畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (1): 1-14.doi: 10.11843/j.issn.0366-6964.2025.01.001
• 综述 • 下一篇
包斌武1,2(), 邹惠影2, 李俊良2, 高晨2, 高会江2, 杜振伟2, 张博玉2, 李俊雅1,2,*(
), 高雪2,*(
)
收稿日期:
2024-06-27
出版日期:
2025-01-23
发布日期:
2025-01-18
通讯作者:
李俊雅,高雪
E-mail:b013019@126.com;lijunya@caas.cn;gaoxue@caas.cn
作者简介:
包斌武(1998-),男,甘肃天水人,博士生,主要从事动物遗传育种与繁殖研究,E-mail: b013019@126.com
基金资助:
BAO Binwu1,2(), ZOU Huiying2, LI Junliang2, GAO Chen2, GAO Huijiang2, DU Zhenwei2, ZHANG Boyu2, LI Junya1,2,*(
), GAO Xue2,*(
)
Received:
2024-06-27
Online:
2025-01-23
Published:
2025-01-18
Contact:
LI Junya, GAO Xue
E-mail:b013019@126.com;lijunya@caas.cn;gaoxue@caas.cn
摘要:
基因编辑技术是修饰特定基因的新型分子工具,可在基因序列中有效引入新的突变,为分析基因功能和与表型相关的DNA序列提供了有效的手段。自发现以来,基因编辑技术已经成功应用在各种动物、植物及其他生物中,为基因治疗及精准作物育种等领域提供了重要技术支撑。本文旨在回顾近年来基因编辑工具的发展,阐述了经典编辑工具、碱基编辑工具和其他新编辑工具的进展,以期为相关领域科研人员进一步了解、优化编辑系统提供参考。
中图分类号:
包斌武, 邹惠影, 李俊良, 高晨, 高会江, 杜振伟, 张博玉, 李俊雅, 高雪. 基因编辑技术的研究进展[J]. 畜牧兽医学报, 2025, 56(1): 1-14.
BAO Binwu, ZOU Huiying, LI Junliang, GAO Chen, GAO Huijiang, DU Zhenwei, ZHANG Boyu, LI Junya, GAO Xue. Research Progress in Gene Editing Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 1-14.
表 1
CRISPR-Cas技术的发展与优化"
名称 Name | 类型 Type | 尺寸(AA) Size | 特征 Feature | 年份 Year | 文献 Reference |
SpCas9 | Cas9 | 1 368 | 第一个在人类细胞中实现靶向诱变的Cas9同源物 | 2013 | Cong等[ |
SaCas9 | Cas9 | 1 053 | 具有高效、特异性和耐受性良好 | 2015 | Ran等[ |
Cpf1 | Cas12a | 1 353 | Cpf1只需要42 nt crRNA,切割导致原间隔区远端5′突出,提高基于NHEJ的基因插入的效率,一种单RNA引导的核酸酶,只需要crRNA,并包含单个RuvC结构域 | 2015 | Zetsche等[ |
xCas9 | Cas9 | 1 368 | 扩大了PAM兼容性,DNA特异性比SpCas9高得多,脱靶活性低 | 2018 | Hu等[ |
Cas13a(C2c2) | Cas13 | — | C2c2仅作为RNA引导的RNA靶向CRISPR效应子发挥作用 | 2016 | Abudayyeh等[ |
CjCas9 | Cas9 | 984 | CjCas9由984个氨基酸残基组成(比SpCas9或SaCas9小) | 2017 | Kim等[ |
SpCas9-NG | Cas9 | 1 368 | SpCas9-NG在NGG位点的裂解活性低于SpCas9, 使NG PAM识别成为可能 | 2018 | Nishimasu等[ |
LbCpf1 and FnCpf1 | Cas12 | 1 300 | 由一个RuvC核酸内切酶结构域组成,在植物细胞中,FnCpf1编辑了一个TTV PAM位点,对Cpf1 TTTV PAM位点进行优化 | 2018 | Zhong等[ |
AaCas12b | Cas12 | 1 129 | 尺度小,基因组靶向范围广,不易脱靶,可以在体外4 ℃和100 ℃之间切割靶DNA | 2018 | Teng等[ |
CasX(Cas12e) | Cas12 | 986 | 分子量小,编辑效率高,非特异性切割活性低 | 2019 | Liu等[ |
BhCas12b | Cas12 | 1 108 | 优化后的BhCas12 v4可以在各种基因组编辑环境中用作有效的可编程核酸酶 | 2019 | Strecker等[ |
SpG和SpRY | Cas9 | 140 | SpRY核酸酶和碱基编辑器变体可以靶向几乎所有PAM,是目前最与PAM序列兼容的Cas9突变体 | 2020 | Walton等[ |
CasΦ(Cas12j) | Cas12 | 700~800 | CasΦ体积小,但功能齐全,将多种功能组合成一个单一蛋白可实现更容易的载体介导递送,能更广泛的识别基因序列 | 2020 | Pausch等[ |
MAD7(ErCas12a) | Cas12 | 1 263 | MAD7脱靶概率较低,具有不同的PAM识别位点,并且不需要反式激活CRISPR RNA(tracrRNA) | 2021 2020 2020 | Jarczynska等[ Liu等[ Price等[ |
AtCas9 | Cas9 | — | 突破PAM限制,实现近乎无PAM的切割 | 2022 | Shi等[ |
Casπ (Cas12l) | Cas12 | 850~867 | 通过识别CCN PAM来切割底物DNA,能在哺乳动物细胞中实现有效的基因编辑 | 2023 | Sun等[ |
Cas8-HNH和 Cas5-HNH | Cas8 Cas5 | — | 具有高度特异性,使用长达32个碱基对的gRNA,减少脱靶可能性 | 2023 | Altae-tran等[ |
AsCas12f1 | Cas12 | 422 | 低毒性,高效率链霉菌基因编辑工具 | 2024 | Hua等[ |
表 2
碱基编辑系统的发展与优化"
类型 Type | 名称 Name | 特征 Feature | 编辑效率 Editing efficiency | 年份 Year | 文献 Reference |
BE编辑系统 BE editing system | BE1 | 由dCas9与APOBEC1的融合蛋白构成 | 表观编辑效率44%(体外),0.8~7.7%(体内) | 2016 | Komor等[ |
BE2 | 将来源于噬菌体的抑制子UGI引入BE1 | 表观编辑效率20%(体内) | 2016 | Komor等[ | |
BE3 | 将BE2中的dCas9替换为nCas9(D10A) | 表观编辑效率20~30%(体外),15~75%(体内) | 2016 | Komor等[ | |
HF-BE3 | 将BE3与一种高保真SpCas9变体(HF-Cas9)结合 | 将BE3的脱靶水平降低了37倍 | 2017 | Rees等[ | |
BE4 | 优化nCas9与APOBEC1的Linker长度 | 表观编辑效率50%(体内),效率比BE3提高1.5倍 | 2017 | Komor等[ | |
BE4max | BE4基础上优化核定位信号,密码子 | 效率比BE4提高3倍 | 2018 | Koblan等[ | |
ABE | 成功实现了A-T到G-C的碱基更改 | — | 2017 | Gaudelli等[ | |
ABE7.10 | 野生型ecTadA单体与定向进化出的ecTadA* 单体融合形成单链异二聚体 | 编辑效率可达53% | 2017 | Gaudelli等[ | |
ABEmax | 通过对ABE7.10进行密码子优化以及增加NLS个数 | 编辑效率比ABE7.10提高~1.5至2倍 | 2018 | Koblan等[ | |
ABE8s | 在BE7.10的TadA中引入额外的突变,构建了ABE8s | 编辑效率比ABE7.10提高约4.2倍 | 2020 | Gaudelli等[ | |
ABE9 | 实现了高精度,低脱靶的碱基编辑 | — | 2023 | Chen等[ | |
hyABE | 提高了靠近PAM区A-G的转换效率,扩大了编辑窗口 | 编辑效率43.0~94.6% | 2023 | Xue等[ | |
GhABE8e | 与ABE7.10相比,编辑效率更高,脱氨速度更快 | 平均编辑效率为60%~99.9% | 2024 | Wang等[ | |
DAF-CBE和DAF-TBE | 不依赖脱氨酶,扩展了碱基编辑器的转换类型, 效率相似,但尺寸更小,脱靶效应更低 | DAF-CBE平均编辑效率为20.7%; DAF-TBE平均编辑效率为22.5% | 2024 | Ye等[ | |
GBE | 在哺乳动物细胞中实现C-G的颠换, 而在细菌中实现C-A的颠换 | 大肠杆菌中编辑效率为87.2%±6.9%; 哺乳动物中编辑效率在5.3%~53.0% | 2021 | Zhao等[ | |
PE编辑系统 PE editing system | PE1 | 野生型的M-MLV逆转录酶与nCas9(H840A)的融合蛋白 | 对点突变的编辑效率最高可达到5.5%, 小片段插入删除编辑效率在4%~17%之间 | 2019 | Anzalone等[ |
PE2 | 对PE1的逆转录酶进行改造 | 点突变的编辑编辑效率相比PE1提高了1.6~5.1倍 | 2019 | Anzalone等[ | |
PE3 | 在pegRNA下游增加未编辑基因组DNA的识别位点 | — | 2019 | Anzalone等[ | |
PE4/PE5 | PE2/PE3系统分别插入MMR抑制蛋白 PE4(PE2+MLH1dn)PE5(PE3+MLH1dn) | 与PE2/PE3相比,将替换、小插入和小缺失 引物编辑的效率分别平均提高7.7和2.0倍 | 2021 | Chen等[ | |
PEmax | 通过改变RT密码子使用、SpCas9突变、NLS序列以及 nCas9和RT之间肽连接子的长度和组成来优化PE2蛋白 | 编辑效率大于30% | 2021 | Chen等[ | |
PE6a-g | 产生了比最先进编辑PEmax少516~810个碱基对的先导编辑 | PE6变体的平均编辑效率比PEmax提高了1.4倍 | 2023 | Doman等[ | |
PE7 | 将La蛋白的N端结构域融合到现有PEmax C端(PEmax-C) | 与PEmax相比,PE7编辑效率提高并对脱靶编辑影响最小 | 2024 | Yan等[ | |
CPE | 优先识别富含T的基因组区域,可进行 多基因的编辑,且脱靶效应极低 | niCPE和sniCPE在人类细胞中的编辑频率 分别为24.89%和40.75% | 2024 | Liang等[ | |
线粒体编辑系统 Mitochondrial editing system | DdCBE | 成功实现了线粒体中C to T的碱基编辑 | 编辑效率15%~30% | 2022 | Mok等[ |
TALED | 成功实现了线粒体中A to G的碱基编辑 | — | 2022 | Cho等[ | |
mitoBEs | 不依赖于DddA,提升了线粒体碱基编辑的精准性 | 编辑效率为18%~36% | 2023 | Yi等[ | |
CyDENT | 细胞核、线粒体和叶绿体中均可实现高效胞 嘧啶碱基编辑;不依赖CRISPR | 14%的编辑效率和95%的链特异性 | 2023 | Hu等[ |
1 | VERMA P J , SUMER H , LIU J .Applications of genome modulation and editing[M].New York: Humana,2022. |
2 |
SCHERER S , DAVIS R W .Replacement of chromosome segments with altered DNA sequences constructed in vitro[J].Proc Natl Acad Sci U S A,1979,76(10):4951-4955.
doi: 10.1073/pnas.76.10.4951 |
3 |
JINEK M , CHYLINSKI K , FONFARA I , et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.
doi: 10.1126/science.1225829 |
4 |
MALI P , YANG L H , ESVELT K M , et al.RNA-guided human genome engineering via Cas9[J].Science,2013,339(6121):823-826.
doi: 10.1126/science.1232033 |
5 |
GAUDELLI N M , KOMOR A C , REES H A , et al.Programmable base editing of A ·T to G ·C in genomic DNA without DNA cleavage[J].Nature,2017,551(7681):464-471.
doi: 10.1038/nature24644 |
6 |
ANZALONE A V , RANDOLPH P B , DAVIS J R , et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature,2019,576(7785):149-157.
doi: 10.1038/s41586-019-1711-4 |
7 | RUFFOLO J A , NAYFACH S , GALLAGHER J , et al.Design of highly functional genome editors by modeling the universe of CRISPR-Cas sequences[J].bioRxiv,2024,04,22, 590591. |
8 |
MILLER J , MCLACHLAN A D , KLUG A .Repetitive zinc-binding domains in the protein transcription factor ⅢA from Xenopus oocytes[J].EMBO J,1985,4(6):1609-1614.
doi: 10.1002/j.1460-2075.1985.tb03825.x |
9 |
DIAKUN G P , FAIRALL L , KLUG A .EXAFS study of the zinc-binding sites in the protein transcription factor ⅢA[J].Nature,1986,324(6098):698-699.
doi: 10.1038/324698a0 |
10 |
KIM Y G , CHA J , CHANDRASEGARAN S .Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J].Proc Natl Acad Sci U S A,1996,93(3):1156-1160.
doi: 10.1073/pnas.93.3.1156 |
11 |
BIBIKOVA M , GOLIC M , GOLIC K G , et al.Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J].Genetics,2002,161(3):1169-1175.
doi: 10.1093/genetics/161.3.1169 |
12 |
URNOV F D , MILLER J C , LEE Y L , et al.Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J].Nature,2005,435(7042):646-651.
doi: 10.1038/nature03556 |
13 |
PASCHON D E , LUSSIER S , WANGZOR T , et al.Diversifying the structure of zinc finger nucleases for high-precision genome editing[J].Nat Commun,2019,10(1):1133.
doi: 10.1038/s41467-019-08867-x |
14 |
MILLER J C , PATIL D P , XIA D F , et al.Enhancing gene editing specificity by attenuating DNA cleavage kinetics[J].Nat Biotechnol,2019,37(8):945-952.
doi: 10.1038/s41587-019-0186-z |
15 |
KATAYAMA S , WATANABE M , KATO Y , et al.Engineering of zinc finger nucleases through structural modeling improves genome editing efficiency in cells[J].Adv Sci (Weinh),2024,11(23):2310255.
doi: 10.1002/advs.202310255 |
16 |
DOYON Y , VO T D , MENDEL M C , et al.Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures[J].Nat Methods,2011,8(1):74-79.
doi: 10.1038/nmeth.1539 |
17 |
ZHANG Z X , ZHANG S L , HUANG X , et al.Rapid assembly of customized TALENs into multiple delivery systems[J].PLoS One,2013,8(11):e80281.
doi: 10.1371/journal.pone.0080281 |
18 |
CERMAK T , DOYLE E L , CHRISTIAN M , et al.Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J].Nucleic Acids Res,2011,39(12):e82.
doi: 10.1093/nar/gkr218 |
19 |
JAIN S , SHUKLA S , YANG C , et al.TALEN outperforms Cas9 in editing heterochromatin target sites[J].Nat Commun,2021,12(1):606.
doi: 10.1038/s41467-020-20672-5 |
20 |
MUSSOLINO C , ALZUBI J , FINE E J , et al.TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity[J].Nucleic Acids Res,2014,42(10):6762-6773.
doi: 10.1093/nar/gku305 |
21 |
ISHINO Y , SHINAGAWA H , MAKINO K , et al.Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J].J Bacteriol,1987,169(12):5429-5433.
doi: 10.1128/jb.169.12.5429-5433.1987 |
22 |
POURCEL C , SALVIGNOL G , VERGNAUD G .CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J].Microbiology,2005,151(3):653-663.
doi: 10.1099/mic.0.27437-0 |
23 |
MOJICA F J M , DÍEZ-VILLASEÑOR C , GARCÍA-MARTÍNEZ J , et al.Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J].J Mol Evol,2005,60(2):174-182.
doi: 10.1007/s00239-004-0046-3 |
24 |
BARRANGOU R , FREMAUX C , DEVEAU H , et al.CRISPR provides acquired resistance against viruses in prokaryotes[J].Science,2007,315(5819):1709-1712.
doi: 10.1126/science.1138140 |
25 |
刘志国.CRISPR/Cas9系统介导基因组编辑的研究进展[J].畜牧兽医学报,2014,45(10):1567-1583.
doi: 10.11843/j.issn.0366-6964.2014.10.001 |
LIU Z G .Research progress on CRISPR/Cas9 mediated genome editing[J].Acta Veterinaria et Zootechnica Sinica,2014,45(10):1567-1583.
doi: 10.11843/j.issn.0366-6964.2014.10.001 |
|
26 |
DATSENKO K A , POUGACH K , TIKHONOV A , et al.Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system[J].Nat Commun,2012,3,945.
doi: 10.1038/ncomms1937 |
27 |
WESTRA E R , SEMENOVA E , DATSENKO K A , et al.Type I-E CRISPR-Cas systems discriminate target from non-Target DNA through base pairing-independent PAM recognition[J].PLoS Genet,2013,9(9):e1003742.
doi: 10.1371/journal.pgen.1003742 |
28 |
CONG L , RAN F A , COX D , et al.Multiplex genome engineering using CRISPR/Cas Systems[J].Science,2013,339(6121):819-823.
doi: 10.1126/science.1231143 |
29 |
WU X B , SCOTT D A , KRIZ A J , et al.Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells[J].Nat Biotechnol,2014,32(7):670-676.
doi: 10.1038/nbt.2889 |
30 |
JAVAID D , GANIE S Y , HAJAM Y A , et al.CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology[J].Mol Biol Rep,2022,49(12):12133-12150.
doi: 10.1007/s11033-022-07880-6 |
31 |
RAN F A , CONG L , YAN W X , et al.In vivo genome editing using Staphylococcus aureus Cas9[J].Nature,2015,520(7546):186-191.
doi: 10.1038/nature14299 |
32 |
ZETSCHE B , GOOTENBERG J S , ABUDAYYEH O O , et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J].Cell,2015,163(3):759-771.
doi: 10.1016/j.cell.2015.09.038 |
33 |
HU J H , MILLER S M , GEURTS M H , et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J].Nature,2018,556(7699):57-63.
doi: 10.1038/nature26155 |
34 |
ABUDAYYEH O O , GOOTENBERG J S , KONERMANN S , et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science,2016,353(6299):aaf5573.
doi: 10.1126/science.aaf5573 |
35 |
KIM E , KOO T , PARK S W , et al.In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J].Nat Commun,2017,8,14500.
doi: 10.1038/ncomms14500 |
36 |
NISHIMASU H , SHI X , ISHIGURO S , et al.Engineered CRISPR-Cas9 nuclease with expanded targeting space[J].Science,2018,361(6408):1259-1262.
doi: 10.1126/science.aas9129 |
37 |
ZHONG Z H , ZHANG Y X , YOU Q , et al.Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites[J].Mol Plant,2018,11(7):999-1002.
doi: 10.1016/j.molp.2018.03.008 |
38 | TENG F , CUI T T , FENG G H , et al.Repurposing CRISPR-Cas12b for mammalian genome engineering[J].Cell Discov,2018,4,63. |
39 |
LIU J J , ORLOVA N , OAKES B L , et al.CasX enzymes comprise a distinct family of RNA-guided genome editors[J].Nature,2019,566(7743):218-223.
doi: 10.1038/s41586-019-0908-x |
40 |
STRECKER J , JONES S , KOOPAL B , et al.Engineering of CRISPR-Cas12b for human genome editing[J].Nat Commun,2019,10(1):212.
doi: 10.1038/s41467-018-08224-4 |
41 |
WALTON R T , CHRISTIE K A , WHITTAKER M N , et al.Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J].Science,2020,368(6488):290-296.
doi: 10.1126/science.aba8853 |
42 |
PAUSCH P , AL-SHAYEB B , BISOM-RAPP E , et al.CRISPR-CasΦ from huge phages is a hypercompact genome editor[J].Science,2020,369(6501):333-337.
doi: 10.1126/science.abb1400 |
43 |
JARCZYNSKA Z D , RENDSVIG J K H , PAGELS N , et al.DIVERSIFY: a fungal multispecies gene expression platform[J].ACS Synth Biol,2021,10(3):579-588.
doi: 10.1021/acssynbio.0c00587 |
44 |
LIU Z Y , SCHIEL J A , MAKSIMOVA E , et al.ErCas12a CRISPR-MAD7 for model generation in human cells, mice, and rats[J].CRISPR J,2020,3(2):97-108.
doi: 10.1089/crispr.2019.0068 |
45 |
PRICE M A , CRUZ R , BRYSON J , et al.Expanding and understanding the CRISPR toolbox for Bacillus subtilis with MAD7 and dMAD7[J].Biotechnol Bioeng,2020,117(6):1805-1816.
doi: 10.1002/bit.27312 |
46 |
SHI Y J , DUAN M , DING J M , et al.DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9[J].Mol Cell,2022,82(21):4160-4175.e6.
doi: 10.1016/j.molcel.2022.09.032 |
47 |
SUN A , LI C P , CHEN Z H , et al.The compact Casπ (Cas12l) 'bracelet' provides a unique structural platform for DNA manipulation[J].Cell Res,2023,33(3):229-244.
doi: 10.1038/s41422-022-00771-2 |
48 |
ALTAE-TRAN H , KANNAN S , SUBERSKI A J , et al.Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering[J].Science,2023,382(6673):eadi1910.
doi: 10.1126/science.adi1910 |
49 |
HUA H M , XU J F , HUANG X S , et al.Low-Toxicity and high-efficiency Streptomyces genome editing tool based on the miniature type V-F CRISPR/Cas nuclease AsCas12f1[J].J Agric Food Chem,2024,72(10):5358-5367.
doi: 10.1021/acs.jafc.3c09101 |
50 |
KOMOR A C , KIM Y B , PACKER M S , et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature,2016,533(7603):420-424.
doi: 10.1038/nature17946 |
51 |
MATSOUKAS I G .Commentary: programmable base editing of A ·T to G ·C in genomic DNA without DNA cleavage[J].Front Genet,2018,9,21.
doi: 10.3389/fgene.2018.00021 |
52 |
LANDRUM M J , LEE J M , BENSON M , et al.ClinVar: public archive of interpretations of clinically relevant variants[J].Nucleic Acids Res,2016,44(D1):D862-D868.
doi: 10.1093/nar/gkv1222 |
53 |
KOBLAN L W , DOMAN J L , WILSON C , et al.Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J].Nat Biotechnol,2018,36(9):843-846.
doi: 10.1038/nbt.4172 |
54 |
GAUDELLI N M , LAM D K , REES H A , et al.Directed evolution of adenine base editors with increased activity and therapeutic application[J].Nat Biotechnol,2020,38(7):892-900.
doi: 10.1038/s41587-020-0491-6 |
55 | ZHAO D D , LI J , LI S W , et al.Publisher correction: glycosylase base editors enable C-to-A and C-to-G base changes[J].Nat Biotechnol,2021,39(1):115. |
56 |
YAN J , CIRINCIONE A , ADAMSON B .Prime editing: precision genome editing by reverse transcription[J].Mol Cell,2020,77(2):210-212.
doi: 10.1016/j.molcel.2019.12.016 |
57 |
CHEN P J , HUSSMANN J A , YAN J , et al.Enhanced prime editing systems by manipulating cellular determinants of editing outcomes[J].Cell,2021,184(22):5635-5652.e29.
doi: 10.1016/j.cell.2021.09.018 |
58 |
YAN J , OYLER-CASTRILLO P , RAVISANKAR P , et al.Improving prime editing with an endogenous small RNA-binding protein[J].Nature,2024,628(8008):639-647.
doi: 10.1038/s41586-024-07259-6 |
59 |
LIANG R H , HE Z X , ZHAO K T , et al.Prime editing using CRISPR-Cas12a and circular RNAs in human cells[J].Nat Biotechnol,2024,42(12):1867-1875.
doi: 10.1038/s41587-023-02095-x |
60 |
KAPLANIS J , AKAWI N , GALLONE G , et al.Exome-wide assessment of the functional impact and pathogenicity of multinucleotide mutations[J].Genome Res,2019,29(7):1047-1056.
doi: 10.1101/gr.239756.118 |
61 |
MOK B Y , DE MORAES M H , ZENG J , et al.A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing[J].Nature,2020,583(7817):631-637.
doi: 10.1038/s41586-020-2477-4 |
62 |
CHO S I , LEE S , MOK Y G , et al.Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases[J].Cell,2022,185(10):1764-1776.e12.
doi: 10.1016/j.cell.2022.03.039 |
63 |
YI Z Y , ZHANG X X , TANG W , et al.Strand-selective base editing of human mitochondrial DNA using mitoBEs[J].Nat Biotechnol,2024,42(3):498-509.
doi: 10.1038/s41587-023-01791-y |
64 |
REES H A , KOMOR A C , YEH W H , et al.Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery[J].Nat Commun,2017,8,15790.
doi: 10.1038/ncomms15790 |
65 |
KOMOR A C , ZHAO K T , PACKER M S , et al.Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: a base editors with higher efficiency and product purity[J].Sci Adv,2017,3(8):eaao4774.
doi: 10.1126/sciadv.aao4774 |
66 |
CHEN L , ZHANG S , XUE N N , et al.Engineering a precise adenine base editor with minimal bystander editing[J].Nat Chem Biol,2023,19(1):101-110.
doi: 10.1038/s41589-022-01163-8 |
67 |
XUE N N , LIU X , ZHANG D , et al.Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD[J].Nat Commun,2023,14(1):1224.
doi: 10.1038/s41467-023-36887-1 |
68 |
WANG G Y , WANG F Q , XU Z P , et al.Precise fine-turning of GhTFL1 by base editing tools defines ideal cotton plant architecture[J].Genome Biol,2024,25(1):59.
doi: 10.1186/s13059-024-03189-8 |
69 |
YE L J , ZHAO D D , LI J , et al.Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells[J].Nat Biotechnol,2024,42(10):1538-1547.
doi: 10.1038/s41587-023-02050-w |
70 |
ZHAO D D , LI J , LI S W , et al.Glycosylase base editors enable C-to-A and C-to-G base changes[J].Nat Biotechnol,2021,39(1):35-40.
doi: 10.1038/s41587-020-0592-2 |
71 |
DOMAN J L , PANDEY S , NEUGEBAUER M E , et al.Phage-assisted evolution and protein engineering yield compact, efficient prime editors[J].Cell,2023,186(18):3983-4002.e26.
doi: 10.1016/j.cell.2023.07.039 |
72 |
MOK B Y , KOTRYS A V , RAGURAM A , et al.CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA[J].Nat Biotechnol,2022,40(9):1378-1387.
doi: 10.1038/s41587-022-01256-8 |
73 |
CHO S I , LEE S , MOK Y G , et al.Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases[J].Cell,2022,185(10):1764-1776.e12.
doi: 10.1016/j.cell.2022.03.039 |
74 |
HU J C , SUN Y , LI B S , et al.Strand-preferred base editing of organellar and nuclear genomes using CyDENT[J].Nat Biotechnol,2024,42(6):936-945.
doi: 10.1038/s41587-023-01910-9 |
75 |
VO P L H , RONDA C , KLOMPE S E , et al.CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering[J].Nat Biotechnol,2021,39(4):480-489.
doi: 10.1038/s41587-020-00745-y |
76 |
KLOMPE S E , VO P L H , HALPIN-HEALY T S , et al.Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J].Nature,2019,571(7764):219-225.
doi: 10.1038/s41586-019-1323-z |
77 |
SCHNEIDER A , JEGL P , HAUER B .Stereoselective directed cationic cascades enabled by molecular anchoring in terpene cyclases[J].Angew Chem Int Ed,2021,60(24):13251-13256.
doi: 10.1002/anie.202101228 |
78 |
STRECKER J , LADHA A , GARDNER Z , et al.RNA-guided DNA insertion with CRISPR-associated transposases[J].Science,2019,365(6448):48-53.
doi: 10.1126/science.aax9181 |
79 |
KARVELIS T , DRUTEIKA G , BIGELYTE G , et al.Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease[J].Nature,2021,599(7886):692-696.
doi: 10.1038/s41586-021-04058-1 |
80 |
WANG M , SUN Z L , LIU Y , et al.Hypercompact TnpB and truncated TnpB systems enable efficient genome editing in vitro and in vivo[J].Cell Discov,2024,10(1):31.
doi: 10.1038/s41421-023-00645-w |
81 |
LI Z F , GUO R C , SUN X Z , et al.Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model[J].Nat Commun,2024,15(1):831.
doi: 10.1038/s41467-024-45197-z |
82 |
QU L , YI Z Y , ZHU S Y , et al.Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs[J].Nat Biotechnol,2019,37(9):1059-1069.
doi: 10.1038/s41587-019-0178-z |
83 |
SAITO M , XU P Y , FAURE G , et al.Fanzor is a eukaryotic programmable RNA-guided endonuclease[J].Nature,2023,620(7974):660-668.
doi: 10.1038/s41586-023-06356-2 |
84 |
XU P Y , SAITO M , FAURE G , et al.Structural insights into the diversity and DNA cleavage mechanism of Fanzor[J].Cell,2024,187(19):5238-5252.e20.
doi: 10.1016/j.cell.2024.07.050 |
85 |
LIU Z X , ZHANG S Y , ZHU H Z , et al.Hydrolytic endonucleolytic ribozyme (HYER) is programmable for sequence-specific DNA cleavage[J].Science,2024,383(6682):eadh4859.
doi: 10.1126/science.adh4859 |
86 |
HUANG J Y , LIN Q P , FEI H Y , et al.Discovery of deaminase functions by structure-based protein clustering[J].Cell,2024,187(16):4426-4428.
doi: 10.1016/j.cell.2024.07.003 |
87 |
HE Y , ZHOU X B , CHANG C , et al.Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing[J].Mol Cell,2024,84(7):1257-1270.e6.
doi: 10.1016/j.molcel.2024.01.021 |
[1] | 刘雯雯, 董发明, 毕延震. 多基因编辑技术的发展及其在畜牧种质创新中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3267-3275. |
[2] | 梁瑞英, 索静霞, 梁琳, 刘贤勇, 丁家波, 索勋, 汤新明. 艾美耳球虫的遗传操作:平台建立、应用与展望[J]. 畜牧兽医学报, 2024, 55(8): 3362-3373. |
[3] | 张多, 滕蔓, 张卓, 刘金玲, 郑鹿平, 各思雨, 韩放, 罗琴, 柴书军, 赵东, 余祖华, 罗俊. 一株马立克病病毒特超强变异株meq基因编辑缺失候选疫苗毒株的构建与鉴定[J]. 畜牧兽医学报, 2024, 55(12): 5672-5683. |
[4] | 张学富, 陈运通, 范文瑞, 张子博, 于蒙蒙, 王素艳, 祁小乐, 李留安, 高玉龙. 鸡chNHE1精准基因编辑细胞系的构建及其抗ALV-J感染的研究[J]. 畜牧兽医学报, 2024, 55(11): 5238-5246. |
[5] | 丁修虎, 林志平, 赵芳, 陈坤琳, 仲跻峰, 张燕, 高运东, 李惠侠, 王慧利, 张建丽, 丁强. 利用CRISPR/Cas9技术制备BLG基因敲除牛乳腺上皮细胞系[J]. 畜牧兽医学报, 2024, 55(10): 4475-4488. |
[6] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[7] | 刘铃, 王丹丹, 崔凯, 马月辉, 蒋琳. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54(2): 434-442. |
[8] | 张硕, 周雨潇, 吴海波, 索伦. 长效CRISPR/Cas9基因编辑结局的动态追踪研究[J]. 畜牧兽医学报, 2023, 54(10): 4196-4208. |
[9] | 邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79. |
[10] | 赵为民, 王慧利, 曹少先, 郭日红, 王泽平, 陈哲, 徐奎, 付言峰, 李碧侠, 任守文, 程金花. 猪CD163基因的单碱基编辑研究[J]. 畜牧兽医学报, 2022, 53(4): 1041-1050. |
[11] | 邹惠影, 李俊良, 朱化彬. 引导编辑系统的研究与应用进展[J]. 畜牧兽医学报, 2022, 53(11): 3721-3730. |
[12] | 罗俊, 刘金玲, 郑鹿平, 罗琴, 滕蔓. 家禽疱疹病毒CRISPR/Cas9基因编辑最新研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3335-3344. |
[13] | 姚旭东, 蒙亚琦, 任秀美奥, 郭延华, 唐红, 张译元, 王立民, 周平. 利用单碱基编辑系统定点编辑哈萨克羊MSTN基因的研究[J]. 畜牧兽医学报, 2021, 52(8): 2162-2170. |
[14] | 王欢, 邹惠影, 朱化彬, 赵善江. CRISPR/Cas9基因编辑技术在家畜育种新材料创制中的研究进展[J]. 畜牧兽医学报, 2021, 52(4): 851-861. |
[15] | 杨森, 滕蔓, 刘金玲, 周子誉, 郑鹿平, 楚钰淑, 丁轲, 余祖华, 罗俊. 鸡马立克病疫苗株CVI988/Rispens meq基因编辑及缺失毒株的构建与鉴定[J]. 畜牧兽医学报, 2020, 51(8): 1970-1976. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||