[1] |
庄 蕾,吴 森.高通量测序技术在牦牛相关研究中应用[J].家畜生态学报,2022,43(3):77-82.ZHUANG L,WU S.Application of high-throughput sequencing technology in yak[J].Journal of Domestic Animal Ecology, 2022,43(3):77-82.(in Chinese)
|
[2] |
李 欣,李小俊,陈晓丽,等.转录组数据分析与功能基因挖掘[J].畜牧兽医学报,2019,50(3):474-484.LI X,LI X J,CHEN X L,et al.Transcriptomics analysis and functional genes mining[J].Acta Veterinaria et Zootechnica Sinica, 2019,50(3):474-484.(in Chinese)
|
[3] |
CADWELL C R,BHADURI A,MOSTAJO-RADJI M A,et al.Development and arealization of the cerebral cortex[J].Neuron, 2019,103(6):980-1004.
|
[4] |
GONZÁLEZ-VELASCO O,PAPY-GARCÍA D,LE DOUARON G,et al.Transcriptomic landscape,gene signatures and regulatory profile of aging in the human brain[J].Biochim Biophys Acta Gene Regul Mech,2020,1863(6):194491.
|
[5] |
XIMERAKIS M,LIPNICK S L,INNES B T,et al.Single-cell transcriptomic profiling of the aging mouse brain[J].Nat Neurosci, 2019,22(10):1696-1708.
|
[6] |
AYALEW W,CHU M,LIANG C N,et al.Adaptation mechanisms of yak (Bos grunniens) to high-altitude environmental stress[J]. Animals,2021,11(8):2344.
|
[7] |
杨柏高,郝海生,杜卫华,等.牦牛高原适应研究进展[J].畜牧兽医学报,2023,54(1):12-23.YANG B G,HAO H S,DU W H,et al.Advances in research on plateau adaptation of yak[J].Acta Veterinaria et Zootechnica Sinica,2023,54(1):12-23.(in Chinese)
|
[8] |
梁 林.不同发育阶段大通牦牛大脑皮质组织学研究[D].西宁:青海大学,2012.LIANG L.Study on the histology of cerebral cortex in da tong yak at different developmental stages[D].Xining:Qinghai University, 2012.(in Chinese)
|
[9] |
黄 兴.牦牛大脑和小脑低氧适应性的转录组研究[D].成都:西南民族大学,2019.HUANG X.The transcriptome analysis of cerebrum and cerebellum reveals the well hypoxic adaptability of yak[D].Chengdu: Southwest Minzu University,2019. (in Chinese)
|
[10] |
唐 娇,夏 果,刘益丽,等.不同年龄段牦牛瘤胃组织形态学与转录组研究[J].畜牧兽医学报,2022,53(11):3797-3810.TANG J,XIA G,LIU Y L,et al.The research of histomorphological and transcriptomic of yak rumen at different ages[J].Acta Veterinaria et Zootechnica Sinica,2022,53(11):3797-3810.(in Chinese)
|
[11] |
傅 芳,王 利,字向东.麦洼牦牛不同生长阶段肝脏差异表达基因分析[J].兽类学报,2022,42(1):85-94.FU F,WANG L,ZI X D.Differential expression genes analysis of liver in Maiwa yak at different growth stages[J].Acta Theriologica Sinica,2022,42(1):85-94.(in Chinese)
|
[12] |
傅 芳,官久强,曲秀龙,等.不同海拔饲育的麦洼牦牛肺脏组织转录组学分析[J].兽类学报,2020,40(5):475-484.FU F,GUAN J Q,QU X L,et al.Transcriptomics analysis of lungs in yaks breeding at different altitudes[J].Acta Theriologica Sinica,2020,40(5):475-484.(in Chinese)
|
[13] |
纪 会,王 会,柴志欣,等.牦牛不同年龄肌肉组织microRNA表达谱及生物信息学分析[J].畜牧兽医学报,2019,50(5):957-971.JI H,WANG H,CHAI Z X,et al.Differential expression profile and bioinformatics analysis of miRNAs in yak muscle tissue during development[J].Acta Veterinaria et Zootechnica Sinica,2019,50(5):957-971.(in Chinese)
|
[14] |
KIM D,LANGMEAD B,SALZBERG S L.HISAT:a fast spliced aligner with low memory requirements[J].Nat Methods,2015, 12(4):357-360.
|
[15] |
ANDERS S,PYL P T,HUBER W.HTSeq—a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015,31(2):166-169.
|
[16] |
PERTEA M,PERTEA G M,ANTONESCU C M,et al.StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J].Nat Biotechnol,2015,33(3):290-295.
|
[17] |
LOVE M I,HUBER W,ANDERS S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J].Genome Biol,2014,15(12):550.
|
[18] |
WU T Z,HU E Q,XU S B,et al.ClusterProfiler 4.0:A universal enrichment tool for interpreting omics data[J]. Innovation, 2021,2(3):100141.
|
[19] |
KUMAR A,GIBBS J R,BEILINA A,et al.Age-associated changes in gene expression in human brain and isolated neurons[J].Neurobiol Aging,2013,34(4):1199-1209.
|
[20] |
LIANG X,LIU X M,LU F X,et al.HIF1α signaling in the endogenous protective responses after neonatal brain hypoxia-ischemia[J].Dev Neurosci,2018,40(5-6):617-626.
|
[21] |
WANG L,ZHOU K,FU Z,et al.Brain development and Akt signaling:the crossroads of signaling pathway and neurodevelopmental diseases[J].J Mol Neurosci,2017,61(3):379-384.
|
[22] |
ZHANG Z,YAO L,YANG J H,et al.PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia (Review)[J].Mol Med Rep, 2018,18(4):3547-3554.
|
[23] |
YUASA-KAWADA J,KINOSHITA-KAWADA M,TSUBOI Y,et al.Neuronal guidance genes in health and diseases[J].Protein Cell,2023,14(4):238-261.
|
[24] |
YASUDA R,HAYASHI Y,HELL J W.CaMKII:a central molecular organizer of synaptic plasticity,learning and memory[J].Nat Rev Neurosci,2022,23(11):666-682.
|
[25] |
BARBER C N,GOLDSCHMIDT H L,LILLEY B,et al.Differential expression patterns of phospholipase D isoforms 1 and 2 in the mammalian brain and retina[J].J Lipid Res,2022,63(8):100247.
|
[26] |
WANG X C,YU D M,WANG H Y,et al.Rab3 and synaptotagmin proteins in the regulation of vesicle fusion and neurotransmitter release[J].Life Sci,2022,309:120995.
|
[27] |
IROEGBU J D,IJOMONE O K,FEMI-AKINLOSOTU O M,et al.ERK/MAPK signalling in the developing brain:Perturbations and consequences[J].Neurosci Biobehav Rev,2021,131:792-805.
|
[28] |
CARULLI D,DE WINTER F,VERHAAGEN J.Semaphorins in adult nervous system plasticity and disease[J].Front Synaptic Neurosci,2021,13:672891.
|
[29] |
TONG M F,JUN T,NIE Y Z,et al.The role of the slit/robo signaling pathway[J].J Cancer,2019,10(12):2694-2705.
|
[30] |
KLIMASCHEWSKI L,CLAUS P.Fibroblast growth factor signalling in the diseased nervous system[J].Mol Neurobiol,2021, 58(8):3884-3902.
|
[31] |
ARÉVALO J C,DEOGRACIAS R.Mechanisms controlling the expression and secretion of BDNF[J].Biomolecules, 2023, 13(5):789.
|
[32] |
WITTKO-SCHNEIDER I M,SCHNEIDER F T,PLATE K H.Brain homeostasis:VEGF receptor 1 and 2- two unequal brothers in mind[J].Cell Mol Life Sci,2013,70(10):1705-1725.
|
[33] |
ROCCO M L,SOLIGO M,MANNI L,et al.Nerve growth factor:early studies and recent clinical trials[J].Curr Neuropharmacol, 2018,16(10):1455-1465.
|
[34] |
AHMADABAD R A,MIRZAASGARI Z,GORJI A,et al.Toll-like receptor signaling pathways:Novel therapeutic targets for cerebrovascular disorders[J].Int J Mol Sci,2021,22(11):6153.
|
[35] |
OSTROWSKI R P,ZHANG J H.The insights into molecular pathways of hypoxia-inducible factor in the brain[J].J Neurosci Res,2020,98(1):57-76.
|