畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2727-2740.doi: 10.11843/j.issn.0366-6964.2024.06.043
王选艺(), 孙亚伟*(
), 龙雨薇, 王俪颖, 周渝新, 李娜, 马雪连, 赵红琼, 姚刚
收稿日期:
2023-08-10
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
孙亚伟
E-mail:1020877416@qq.com;sunyawei2008@163.com
作者简介:
王选艺(1998-),女,新疆五家渠人,硕士生,主要从事动物生长发育与繁殖疾病研究,E-mail: 1020877416@qq.com
基金资助:
Xuanyi WANG(), Yawei SUN*(
), Yuwei LONG, Liying WANG, Yuxin ZHOU, Na LI, Xuelian MA, Hongqiong ZHAO, Gang YAO
Received:
2023-08-10
Online:
2024-06-23
Published:
2024-06-28
Contact:
Yawei SUN
E-mail:1020877416@qq.com;sunyawei2008@163.com
摘要:
旨在研究叉头框蛋白P3基因(forkhead box protein P3,FOXP3)、促卵泡激素受体基因(follicle stimulating hormone receptor,FSHR)、智力低下1基因(fragile X mental retardation 1,FMR1)的多态性,并探讨了基因多态性对母牛屡配不孕以及母牛激素水平的影响。通过PCR方法扩增基因突变位点的序列,对PCR结果进行酶切鉴定和测序峰图分析,统计三种基因的基因型。分析三种基因突变的组间差异。使用ELISA法检测两组雌激素(estrogen,E)、促卵泡激素(follicle-stimulating hormone,FSH)、催乳素(prolactin,PRL)、睾酮素(testosterone,T)、促黄体生成素(luteinizing hormone,LH)激素浓度。并将基因多态性与激素水平进行关联分析。FOXP3基因检测出3种基因型:AA、AG和GG型;FSHR基因检测出3种基因型:AA、AC和CC型;FMR1基因5'UTR端302 bp处检测到T碱基插入。卡方适应性检验结果表明,FOXP3基因g.92, 377, 635 A>G位点、FSHR基因g.31, 450, 279 A>C位点均低于哈代-温伯格平衡状态(P<0.05)。关联性分析表明,FOXP3基因G等位基因、FSHR基因C等位基因与母牛屡配不孕显著正相关性。屡配不孕组E、FSH、PRL、T激素与健康母牛组差异显著(P < 0.05)。FOXP3基因AA、GG基因型E激素浓度与AG基因型差异显著(P < 0.05);FSHR基因AA、AC基因型E激素浓度与CC基因型差异显著(P < 0.05)。FOXP3、FSHR基因在西门塔尔牛、褐牛及安格斯牛群体中具有多态性,这说明基因可能是影响母牛屡配不孕的潜在遗传因素。其中,FOXP3基因G等位基因在健康组与屡配不孕组中差异显著(P < 0.05),FSHR基因C等位基因在健康组与屡配不孕组中差异显著(P < 0.05)。FOXP3基因的g.92, 377, 635 A>G位点G等位基因与母牛患屡配不孕疾病呈显著正相关(P < 0.05,r=0.16),FSHR基因的g.31, 450, 279 A>C位点C等位基因与母牛屡配不孕具有显著正相关性(P < 0.05,r=0.14)。FOXP3以及FSHR基因的多态性位点可能作为母牛屡配不孕的标志性识别位点,可用于筛选屡配不孕母牛的潜在候选遗传标记,这需要进一步的证明。FOXP3基因G等位基因与E浓度呈弱正相关(P < 0.05,r=0.16),FMR1基因T碱基的插入与E浓度呈弱正相关(P < 0.05,r=0.187)。然而FOXP3、FSHR基因的变异如何调控母牛繁殖能力还需进一步研究证实。
中图分类号:
王选艺, 孙亚伟, 龙雨薇, 王俪颖, 周渝新, 李娜, 马雪连, 赵红琼, 姚刚. 屡配不孕母牛FOXP3、FSHR、FMR1基因多态性与生殖激素相关性分析[J]. 畜牧兽医学报, 2024, 55(6): 2727-2740.
Xuanyi WANG, Yawei SUN, Yuwei LONG, Liying WANG, Yuxin ZHOU, Na LI, Xuelian MA, Hongqiong ZHAO, Gang YAO. Correlation Analysis of FOXP3, FSHR, FMR1 Gene Polymorphisms and Reproductive Hormones in Infertile Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2727-2740.
表 1
引物序列信息"
基因 Gene | 登录号 NCBI ID | 引物序列(5′→3′) Primers sequences | 退火温度/℃ Annealing temperature | 产物长度/bp Product length |
FMR1 | 507482 | F: 5′-ACGCGGTTTCACTGTTTACAC-3′ | 49.8 | 310 |
R: 5′-ACCTTGTAGAAAGCGCCATTG-3′ | ||||
FOXP3 | 506053 | F: 5′-ATTCTAAGGTTCTGGCATCGT-3′ | 60.3 | 618 |
R: 5′-GCCAGAGCATATAAGAAACCACT-3′ | ||||
FSHR | 281172 | F: 5′-CTGCCTCCCTCAAGGTGCCCCTC-3′ | 58.0 | 306 |
R: 5′-AGTTCTTGGCTAAATGTCTTAGGGGG |
1 | KUMAR P , PUROHIT G N , MEHTA J S . Incidence of reproductive disorders in dairy cows[J]. Intas Polivet, 2018, 19 (1): 11- 15. |
2 | DOBOS A , FODOR I , KREIZINGER Z , et al. Infertility in dairy cows-Possible bacterial and viral causes[J]. Vet Stan, 2022, 53 (1): 35- 43. |
3 | NAIN D , DEWRY R K , YADAV H P , et al. Current advances in management of repeat breeding syndrome in cattle and buffaloes[J]. Pharma Innovat Int J, 2023, 12 (5): 3444- 3450. |
4 |
HAYASHI K G , HOSOE M , KIZAKI K , et al. Differential gene expression profiling of endometrium during the mid-luteal phase of the estrous cycle between a repeat breeder (RB) and non-RB cows[J]. Reprod Biol Endocrinol, 2017, 15 (1): 20.
doi: 10.1186/s12958-017-0237-6 |
5 |
KLUNKER S , CHONG M M W , MANTEL P Y , et al. Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells[J]. J Exp Med, 2009, 206 (12): 2701- 2715.
doi: 10.1084/jem.20090596 |
6 |
MARSON E P , FERRAZ J B S , MEIRELLES F V , et al. Effects of polymorphisms of LHR and FSHR genes on sexual precocity in a Bos taurus×Bos indicus beef composite population[J]. Genet Mol Res, 2008, 7 (1): 243- 251.
doi: 10.4238/vol7-1gmr418 |
7 | 董艳. 卵巢早衰与脆性X智力障碍基因1CGG异常重复扩增相关性的研究进展[J]. 实用临床医药杂志, 2021, 25 (4): 121- 124. |
DONG Y . Research progress on the correlation between premature ovarian failure and abnormal expansion repeat of CGG of the fragile X mental retardation 1[J]. Journal of Clinical Medicine in Practice, 2021, 25 (4): 121- 124. | |
8 |
HERNÁNDEZ-CRUZ E , GONZÁLEZ-CABRIALES J J , ORDAZ-PICHARDO C , et al. Development of an immunobinding dot-blot assay as an alternative for the serodiagnosis of human cysticercosis[J]. J Helminthol, 2009, 83 (4): 333- 337.
doi: 10.1017/S0022149X09270866 |
9 | WALSH S W , WILLIAMS E J , EVANS A C O . A review of the causes of poor fertility in high milk producing dairy cows[J]. Anim Reprod Sci, 2011, 123 (3/4): 127- 138. |
10 | 陈守良. 动物生理学[M]. 北京: 北京大学出版社, 2002. |
CHEN S L . Animal physiology[M]. Beijing: Peking University Press, 2002. | |
11 |
KAWAHARA N , TSUCHIYA Y , ENDO N , et al. Relationship between ovarian ultrasonographic findings on the seventh post-estrus day and plasma progesterone concentration, nutritional metabolic factors, and pregnancy outcome in dairy cows[J]. J Reprod Dev, 2023, 69 (1): 41- 47.
doi: 10.1262/jrd.2022-110 |
12 |
YOTOV S , FASULKOV I , ATANASOV A , et al. Influence of ovarian status and steroid hormone concentration on day of timed artificial insemination (TAI) on the reproductive performance of dairy cows inseminated with sexed semen[J]. Animals, 2023, 13 (5): 896.
doi: 10.3390/ani13050896 |
13 | MIMOUNE N , AZZOUZ M Y , KHELEF D , et al. Ovarian cysts in cattle: a review[J]. Vet Stan, 2021, 52 (5): 587- 603. |
14 |
KESLER D J , GARVERICK H A . Ovarian cysts in dairy cattle: a review[J]. J Anim Sci, 1982, 55 (5): 1147- 1159.
doi: 10.2527/jas1982.5551147x |
15 |
NYABINWA P , KASHONGWE O B , HIRWA C D , et al. Effects of endometritis on reproductive performance of zero-grazed dairy cows on smallholder farms in Rwanda[J]. Anim Reprod Sci, 2020, 221, 106584.
doi: 10.1016/j.anireprosci.2020.106584 |
16 |
PASCAL N , BASOLE K O , D'ANDRE H C , et al. Risk factors associated with endometritis in zero-grazed dairy cows on smallholder farms in Rwanda[J]. Prev Vet Med, 2021, 188, 105252.
doi: 10.1016/j.prevetmed.2020.105252 |
17 |
BECKER A A M J , MUNDEN S , MCCABE E , et al. The endometrial Microbiota-16S rRNA gene sequence signatures in healthy, pregnant and endometritis dairy cows[J]. Vet Sci, 2023, 10 (3): 215.
doi: 10.3390/vetsci10030215 |
18 |
YAMA P , YADMAK C , SANGKATE M , et al. In vivo follicular and uterine arterial indices as an indicator of successful hormonal stimulation for inactive ovaries in repeat-breeder crossbred dairy cows using a short-term progesterone-based programme[J]. Animals, 2022, 12 (3): 292.
doi: 10.3390/ani12030292 |
19 |
KUMAR R , BUTANI M G , KAVANI F S , et al. Hormonal interventions to augment fertility and its effect on blood biochemical profile in crossbred cows[J]. Haya Saudi J Life Sci, 2020, 5 (9): 176- 181.
doi: 10.36348/sjls.2020.v05i09.005 |
20 | 萨姆布鲁克J, 拉塞尔D W. 分子克隆实验指南[M]. 黄培堂, 译. 北京: 科学出版社, 2002. |
SAMBROOK J, RUSSELL D W. Molecular cloning test guide[M]. HUANG P T, trans. Beijing: Science and Technology Press, 2002. (in Chinese) | |
21 | 曲苗, 孙亚伟, 闫向民, 等. 瘦素对西门塔尔牛屡配不孕的影响及与生殖激素相关性分析[J]. 西南农业学报, 2021, 34 (7): 1570- 1574. |
QU M , SUN Y W , YAN X M , et al. Effect of leptin on repeated infertility in simmental cattle and its correlation with reproductive hormones[J]. Southwest China Journal of Agricultural Sciences, 2021, 34 (7): 1570- 1574. | |
22 | ISLAM M R , ZAHAN M N , HOSSAIN H , et al. A cross sectional study on some aspects of reproduction scenario and prevalence of reproductive disorders in dairy cattle in Bangladesh[J]. Asian J Res Anim Vet Sci, 2022, 5 (3): 165- 173. |
23 |
ARISHIMA T , SASAKI S , ISOBE T , et al. Maternal variant in the upstream of FOXP3 gene on the X chromosome is associated with recurrent infertility in Japanese Black cattle[J]. BMC Genet, 2017, 18 (1): 103.
doi: 10.1186/s12863-017-0573-8 |
24 |
HORI S , NOMURA T , SAKAGUCHI S . Control of regulatory T cell development by the transcription factor Foxp3[J]. Science, 2003, 299 (5609): 1057- 1061.
doi: 10.1126/science.1079490 |
25 |
AMU S , SAUNDERS S P , KRONENBERG M , et al. Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model[J]. J Allergy Clin Immunol, 2010, 125 (5): 1114- 1124. e8.
doi: 10.1016/j.jaci.2010.01.018 |
26 | ANDERSEN K G , NISSEN J K , BETZ A G . Comparative genomics reveals key gain-of-function events in Foxp3 during regulatory T cell evolution[J]. Front Immunol, 2012, 3, 113. |
27 |
ROWE J H , ERTELT J M , XIN L J , et al. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen[J]. Nature, 2012, 490 (7418): 102- 106.
doi: 10.1038/nature11462 |
28 |
HOUDE A , LAMBERT A , SILVERSIDES D W , et al. Structure of the bovine follicle-stimulating hormone receptor complementary DNA and expression in bovine tissues[J]. Mol Reprod Dev, 1994, 39 (2): 127- 135.
doi: 10.1002/mrd.1080390202 |
29 |
THEMMEN A P N , HUHTANIEMI I T . Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function[J]. Endocr Rev, 2000, 21 (5): 551- 583.
doi: 10.1210/edrv.21.5.0409 |
30 | SIMONI M , GROMOLL J , NIESCHLAG E . The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology[J]. Endocr Rev, 1997, 18 (6): 739- 773. |
31 |
GEORGE J W , DILLE E A , HECKERT L L . Current concepts of follicle-stimulating hormone receptor gene regulation[J]. Biol Reprod, 2011, 84 (1): 7- 17.
doi: 10.1095/biolreprod.110.085043 |
32 |
YANG W C , TANG K Q , LI S J , et al. Polymorphisms of the bovine luteinizing hormone/choriogonadotropin receptor (LHCGR) gene and its association with superovulation traits[J]. Mol Biol Rep, 2012, 39 (3): 2481- 2487.
doi: 10.1007/s11033-011-0999-4 |
33 | DE VRIES A , MARCONDES M I . Review: Overview of factors affecting productive lifespan of dairy cows[J]. Animal, 2020, 14 (Suppl 1): s155- s164. |
34 |
ISLAM M S , TAKAGI M , LEE K W , et al. Frequency of an X-linked maternal variant of the bovine FOXP3 gene associated with infertility in different cattle breeds: a pilot study[J]. Animals, 2022, 12 (8): 1044.
doi: 10.3390/ani12081044 |
35 |
ABDELNABY E A . Hemodynamic changes evaluated by Doppler ultrasonographic technology in the ovaries and uterus of dairy cattle after the puerperium[J]. Reprod Biol, 2020, 20 (2): 202- 209.
doi: 10.1016/j.repbio.2020.03.001 |
36 |
MELAMPY R M , EMMERSON M A , RAKES J M , et al. The effect of progesterone on the estrous response of estrogen-conditioned ovariectomized cows[J]. J Anim Sci, 1957, 16 (4): 967- 975.
doi: 10.2527/jas1957.164967x |
37 |
GUTIÉRREZ-REINOSO M A , AGUILERA C J , NAVARRETE F , et al. Effects of extra-long-acting recombinant bovine FSH (bscrFSH) on cattle superovulation[J]. Animals, 2022, 12 (2): 153.
doi: 10.3390/ani12020153 |
38 |
VINEETH M R , GUPTA I D , VERMA A , et al. Identification of SNPs in coding sequence of PROP1 gene and their association with bull fertility in Sahiwal cattle[J]. Biol Rhythm Res, 2021, 52 (9): 1357- 1363.
doi: 10.1080/09291016.2019.1629092 |
39 |
YANG R C , DUAN C H , ZHANG S , et al. Prolactin regulates ovine ovarian Granulosa cell apoptosis by affecting the expression of MAPK12 gene[J]. Int J Mol Sci, 2023, 24 (12): 10269.
doi: 10.3390/ijms241210269 |
40 |
CAIROLI F , VIGO D , BATTOCCHIO M L , et al. 17β-estradiol, progesterone and testosterone concentrations in cystic fluids and response to GnRH treatment after emptying of ovarian cysts in dairy cows[J]. Reprod Domest Animals, 2002, 37 (5): 294- 298.
doi: 10.1046/j.1439-0531.2002.00355.x |
41 | 马菀笛, 范平, 刘宏伟, 等. ACE I/D基因变异对PCOS患者临床指标的影响[J]. 四川大学学报(医学版), 2021, 52 (5): 877- 882. |
MA W D , FAN P , LIU H W , et al. Clinical study of the impact of ACE I/D gene variation on the clinical parameters of patients with polycystic ovary syndrome[J]. Journal of Sichuan University (Medical Sciences), 2021, 52 (5): 877- 882. |
[1] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[2] | 张馨蕊, 付予, 马思佳, 杨卓, 陶金忠. 围产期奶牛生理调控与饲养管理[J]. 畜牧兽医学报, 2024, 55(6): 2325-2333. |
[3] | 冯肖艺, 张培培, 张航, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激对牛卵子及其胚胎表观遗传修饰与发育能力的影响[J]. 畜牧兽医学报, 2024, 55(6): 2460-2473. |
[4] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
[5] | 于有利, 王建东, 郭亚男, 张久盘, 薛峰, 曹钰莹. 鸟苷酸结合蛋白2b在牛分枝杆菌诱导巨噬细胞极化过程中的作用[J]. 畜牧兽医学报, 2024, 55(6): 2641-2651. |
[6] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[7] | 崔晟頔, 王凯, 赵真坚, 陈栋, 申琦, 余杨, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1945-1957. |
[8] | 陈丽丽, 赵康, 夏敏, 芦娜, 马毅. 不同出生季节对天津地区荷斯坦牛泌乳性能的影响[J]. 畜牧兽医学报, 2024, 55(5): 1970-1977. |
[9] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[10] | 黄金, 李思远, 毛立, 蔡旭航, 谢玲玲, 王府, 周华, 李基棕, 李彬. 牛冠状病毒S1蛋白的真核表达及间接ELISA方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(5): 2050-2060. |
[11] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[12] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[13] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[14] | 修豪宇, 李迎军, 原开敏, 汪超, 杨书含, 吕丽华, 王栋. 母牛发情期间躯体不同部位温度变化规律研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1381-1388. |
[15] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||