畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 3213-3224.doi: 10.11843/j.issn.0366-6964.2024.07.039
李媛媛(), 王天玉(
), 李梦, 张文慧, 王英卉, 赵天瑞, 李浩洁, 赵阳飞, 王金明*(
)
收稿日期:
2023-11-03
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
王金明
E-mail:16635049401@163.com;2984232749@qq.com;jm50408@163.com
作者简介:
李媛媛(1999-),女,山西晋城人,硕士,主要从事环境毒理学研究,E-mail:16635049401@163.com李媛媛和王天玉为同等贡献作者
基金资助:
Yuanyuan LI(), Tianyu WANG(
), Meng LI, Wenhui ZHANG, Yinghui WANG, Tianrui ZHAO, Haojie LI, Yangfei ZHAO, Jinming WANG*(
)
Received:
2023-11-03
Online:
2024-07-23
Published:
2024-07-24
Contact:
Jinming WANG
E-mail:16635049401@163.com;2984232749@qq.com;jm50408@163.com
摘要:
本文旨在探究PINK1/Parkin介导的线粒体自噬在硒代蛋氨酸(selenomethionine, Se-Met)缓解氟致抑郁样行为中的作用。选取40只BALB/c小鼠随机分为5组:空白对照组(C组)、氟组(NaF 150 mg·L-1,F组)、氟+低硒组(NaF 150 mg·L-1+1.5 mg·L-1,F+LSe组)、氟+中硒组(NaF 150 mg·L-1+3.0 mg·L-1,F+MSe组)、氟+高硒组(NaF 150 mg·L-1+6.0 mg·L-1,F+HSe组)。氟化钠暴露90 d后,通过高架O型迷宫和悬尾试验观察小鼠的行为学表现,运用HE染色观察小鼠大脑皮质的损伤情况,采用生化试剂盒检测氧化应激相关指标的含量,并使用实时荧光定量PCR方法检测线粒体自噬相关基因的表达水平。动物行为学结果显示:与C组相比,F组小鼠在悬尾试验中的“静止”时间显著增加(P<0.05),在高架O型迷宫中进入闭合臂的时间有明显升高趋势(P<0.05)。在补充Se-Met后小鼠“静止”时间显著减少(P<0.05),F+LSe和F+MSe小鼠进入闭合臂的时间相比于F组显著减少(P<0.05)。病理组织切片结果显示:F组小鼠大脑皮质细胞排列紊乱,细胞体积缩小,且椎体细胞数量减少。经Se-Met改善后,F+LSe组的大脑皮质组织核仁清晰,细胞质更加均匀,改善效果更显著。氧化应激相关指标结果显示:与C组相比,F组活性氧(reactive oxygen species, ROS)显著升高(P<0.05),谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-PX)含量显著减少(P<0.05)。与F组相比,F+LSe、F+HSe和F+MSe组ROS含量均显著降低(P<0.05),且含量依次表现为F+LSe<F+HSee<F+MSe;F+LSe和F+HSe组GSH-PX含量相比于F组显著升高(P<0.05)。自噬相关基因的mRNA表达水平结果显示:与C组相比,F组自噬相关基因Parkin、PINK1、LC3、OPTN、NBR1、Drp1、Fis1的mRNA表达水平显著升高(P<0.05),OPA1、Mfn1、Mfn2的mRNA表达水平显著降低(P<0.05)。与F组相比,F+LSe和F+HSe组显著降低Parkin、OPTN、PINK1、P62、NBR1和Fis1的mRNA表达水平(P<0.05),F+LSe和F+MSe组显著降低Parkin、LC3、Drp1和P62的mRNA表达水平(P<0.05),显著增加OPA1的mRNA表达水平(P<0.05),F+LSe组显著增加Mfn2的mRNA表达水平(P<0.05)。综上所述,1.5 mg·L-1 Se-Met可通过影响线粒体自噬相关基因的表达,恢复线粒体融合与分裂的动态平衡状态,缓解大脑皮质氧化应激,从而改善大脑皮质组织损伤和抑郁样行为的出现。
中图分类号:
李媛媛, 王天玉, 李梦, 张文慧, 王英卉, 赵天瑞, 李浩洁, 赵阳飞, 王金明. 硒代蛋氨酸通过PINK1/Parkin介导的线粒体自噬缓解氟诱导的抑郁样行为[J]. 畜牧兽医学报, 2024, 55(7): 3213-3224.
Yuanyuan LI, Tianyu WANG, Meng LI, Wenhui ZHANG, Yinghui WANG, Tianrui ZHAO, Haojie LI, Yangfei ZHAO, Jinming WANG. Selenomethionine, through PINK1/Parkin-mediated Mitochondrial Autophagy, Alleviates Fluoride-induced Depressive-like Behavior[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3213-3224.
表 1
荧光定量PCR引物序列"
基因名称 Gene name | 引物序列(5′→3′) Primer sequences | 产物大小 Size | 登录号 Accession No. |
β-actin | F:CCATTGAGCACGGTATTG R:CTGTTGGCTTTGGGATTC | 139 | AF057040.1 |
Parkin | F:ACGGTGGTTACACTGGAAGA R:AGACAAGGACACGTCGGTAG | 115 | AB019558.1 |
PINK1 | F:AGACAAGGACACGTCGGTAG R:TCTCAAGTCCGACAACATCC | 146 | AB053476.1 |
P62 | F:CTCCGTTCAAGTAGGACAAT | 97 | U17961.1 |
R:GCCCATGCTATGGAAGAA | |||
LC3 | F:GTTGACCAGCAGGAAGAA | 144 | NM_025735.3 |
R:CGCTACAAGGGTGAGAAG | |||
NBR1 | F:ACGAGGAGCGGAATACTT | 143 | NM_001252223.1 |
R:GCCTATGCCCATCCTACA | |||
OPTN | F:CTGGCTCACAGTCAGTTCTT | 98 | AY071834.1 |
R:ACTGCCCTACACCCACAA | |||
OPA1 | F:TTCTTGGTTTCGTTGTGA | 156 | NM_001403172.1 |
R:GGATGCAGCCATTTACTT | |||
Mfn1 | F:AAGATGTTGGGCTTGGAG | 115 | NM_024200.5 |
R:TTTGCCTTGATGCTGATG | |||
Mfn2 | F:AGCACTTCGCTGATACCC | 102 | AY123975.1 |
R:AGACACCCACAGGAACAC | |||
Drp1 | F:TGTCCTCGGATTCAGTCA | 124 | AB079133.1 |
R:AGTGTCCCAAAGGCAGTA | |||
Fis1 | F:TTATCAATCAGGCGTTCC | 84 | BC010783.1 |
R:AAAGGCTCTAAAGTATGTGC |
1 | 李洋杰, 祁荣, 张馨予, 等. 丁酸钠对氟中毒模型大鼠的神经保护及乙酰化蛋白组学分析[J]. 中国组织工程研究, 2023, 27 (20): 3151- 3157. |
LI Y J , QI R , ZHANG X Y , et al. Neuroprotective effects of sodium butyrate and acetylation proteomics analysis in fluorosis rats[J]. Chinese Journal of Tissue Engineering Research, 2023, 27 (20): 3151- 3157. | |
2 |
WANG F Q , LI Y J , TANG D X , et al. Exploration of the SIRT1-mediated BDNF-TrkB signaling pathway in the mechanism of brain damage and learning and memory effects of fluorosis[J]. Front Public Health, 2023, 11, 1247294.
doi: 10.3389/fpubh.2023.1247294 |
3 | 李洋杰. 丁酸钠通过糖酵解途径改善氟中毒小鼠学习记忆损伤的机制研究[D]. 沈阳: 沈阳医学院, 2023. |
LI Y J. The mechanism of sodium butyrate improving learning and memory impairment in fluorosis mice through glycolysis pathway[D]. Shenyang: Shenyang Medical College, 2023. (in Chinese) | |
4 |
DUAN K Z , GU Q H , PETRALIA R S , et al. Mitophagy in the basolateral amygdala mediates increased anxiety induced by aversive social experience[J]. Neuron, 2021, 109 (23): 3793- 3809.
doi: 10.1016/j.neuron.2021.09.008 |
5 | 张笑妍, 李洋杰, 王正东, 等. 氟中毒致神经损伤机制的研究进展[J]. 沈阳医学院学报, 2021, 23 (6): 617- 621. |
ZHANG X Y , LI Y J , WANG Z D , et al. Advances in the mechanism of nerve injury induced by fluorosis[J]. Journal of Shenyang Medical College, 2021, 23 (6): 617- 621. | |
6 |
LINDQVIST D , FERNSTRÖM J , GRUDET C , et al. Increased plasma levels of circulating cell-free mitochondrial DNA in suicide attempters: associations with HPA-axis hyperactivity[J]. Transl Psychiatry, 2016, 6 (12): e971.
doi: 10.1038/tp.2016.236 |
7 |
STRUNECKA A , STRUNECKY O . Chronic fluoride exposure and the risk of autism spectrum disorder[J]. Int J Environ Res Public Health, 2019, 16 (18): 3431.
doi: 10.3390/ijerph16183431 |
8 |
WANG H W , ZHU S Q , LIU J , et al. Fluoride-induced renal dysfunction via respiratory chain complex abnormal expression and fusion elevation in mice[J]. Chemosphere, 2020, 238, 124607.
doi: 10.1016/j.chemosphere.2019.124607 |
9 |
LU Y J , LUO Q , CUI H M , et al. Sodium fluoride causes oxidative stress and apoptosis in the mouse liver[J]. Aging, 2017, 9 (6): 1623- 1639.
doi: 10.18632/aging.101257 |
10 |
WANG J J , WEI Z K , HAN Z , et al. Sodium fluoride exposure triggered the formation of neutrophil extracellular traps[J]. Environ Pollut, 2020, 257, 113583.
doi: 10.1016/j.envpol.2019.113583 |
11 |
YING H M , ZHANG Y . Systems biology of selenium and complex disease[J]. Biol Trace Elem Res, 2019, 192 (1): 38- 50.
doi: 10.1007/s12011-019-01781-9 |
12 | 郑瑞. 硒代蛋氨酸对AD小鼠脑内神经再生的影响[D]. 深圳: 深圳大学, 2017. |
ZHENG R. The effect of selenomethionine on neurogenesis in a AD mouse model[D]. Shenzhen: Shenzhen University, 2017. (in Chinese) | |
13 |
ZHENG X R , SUN Y , KE L L , et al. Molecular mechanism of brain impairment caused by drinking-acquired fluorosis and selenium intervention[J]. Environ Toxicol Pharmacol, 2016, 43, 134- 139.
doi: 10.1016/j.etap.2016.02.017 |
14 |
WANG Y X , XIAO X , ZHAN X A . Antagonistic effects of different selenium sources on growth inhibition, oxidative damage, and apoptosis induced by fluorine in broilers[J]. Poult Sci, 2018, 97 (9): 3207- 3217.
doi: 10.3382/ps/pey192 |
15 |
WANG J , UM P , DICKERMAN B A , et al. Zinc, magnesium, selenium and depression: a review of the evidence, potential mechanisms and implications[J]. Nutrients, 2018, 10 (5): 584.
doi: 10.3390/nu10050584 |
16 |
LOEF M , SCHRAUZER G N , WALACH H . Selenium and Alzheimer's disease: a systematic review[J]. J Alzheimers Dis, 2011, 26 (1): 81- 104.
doi: 10.3233/JAD-2011-110414 |
17 |
ZHANG Z H , WU Q Y , CHEN C , et al. Selenomethionine attenuates the amyloid-β level by both inhibiting amyloid-β production and modulating autophagy in neuron-2a/AβPPswe cells[J]. J Alzheimers Dis, 2017, 59 (2): 591- 602.
doi: 10.3233/JAD-170216 |
18 |
ZHANG Z H , WU Q Y , ZHENG R , et al. Selenomethionine mitigates cognitive decline by targeting both Tau hyperphosphorylation and autophagic clearance in an Alzheimer's disease mouse model[J]. J Neurosci, 2017, 37 (9): 2449- 2462.
doi: 10.1523/JNEUROSCI.3229-16.2017 |
19 |
BRVNING C A , SOUZA A C G , GAI B M , et al. Antidepressant-like effect of m-trifluoromethyl-diphenyl diselenide in the mouse forced swimming test involves opioid and serotonergic systems[J]. Eur J Pharmacol, 2011, 658 (2-3): 145- 149.
doi: 10.1016/j.ejphar.2011.02.039 |
20 |
CHEN C , CHEN Y , ZHANG Z H , et al. Selenomethionine improves mitochondrial function by upregulating mitochondrial selenoprotein in a model of Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13, 750921.
doi: 10.3389/fnagi.2021.750921 |
21 |
YANG J R , LI H J , HAO Z J , et al. Mitigation effects of selenium nanoparticles on depression-like behavior induced by fluoride in mice via the JAK2-STAT3 pathway[J]. ACS Appl Mater Interfaces, 2022, 14 (3): 3685- 700.
doi: 10.1021/acsami.1c18417 |
22 |
MCPHERSON C A , ZHANG G Z , GILLIAM R , et al. An evaluation of neurotoxicity following fluoride exposure from gestational through adult ages in Long-Evans hooded rats[J]. Neurotox Res, 2018, 34 (4): 781- 798.
doi: 10.1007/s12640-018-9870-x |
23 | 龚艺, 郑丹, 陈芳萍, 等. 地方性氟中毒流行现状与法医学鉴定[J]. 中国司法鉴定, 2022, (2): 35- 40. |
GONG Y , ZHENG D , CHEN F P , et al. Epidemic status and forensic identification of endemic fluorosis[J]. Chinese Journal of Forensic Sciences, 2022, (2): 35- 40. | |
24 |
HE L L , TU C L , HE S Y , et al. Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health[J]. Environ Geochem Health, 2021, 43 (3): 1137- 1154.
doi: 10.1007/s10653-020-00568-5 |
25 |
SUN X L , REUTHER J F , PHILLIPS S T , et al. Coupling activity-based detection, target amplification, colorimetric and fluorometric signal amplification, for quantitative chemosensing of fluoride generated from nerve agents[J]. Chem-A Eur J, 2017, 23 (16): 3903- 3909.
doi: 10.1002/chem.201604474 |
26 |
BORTOLOZZI R , CARTA D , PRÀ M D , et al. Evaluating the effects of fluorine on biological properties and metabolic stability of some antitubulin 3-substituted 7-phenyl-pyrroloquinolinones[J]. Eur J Med Chem, 2019, 178, 297- 314.
doi: 10.1016/j.ejmech.2019.05.092 |
27 | 李禹韬. 硒代蛋氨酸通过"微生物-肠-脑"轴缓解氨神经毒性机制的研究[D]. 哈尔滨: 东北农业大学, 2022. |
LI Y T. Study on selenomethionine alleviating the neurotoxicity of ammonia by modulating "microbiota-gut-brain" axis[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese) | |
28 |
RITA CARDOSO B , SILVA BANDEIRA V , JACOB-FILHO W , et al. Selenium status in elderly: relation to cognitive decline[J]. J Trace Elem Med Biol, 2014, 28 (4): 422- 426.
doi: 10.1016/j.jtemb.2014.08.009 |
29 | 孙世光, 韩兴军, 王群, 等. 高架﹢/瘙懟迷宫实验: 经典状态焦虑动物模型相关性研究[J]. 中国药理学通报, 2018, 34 (3): 437- 442. |
SUN S G , HAN X J , WANG Q , et al. Correlation between elevated plus and zero mazes as two animal models of state anxiety in Kunming mice[J]. Chinese Pharmacological Bulletin, 2018, 34 (3): 437- 442. | |
30 |
BROD L M P , FRONZA M G , VARGAS J P , et al. Involvement of monoaminergic system in the antidepressant-like effect of (octylseleno)-xylofuranoside in the mouse tail suspension test[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 65, 201- 207.
doi: 10.1016/j.pnpbp.2015.10.008 |
31 |
REDDY Y P , TIWARI S , TOMAR L K , et al. Fluoride-induced expression of neuroinflammatory markers and neurophysiological regulation in the brain of wistar rat model[J]. Biol Trace Elem Res, 2021, 199 (7): 2621- 2626.
doi: 10.1007/s12011-020-02362-x |
32 |
ZHENG R , ZHANG Z H , CHEN C , et al. Selenomethionine promoted hippocampal neurogenesis via the PI3K-Akt-GSK3β-Wnt pathway in a mouse model of Alzheimer's disease[J]. Biochem Biophys Res Commun, 2017, 485 (1): 6- 15.
doi: 10.1016/j.bbrc.2017.01.069 |
33 |
LIU H L , HOU C C , ZENG Q , et al. Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide[J]. Environ Toxicol Pharmacol, 2016, 46, 277- 285.
doi: 10.1016/j.etap.2016.08.007 |
34 |
ABDELALEEM M M , EL-TAHAWY N F G , ABOZAID S M M , et al. Possible protective effect of curcumin on the thyroid gland changes induced by sodium fluoride in albino rats: light and electron microscopic study[J]. Endocr Regul, 2018, 52 (2): 59- 68.
doi: 10.2478/enr-2018-0007 |
35 | 凌锡贤. 不同硒源对白羽肉鸡生长性能、肉品质和抗氧化性能的影响[D]. 绵阳: 西南科技大学, 2023. |
LING X X. Effects of different selenium sources on growth performance, meat quality and antioxidant capacity of white feather broilers[D]. Mianyang: Southwest University of Science and Technology, 2023. (in Chinese) | |
36 |
BRENNEISEN P , STEINBRENNER H , SIES H . Selenium, oxidative stress, and health aspects[J]. Mol Aspects Med, 2005, 26 (4-5): 256- 267.
doi: 10.1016/j.mam.2005.07.004 |
37 |
FILOMENI G , DE ZIO D , CECCONI F . Oxidative stress and autophagy: the clash between damage and metabolic needs[J]. Cell Death Differ, 2015, 22 (3): 377- 388.
doi: 10.1038/cdd.2014.150 |
38 |
HADJIADAMOU I , VLASIOU M , SPANOU S , et al. Synthesis of vitamin E and aliphatic lipid vanadium(Ⅳ) and (Ⅴ) complexes, and their cytotoxic properties[J]. J Inorg Biochem, 2020, 208, 111074.
doi: 10.1016/j.jinorgbio.2020.111074 |
39 |
PARK E J , LEE G H , YOON C , et al. Comparison of distribution and toxicity following repeated oral dosing of different vanadium oxide nanoparticles in mice[J]. Environ Res, 2016, 150, 154- 165.
doi: 10.1016/j.envres.2016.05.036 |
40 |
FISCHER F , HAMANN A , OSIEWACZ H D . Mitochondrial quality control: an integrated network of pathways[J]. Trends Biochem Sci, 2012, 37 (7): 284- 292.
doi: 10.1016/j.tibs.2012.02.004 |
41 |
NARENDRA D , KANE L A , HAUSER D N , et al. P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both[J]. Autophagy, 2010, 6 (8): 1090- 1106.
doi: 10.4161/auto.6.8.13426 |
42 |
KIRKIN V , LAMARK T , JOHANSEN T , et al. NBR1 co-operates with p62 in selective autophagy of ubiquitinated targets[J]. Autophagy, 2009, 5 (5): 732- 733.
doi: 10.4161/auto.5.5.8566 |
43 | 王香香, 凌江红, 王煜姣, 等. Pink1/Parkin信号通路调控线粒体自噬的研究进展[J]. 基因组学与应用生物学, 2022, 41 (4): 919- 926. |
WANG X X , LING J H , WANG Y J , et al. Regulation of mitochondrial autophagy by Pink1/Parkin signaling pathway[J]. Genomics and Applied Biology, 2022, 41 (4): 919- 926. | |
44 | ADEBAYO M , SINGH S , SINGH A P , et al. Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis[J]. FASEB J, 2021, 35 (6): e21620. |
45 |
SITA G , HRELIA P , GRAZIOSI A , et al. Back to the fusion: mitofusin-2 in Alzheimer's disease[J]. J Clin Med, 2020, 9 (1): 126.
doi: 10.3390/jcm9010126 |
46 |
JI W K , HATCH A L , MERRILL R A , et al. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites[J]. eLife, 2015, 4, e11553.
doi: 10.7554/eLife.11553 |
47 |
BAEK S H , PARK S J , JEONG J I , et al. Inhibition of Drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an Alzheimer's disease model[J]. J Neurosci, 2017, 37 (20): 5099- 5110.
doi: 10.1523/JNEUROSCI.2385-16.2017 |
48 | MANCZAK M , KANDIMALLA R , FRY D , et al. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease[J]. Human Mol Genet, 2016, 25 (23): 5148- 5166. |
[1] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[2] | 赵阳飞, 于洋欢, 王金明, 张建海, 孙子龙, 牛瑞燕, 王俊东. IL-17A基因敲除对氟诱导小鼠肝炎症反应和肝细胞凋亡的影响[J]. 畜牧兽医学报, 2023, 54(7): 3108-3117. |
[3] | 陈洋, 王悦力, 陈诗奇, 李楠鑫, 张伟, 舒刚, 徐傅能, 李昊欢, 林居纯, 符华林. 基于寡肽转运蛋白的氟苯尼考肠吸收特性研究[J]. 畜牧兽医学报, 2023, 54(3): 1240-1248. |
[4] | 黄婧洁, 李苗, 陈莹娴, 钟雅兰, 张婷婷, 姜廷超男, 李建成. 基于免疫磁珠净化间接竞争酶联免疫吸附试验检测氟喹诺酮类药物[J]. 畜牧兽医学报, 2023, 54(2): 766-778. |
[5] | 张倩, 崔燕, 余四九, 何俊峰, 潘阳阳, 王萌. 初生及成年牦牛大脑皮质的转录组分析[J]. 畜牧兽医学报, 2023, 54(11): 4605-4614. |
[6] | 闻双全, 王莉, 张文华, 徐明畅, 邹辉, 顾建红, 刘学忠, 卞建春, 刘宗平, 袁燕. Fas对镉暴露致大鼠大脑皮质自噬体形成的影响[J]. 畜牧兽医学报, 2022, 53(5): 1608-1614. |
[7] | 李玉娟, 肖宁, 贾文丹, 李霞荣, 郑晓峰, 孙志良. 氟马西尼联合肾上腺素对钩吻中毒的解救作用[J]. 畜牧兽医学报, 2022, 53(3): 938-946. |
[8] | 梁文清, 刘忠华, 常晓月, 何婷, 陈嘉, 马晓莉, 唐兆新, 余文兰. 长期高铜暴露通过影响线粒体自噬和细胞焦亡诱导大鼠肝组织损伤[J]. 畜牧兽医学报, 2022, 53(12): 4490-4500. |
[9] | 刘冰贤, 曾绮雯, 陈汉明, 庞聪颖, 刘莹炜, 杨必婧, 易江南, 黎远亮, 黎扬威, 唐兆新, 李英, 张辉. 纳米硒对氟化钠诱导小鼠肝组织细胞凋亡的影响[J]. 畜牧兽医学报, 2021, 52(5): 1424-1431. |
[10] | 戴超英, 林强锋, 吴梦伊, 胡崇伟. 阿法沙龙与异氟烷静吸复合麻醉对犬麻醉效果的影响[J]. 畜牧兽医学报, 2021, 52(4): 1115-1125. |
[11] | 刘连超, 王灵灵, 张雨晴, 李金辉, 赵兴华, 何欣. 反溶剂共沉淀技术制备氟苯尼考固体分散体[J]. 畜牧兽医学报, 2021, 52(10): 2934-2943. |
[12] | 张文华, 闻双全, 王莉, 徐明畅, 马勇刚, 邹辉, 顾建红, 刘学忠, 卞建春, 刘宗平, 袁燕. 褪黑素对镉致鸭大脑皮质毒性损伤的保护作用[J]. 畜牧兽医学报, 2021, 52(10): 2953-2959. |
[13] | 房晓欢, 李俊杰. 线粒体自噬调节雌性动物生殖功能的研究进展[J]. 畜牧兽医学报, 2021, 52(1): 1-8. |
[14] | 赵佳琦, 文勇立, 安雅静, 李子谦, 齐沛森, 李强, 候定超. 牦牛瘤胃微生物抗生素抗性基因对3种外源性刺激因子的响应[J]. 畜牧兽医学报, 2020, 51(5): 1126-1137. |
[15] | 杨艳阳, 余文兰, 廖建昭, 杨帆, 裴若男, 常晓月, 邓纪昌, 黄坤玄, 唐兆新. 高铜诱导大鼠心肌细胞线粒体自噬[J]. 畜牧兽医学报, 2020, 51(2): 374-381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||