 Protein categories | 编码基因 Coding gene | 互作宿主蛋白 Interacting host proteins | 互作机制 Interaction mechanism | 参考文献 Reference |
P30 | 内囊膜蛋白 Inner envelopeprotein | CP204L | hn-RNP-K、DAB2等 | 影响正常核质运输;吸附宿主细胞、释放成熟病毒粒子;激活MAPK通路;抑制STATI磷酸化等 Affects normal nucleoplasmic transport; adsorbs host cells, releases mature viral particles; activates MAPK pathway; inhibits STATI phosphorylation, etc. | [ |
CD2V | 外囊膜蛋白 Outer envelopeprotein | EP402R | AP-1、CSF2RA、HIP-55 | 利用网格蛋白进行迁移;影响细胞内吞或蛋白质运输;激活JAK2-STAT3通路 Migration using lattice proteins; affects endocytosis or protein transport; activates JAK2-STAT3 pathway | [ |
P54 | 内囊膜蛋白 Inner envelopeprotein | E183L | DLC8 | 利用微管动力蛋白运输,激活caspase-9和caspase-3,诱导细胞凋亡 Induction of apoptosis by activation of caspase-9 and caspase-3 using microtubule dynamin transport | [ |
P72 | 衣壳蛋白 Capsid protein | B646L | OAS1 | 泛素化P72蛋白;抑制avSG的产生 Ubiquitination of P72 protein; inhibition of avSG production | [ |
P17 | 内囊膜蛋白 Inner envelope protein | D117L | STING、TOMM70 | 负调控cGAS-STING信号通路;促使线粒体自噬 Negative regulation of the cGAS-STING signaling pathway; Promotes mitochondrial autophagy | [ |
P14.5 | 衣壳蛋白 Capsid protein | E120R | IRF3、Kinesin等 | 干扰IRF3的磷酸化和Ⅰ型干扰素的生成;介导成熟的病毒粒子离开病毒工厂进入胞浆膜 Interferes with IRF3 phosphorylation and type Ⅰ interferon production; mediates the exit of mature viral particles from the viral factory into the plasma membrane | [ |
P11.5 | 衣壳蛋白 Capsid protein | A137R | TANK结合激酶 | 降解TANK,阻断INF-β的产生 Degradation of TANK and blocking of INF-β production | [ |
1 |
DIXON L K , CHAPMAN D A G , NETHERTON C L , et al. African swine fever virus replication and genomics[J]. Virus Res, 2013, 173 (1): 3- 14.
doi: 10.1016/j.virusres.2012.10.020 |
2 |
PENRITH M L , VOSLOO W , JORI F , et al. African swine fever virus eradication in Africa[J]. Virus Res, 2013, 173 (1): 228- 246.
doi: 10.1016/j.virusres.2012.10.011 |
3 |
LIU Y J , ZHANG X H , QI W B , et al. Prevention and control strategies of african swine fever and progress on pig farm repopulation in China[J]. Viruses, 2021, 13 (12): 2552.
doi: 10.3390/v13122552 |
4 |
张依玲, 易文毅, 肖静, 等. 非洲猪瘟的流行现状及防控措施[J]. 猪业科学, 2023, 40 (12): 90- 92.
doi: 10.3969/j.issn.1673-5358.2023.12.031 |
ZHANG Y L , YI W Y , XIAO J , et al. Epidemiology of African swine fever and preventive and control measures[J]. Swine Industry Science, 2023, 40 (12): 90- 92.
doi: 10.3969/j.issn.1673-5358.2023.12.031 |
|
5 |
ZHOU X T , LI N , LUO Y Z , et al. Emergence of African swine fever in China, 2018[J]. Transbound Emerg Dis, 2018, 65 (6): 1482- 1484.
doi: 10.1111/tbed.12989 |
6 |
GALINDO I , CUESTA-GEIJO M A , HLAVOVA K , et al. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis[J]. Virus Res, 2015, 200, 45- 55.
doi: 10.1016/j.virusres.2015.01.022 |
7 | ALEJO A , MATAMOROS T , GUERRA M , et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92 (23): e01293- 18. |
8 | 朱利敏, 邹兴启, 赵启祖. 非洲猪瘟病毒多样性[J]. 病毒学报, 2021, 37 (3): 719- 725. |
ZHU L M , ZOU X Q , ZHAO Q Z . Diversity of African swine fever virus[J]. Chinese Journal of Virology, 2021, 37 (3): 719- 725. | |
9 | JANCOVICH J K , CHAPMAN D , HANSEN D T , et al. Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins[J]. J Virol, 2018, 92 (8): e02219- 17. |
10 |
SÁNCHEZ E G , QUINTAS A , NOGAL M , et al. African swine fever virus controls the host transcription and cellular machinery of protein synthesis[J]. Virus Res, 2013, 173 (1): 58- 75.
doi: 10.1016/j.virusres.2012.10.025 |
11 |
ALCARAZ C , DE DIEGO M , PASTOR M J , et al. Comparison of a radioimmunoprecipitation assay to immunoblotting and ELISA for detection of antibody to African swine fever virus[J]. J Vet Diagn Invest, 1990, 2 (3): 191- 196.
doi: 10.1177/104063879000200307 |
12 |
OH T , DO D T , LAI D C , et al. Chronological expression and distribution of African swine fever virus p30 and p72 proteins in experimentally infected pigs[J]. Sci Rep, 2022, 12 (1): 4151.
doi: 10.1038/s41598-022-08142-y |
13 | 齐艳丽, 刘桃雪, 于海深, 等. 非洲猪瘟病毒p54蛋白单克隆抗体制备及其抗原表位鉴定[J]. 畜牧兽医学报, 2023, 54 (1): 281- 292. |
QI Y L , LIU T X , YU H S , et al. Preparation of the monoclonal antibody against the African swine fever virus p54 protein and identification of the antigenic epitope[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (1): 281- 292. | |
14 |
ALONSO C , MISKIN J , HERNAÁEZ B , et al. African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein[J]. J Virol, 2001, 75 (20): 9819- 9827.
doi: 10.1128/JVI.75.20.9819-9827.2001 |
15 | 矫健, 李建达, 韩先杰, 等. 非洲猪瘟病毒p22蛋白单克隆抗体的制备及鉴定[J]. 山东农业科学, 2023, 55 (10): 140- 145. |
JIAO J , LI J D , HAN X J , et al. Preparation and identification of monoclonal antibody against p22 protein of African swine fever virus[J]. Shandong Agricultural Sciences, 2023, 55 (10): 140- 145. | |
16 |
VUONO E A , RAMIREZ-MEDINA E , PRUITT S , et al. Evaluation of the function of the ASFV KP177R gene, encoding for structural protein p22, in the process of virus replication and in swine virulence[J]. Viruses, 2021, 13 (6): 986.
doi: 10.3390/v13060986 |
17 | 范婷婷. 非洲猪瘟病毒结构蛋白的免疫原性探索[D]. 北京: 中国农业科学院, 2021. |
FAN T T. Exploration of the immunogenicity of structural proteins of African swine fever virus[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese) | |
18 |
XIA N W , WANG H , LIU X L , et al. African swine fever virus structural protein p17 inhibits cell proliferation through ER stress—ROS mediated cell cycle arrest[J]. Viruses, 2020, 13 (1): 21.
doi: 10.3390/v13010021 |
19 |
LIU H L , WANG A P , YANG W R , et al. Expression of extracellular domain of ASFV CD2v protein in mammalian cells and identification of B cell epitopes[J]. Virus Res, 2023, 323, 199000.
doi: 10.1016/j.virusres.2022.199000 |
20 |
KARGER A , PÉREZ-NÚÑEZ D , URQUIZA J , et al. An update on African swine fever virology[J]. Viruses, 2019, 11 (9): 864.
doi: 10.3390/v11090864 |
21 | 张敏. 非洲猪瘟病毒CD2v蛋白影响猪肺泡巨噬细胞功能的研究[D]. 哈尔滨: 东北农业大学, 2022. |
ZHANG M. Effects of African swine fever virus CD2v protein on porcine alveolar macrophages function[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese) | |
22 | 田盼盼, 秦晓东, 宋金星, 等. 非洲猪瘟病毒CD2v蛋白的生物信息学分析及多表位疫苗的设计[J]. 中国兽医杂志, 2021, 57 (9): 1- 5. |
TIAN P P , QIN X D , SONG J X , et al. Bioinformatics analysis of African swine fever virus CD2v protein for design of a Multiepitope vaccine[J]. Chinese Journal of Veterinary Medicine, 2021, 57 (9): 1- 5. | |
23 |
PÉREZ-NÚÑEZ D , GARCÍA-URDIALES E , MARTÍNEZ-BONET M , et al. CD2v interacts with adaptor protein AP-1 during African swine fever infection[J]. PLoS One, 2015, 10 (4): e0123714.
doi: 10.1371/journal.pone.0123714 |
24 | 王彩霞, 冯春燕, 肖颖, 等. 基于非洲猪瘟病毒p72蛋白的阻断ELISA检测方法的建立及初步应用[J]. 中国兽医科学, 2021, 51 (11): 1341- 1347. |
WANG C X , FENG C Y , XIAO Y , et al. Establishment and preliminary application of a blocking ELISA based on p72 protein of African swine fever virus[J]. Chinese Veterinary Science, 2021, 51 (11): 1341- 1347. | |
25 |
HAKIZIMANA J N , NYABONGO L , NTIRANDEKURA J B , et al. Genetic analysis of African swine fever virus from the 2018 outbreak in south-eastern burundi[J]. Front Vet Sci, 2020, 7, 578474.
doi: 10.3389/fvets.2020.578474 |
26 |
LIU Q , MA B T , QIAN N C , et al. Structure of the African swine fever virus major capsid protein p72[J]. Cell Res, 2019, 29 (11): 953- 955.
doi: 10.1038/s41422-019-0232-x |
27 |
CHEN X N , CHEN X J , LIANG Y F , et al. Interaction network of African swine fever virus structural protein p30 with host proteins[J]. Front Microbiol, 2022, 13, 971888.
doi: 10.3389/fmicb.2022.971888 |
28 |
WANG N , ZHAO D M , WANG J L , et al. Architecture of African swine fever virus and implications for viral assembly[J]. Science, 2019, 366 (6465): 640- 644.
doi: 10.1126/science.aaz1439 |
29 |
ZHANG Y , MAO D L , ROSWIT W T , et al. PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection[J]. Nat Immunol, 2015, 16 (12): 1215- 1227.
doi: 10.1038/ni.3279 |
30 |
IWATA H , GOETTSCH C , SHARMA A , et al. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation[J]. Nat Commun, 2016, 7 (1): 12849.
doi: 10.1038/ncomms12849 |
31 |
BOLZE A , MAHLAOUI N , BYUN M , et al. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia[J]. Science, 2013, 340 (6135): 976- 978.
doi: 10.1126/science.1234864 |
32 |
WU Y H , TAN X D , LIU P , et al. ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways[J]. Exp Cell Res, 2019, 379 (1): 30- 47.
doi: 10.1016/j.yexcr.2019.03.022 |
33 |
ORIHUELA C J , MAHDAVI J , THORNTON J , et al. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models[J]. J Clin Invest, 2009, 119 (6): 1638- 1646.
doi: 10.1172/JCI36759 |
34 | ZHU Z X , LI W W , ZHANG X L , et al. Foot-and-mouth disease virus capsid protein VP1 interacts with host ribosomal protein SA To maintain activation of the MAPK signal pathway and promote virus replication[J]. J Virol, 2020, 94 (3): e01350- 19. |
35 |
BACKE P H , MESSIAS A C , RAVELLI R B G , et al. X-Ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids[J]. Structure, 2005, 13 (7): 1055- 1067.
doi: 10.1016/j.str.2005.04.008 |
36 |
BOMSZTYK K , DENISENKO O , OSTROWSKI J . hnRNP K: one protein multiple processes[J]. BioEssays, 2004, 26 (6): 629- 638.
doi: 10.1002/bies.20048 |
37 |
FORD L P , WRIGHT W E , SHAY J W . A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation[J]. Oncogene, 2002, 21 (4): 580- 583.
doi: 10.1038/sj.onc.1205086 |
38 |
HERNAEZ B , ESCRIBANO J M , ALONSO C . African swine fever virus protein p30 interaction with heterogeneous nuclear ribonucleoprotein K (hnRNP-K) during infection[J]. FEBS Lett, 2008, 582 (23-24): 3275- 3280.
doi: 10.1016/j.febslet.2008.08.031 |
39 |
DEJGAARD K , LEFFERS H . Characterisation of the nucleic-acid-binding activity of KH domains different properties of different domains[J]. Eur J Biochem, 1996, 241 (2): 425- 431.
doi: 10.1111/j.1432-1033.1996.00425.x |
40 |
ALFONSO P , RIVERA J , HERNÁEZ B , et al. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics[J]. Proteomics, 2004, 4 (7): 2037- 2046.
doi: 10.1002/pmic.200300742 |
41 |
NAKATSU F , OHNO H . Adaptor protein complexes as the key regulators of protein sorting in the post-golgi network[J]. Cell Struct Funct, 2003, 28 (5): 419- 429.
doi: 10.1247/csf.28.419 |
42 |
LAGUETTE N , BRÉGNARD C , BENICHOU S , et al. Human immunodeficiency virus (HIV) type-1, HIV-2 and simian immunodeficiency virus Nef proteins[J]. Mol Aspects Med, 2010, 31 (5): 418- 433.
doi: 10.1016/j.mam.2010.05.003 |
43 |
MADRID R , JANVIER K , HITCHIN D , et al. Nef-induced alteration of the early/recycling endosomal compartment correlates with enhancement of HIV-1 infectivity[J]. J Biol Chem, 2005, 280 (6): 5032- 5044.
doi: 10.1074/jbc.M401202200 |
44 |
MORI Y , KOIKE M , MORIISHI E , et al. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway[J]. Traffic, 2008, 9 (10): 1728- 1742.
doi: 10.1111/j.1600-0854.2008.00796.x |
45 |
NETHERTON C L , MCCROSSAN M C , DENYER M , et al. African swine fever virus causes microtubule-dependent dispersal of the trans-golgi network and slows delivery of membrane protein to the PlasmaMembrane[J]. J Virol, 2006, 80 (22): 11385- 11392.
doi: 10.1128/JVI.00439-06 |
46 |
COSKUN M , SALEM M , PEDERSEN J , et al. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease[J]. Pharmacol Res, 2013, 76, 1- 8.
doi: 10.1016/j.phrs.2013.06.007 |
47 |
ZAIM Ö , DOǦANLAR O , BANU DOǦANLAR Z , et al. Novel synthesis naringenin-benzyl piperazine derivatives prevent glioblastoma invasion by inhibiting the hypoxia-induced IL6/JAK2/STAT3 axis and activating caspase-dependent apoptosis[J]. Bioorg Chem, 2022, 129, 106209.
doi: 10.1016/j.bioorg.2022.106209 |
48 |
LI X M , SUN J , PRINZ R A , et al. Inhibition of porcine epidemic diarrhea virus (PEDV) replication by A77 1726 through targeting JAK and Src tyrosine kinases[J]. Virology, 2020, 551, 75- 83.
doi: 10.1016/j.virol.2020.06.009 |
49 |
GAO Q , YANG Y L , LUO Y Z , et al. African swine fever virus envelope glycoprotein CD2v interacts with host CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication[J]. J Virol, 2023, 97 (4): e0188922.
doi: 10.1128/jvi.01889-22 |
50 |
LIU J , XU XU X N , FENG X Q , et al. Adenovirus-mediated delivery of bFGF small interfering RNA reduces STAT3 phosphorylation and induces the depolarization of mitochondria and apoptosis in glioma cells U251[J]. J Exp Clin Cancer Res, 2011, 30 (1): 80.
doi: 10.1186/1756-9966-30-80 |
51 |
FAZI B , COPE M J T V , DOUANGAMATH A , et al. Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1:structural and functional analysis[J]. J Biol Chem, 2002, 277 (7): 5290- 5298.
doi: 10.1074/jbc.M109848200 |
52 |
GLYVUK N , TSYTSYURA Y , THIEL C , et al. Disturbance of synaptic vesicle recycling resulting from deletion of a mammalian actin-binding protein, mAbp1[J]. Neurophysiology, 2007, 39 (4-5): 341- 342.
doi: 10.1007/s11062-007-0051-4 |
53 |
FUCINI R V , CHEN J L , SHARMA C , et al. Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1[J]. Mol Biol Cell, 2002, 13 (2): 621- 631.
doi: 10.1091/mbc.01-11-0547 |
54 |
YAMAZAKI H , TAKAHASHI H , AOKI T , et al. Molecular cloning and dendritic localization of rat SH3P7[J]. Eur J Neurosci, 2001, 14 (6): 998- 1008.
doi: 10.1046/j.0953-816x.2001.01727.x |
55 |
ROSENDALE M , VAN T , GRILLO-BOSCH D , et al. Functional recruitment of dynamin requires multimeric interactions for efficient endocytosis[J]. Nat Commun, 2019, 10 (1): 4462.
doi: 10.1038/s41467-019-12434-9 |
56 |
YAMADA E , BASTIE C C . Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase[J]. PLoS One, 2014, 9 (2): e89604.
doi: 10.1371/journal.pone.0089604 |
57 |
KAY-JACKSON P C , GOATLEY L C , COX L , et al. The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7[J]. J Gen Virol, 2004, 85 (1): 119- 130.
doi: 10.1099/vir.0.19435-0 |
58 |
PFISTER K K , SHAH P R , HUMMERICH H , et al. Genetic analysis of the cytoplasmic dynein subunit families[J]. PLoS Genet, 2006, 2 (1): e1.
doi: 10.1371/journal.pgen.0020001 |
59 |
MALLIK R , PETROV D , LEX S A , et al. Building complexity: an in vitro study of cytoplasmic dynein with in vivo implications[J]. Curr Biol, 2005, 15 (23): 2075- 2085.
doi: 10.1016/j.cub.2005.10.039 |
60 |
ZAVALA-VARGAS D I , VISOSO-CARBAJAL G , CEDILLO-BARRÓN L , et al. Interaction of the Zika virus with the cytoplasmic dynein-1[J]. Virol J, 2023, 20 (1): 43.
doi: 10.1186/s12985-023-01992-6 |
61 |
HERNÁEZ B , DIÍAZ-GIL G , GARCIÍA-GALLO M , et al. The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis[J]. FEBS Lett, 2004, 569 (1-3): 224- 228.
doi: 10.1016/j.febslet.2004.06.001 |
62 |
ZHU X J , FAN B C , ZHOU J M , et al. A high-throughput method to analyze the interaction proteins with p22 protein of African swine fever virus in vitro[J]. Front Vet Sci, 2021, 8, 719859.
doi: 10.3389/fvets.2021.719859 |
63 |
FISH I , BOISSINOT S . Functional evolution of the OAS1 viral sensor: insights from old world primates[J]. Infect Genet Evol, 2016, 44, 341- 350.
doi: 10.1016/j.meegid.2016.07.005 |
64 |
HUANG Y Z , ZHENG Y X , ZHOU Y , et al. OAS1, OAS2, and OAS3 contribute to epidermal keratinocyte proliferation by regulating cell cycle and augmenting IFN-1-induced jak1-signal transducer and activator of transcription 1 phosphorylation in psoriasis[J]. J Invest Dermatol, 2022, 142 (10): 2635- 2645.
doi: 10.1016/j.jid.2022.02.018 |
65 |
SUN H L , WU M L , ZHANG Z H , et al. OAS1 suppresses African swine fever virus replication by recruiting TRIM21 to degrade viral major capsid protein[J]. J Virol, 2023, 97 (10): e0121723.
doi: 10.1128/jvi.01217-23 |
66 |
GAO L , LIU R , YANG F C , et al. Duck enteritis virus inhibits the cGAS-STING DNA-sensing pathway to evade the innate immune response[J]. J Virol, 2022, 96 (24): e0157822.
doi: 10.1128/jvi.01578-22 |
67 |
ZHENG W L , XIA N W , ZHANG J J , et al. African swine fever virus structural protein p17 inhibits cGAS-STING signaling pathway through interacting with STING[J]. Front Immunol, 2022, 13, 941579.
doi: 10.3389/fimmu.2022.941579 |
68 |
HU B L , ZHONG G F , DING S X , et al. African swine fever virus protein p17 promotes mitophagy by facilitating the interaction of SQSTM1 with TOMM70[J]. Virulence, 2023, 14 (1): 2232707.
doi: 10.1080/21505594.2023.2232707 |
69 |
LIU H S , ZHU Z X , FENG T , et al. African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 to block its activation[J]. J Virol, 2021, 95 (18): e0082421.
doi: 10.1128/JVI.00824-21 |
70 | 崔帅, 王洋, 郭晓宇, 等. 利用酵母双杂交技术筛选和鉴定非洲猪瘟病毒E120R蛋白的互作宿主蛋白[J]. 中国畜牧兽医, 2022, 49 (11): 4139- 4149. |
CUI S , WANG Y , GUO X Y , et al. Screening and identification of the host proteins interacting with African swine fever virus E120R protein using yeast two-hybrid[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49 (11): 4139- 4149. | |
71 |
JOUVENET N , MONAGHAN P , WAY M , et al. Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin[J]. J Virol, 2004, 78 (15): 7990- 8001.
doi: 10.1128/JVI.78.15.7990-8001.2004 |
72 |
SUN M W , YU S X , GE H L , et al. The A137R protein of African swine fever virus inhibits type Ⅰ interferon production via the autophagy-mediated lysosomal degradation of TBK1[J]. J Virol, 2022, 96 (9): e0195721.
doi: 10.1128/jvi.01957-21 |
[1] | 冯露, 田宏, 郑海学, 石正旺, 罗俊聪, 张晓阳, 尉娟娟, 周静, 廖焕程, 王婉莹. 基于酶促重组酶扩增的非洲猪瘟病毒检测方法[J]. 畜牧兽医学报, 2024, 55(9): 4226-4231. |
[2] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[3] | 闫文倩, 侯景, 杨金柯, 郝雨, 杨行, 史喜绢, 张大俊, 别鑫恬, 陈国辉, 陈玲玲, 何路, 赵美玉, 赵思越, 郑海学, 张克山. 非洲猪瘟病毒D1133 L蛋白单克隆抗体抑制其复制[J]. 畜牧兽医学报, 2024, 55(2): 854-859. |
[4] | 陈晓丽, 周佳浩, 周静, 屈倩, 王志华, 熊鹰, 朱咏琪, 贾伟新, 吕伟杰, 郭世宁. 改良育阴方对非洲猪瘟病毒感染PAMs的cGAS-STING通路影响[J]. 畜牧兽医学报, 2024, 55(12): 5839-5853. |
[5] | 吴梦丽, 孙华林, 杨吉飞, 赵亚茹, 关贵全, 殷宏, 牛庆丽. 稳定表达猪BRD4-BD1/2蛋白的猪肺泡巨噬细胞传代细胞系的构建及其用于ASFV增殖的效果观察[J]. 畜牧兽医学报, 2024, 55(10): 4646-4659. |
[6] | 刘传霞, 王晓, 李雪雯, 鲍苗菲, 李婷婷, 陈欣, 翁长江, 郑君. 非洲猪瘟病毒pE120R蛋白单克隆抗体的制备[J]. 畜牧兽医学报, 2024, 55(1): 388-394. |
[7] | 王慧, 冯保亮, 吴丹, 向光明, 王楠, 牟玉莲, 李奎, 刘志国. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3127-3138. |
[8] | 冯永智, 龚婷, 吴东东, 高琦, 郑晓宇, 张桂红, 孙彦阔. 影响非洲猪瘟病毒对培养细胞感染性的因素分析[J]. 畜牧兽医学报, 2023, 54(8): 3406-3414. |
[9] | 刘桃雪, 苏冰倩, 齐艳丽, 郭江涛, 刘忠虎, 褚贝贝, 王江, 曾磊. 非洲猪瘟病毒p30蛋白单克隆抗体制备及其抗原表位鉴定[J]. 畜牧兽医学报, 2023, 54(8): 3415-3423. |
[10] | 丁晓艳, 何久香, 周晓杨, 周伃欣, 李晋涛. 非洲猪瘟病毒感染相关调控基因以及毒力基因初步筛选[J]. 畜牧兽医学报, 2023, 54(7): 2964-2971. |
[11] | 王映, 朱家宏, 赵加凯, 纪品品, 陈旭, 张路, 刘宝元, 孙亚妮, 赵钦. 抗非洲猪瘟病毒NP419L蛋白纳米抗体的筛选鉴定及其在抗体检测中的初步应用[J]. 畜牧兽医学报, 2023, 54(6): 2509-2520. |
[12] | 刘文豪, 朱彦策, 张冬萱, 王智豪, 张超. 稳定表达非洲猪瘟病毒E165R蛋白PK 15细胞系的构建[J]. 畜牧兽医学报, 2023, 54(6): 2662-2666. |
[13] | 王国超, 赵亚茹, 张忠辉, 张玉龙, 白鸽, 耿抒贤, 樊洁, 杨吉飞, 关贵全, 殷宏, 罗建勋, 牛庆丽. 非洲猪瘟病毒RNA聚合酶亚基D205R基因生物信息学分析及多克隆抗体制备[J]. 畜牧兽医学报, 2023, 54(5): 2042-2049. |
[14] | 张婷, 冯涛, 杨金柯, 郝雨, 杨行, 张大俊, 史喜绢, 闫文倩, 陈玲玲, 刘湘涛, 郑海学, 张克山. 条件性敲除D1133L基因的重组非洲猪瘟病毒的构建及增殖特性[J]. 畜牧兽医学报, 2023, 54(2): 706-714. |
[15] | 张芳源, 杨大为, 仇德洋, 姜国骞, 李桂梅, 单虎. 非洲猪瘟病毒P30蛋白的表达及抗体液相芯片检测方法的建立[J]. 畜牧兽医学报, 2023, 54(10): 4300-4310. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||