畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2460-2473.doi: 10.11843/j.issn.0366-6964.2024.06.018
冯肖艺1,2(), 张培培2, 张航2, 郝海生2, 杜卫华2, 朱化彬2, 崔凯1,*(
), 赵学明2,*(
)
收稿日期:
2023-10-16
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
崔凯,赵学明
E-mail:17806257712@163.com;qdndcuikai@163.com;zhaoxueming@caas.cn
作者简介:
冯肖艺(1999-),女,山东济南人,硕士生,主要从事动物繁殖研究,E-mail:17806257712@163.com
基金资助:
Xiaoyi FENG1,2(), Peipei ZHANG2, Hang ZHANG2, Haisheng HAO2, Weihua DU2, Huabin ZHU2, Kai CUI1,*(
), Xueming ZHAO2,*(
)
Received:
2023-10-16
Online:
2024-06-23
Published:
2024-06-28
Contact:
Kai CUI, Xueming ZHAO
E-mail:17806257712@163.com;qdndcuikai@163.com;zhaoxueming@caas.cn
摘要:
旨在探究热应激对牛卵子及其胚胎表观遗传修饰与发育能力的影响。本研究将卵子置于体外热应激条件下培养(41℃ 12 h+38.5℃ 12 h),进行体外成熟(in vitro maturtion,IVM)和体外受精(in vitro fertilization,IVF),检测对照组(38.5℃ 24 h)和热应激组牛卵子和胚胎的发育能力及表观遗传修饰组蛋白H1、组蛋白H2、组蛋白H4和DNA甲基化的修饰水平。本研究还检测了卵子活性氧(reactive oxygen species,ROS)水平、线粒体膜电位(mitochondrial membrane potential,ΔΨm)水平及与表观遗传修饰和发育能力相关基因的表达水平。结果表明,热应激处理组卵子成熟率((59.21±4.29)%)、卵裂率((57.78±4.58)%)和囊胚率((22.31±1.67)%)均显著低于对照组((85.10±6.75)%、(78.64±2.46)%、(42.64±1.38)%,P < 0.05);热应激组牛卵子及各阶段胚胎表观遗传修饰组蛋白H1、组蛋白H2、组蛋白H4、DNA甲基化水平显著低于对照组(P < 0.05);热应激组牛卵子ΔΨm水平显著低于对照组(P < 0.05);热应激组牛卵子ROS水平显著高于对照组(P < 0.05);热应激组牛卵子表观遗传修饰相关基因DNMT1、DNMT3A、DNMT3B、Histone H2A、SMYD3、IGF-2R的mRNA表达水平显著低于对照组(P < 0.05);热应激组牛卵子发育能力相关基因C-MOS、GDF-9和POU5F1的mRNA表达水平显著低于对照组(P < 0.05)。本研究表明,热应激显著降低了牛卵子和胚胎表观遗传修饰组蛋白H1、组蛋白H2、组蛋白H4、DNA甲基化水平,显著降低了牛卵子ΔΨm水平及与表观遗传修饰和发育能力相关基因的mRNA表达水平,显著提高了ROS水平,降低了卵子质量。
中图分类号:
冯肖艺, 张培培, 张航, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激对牛卵子及其胚胎表观遗传修饰与发育能力的影响[J]. 畜牧兽医学报, 2024, 55(6): 2460-2473.
Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Haisheng HAO, Weihua DU, Huabin ZHU, Kai CUI, Xueming ZHAO. Effects of Heat Stress on Epigenetic Modifications and Developmental Competence of Bovine Oocytes and Their Embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2460-2473.
表 1
实时荧光定量PCR引物序列"
基因 Gene | 引物序列(5′→3′) Primers sequence | 产物长度/bp Length | 登录号 GenBank accession No. |
GAPDH | F:GGGTCATCATCTCTGCACC | 177 | NM_001034034 |
R:GGTCATAAGTCCCTCCACG | |||
DNMT1 | F: AGTGGGGGACTGTGTTTCTG | 218 | XM_015471992.2 |
R: TGCTGTGGATGTACGAGAGC | |||
DNMT3A | F: AGCACAACGGAGAAGCCTAA | 245 | NM_001206502.2 |
R: CAGCAGATGGTGCAGTAGGA | |||
DNMT3B | F: GAGAATAAGACGCGGAGACG | 146 | NM_181813.2 |
R: ACATCCGAAGCCATTTGTTC | |||
Histone H2A | F: GCGGTCTTGGAGTACCTGAC | 204 | BF076713.1 |
R: AGTCTTCTTCGGGAGCAACA | |||
IGF-2R | F: GTCGTGCAGATCAGTCCTCA | 152 | NM_174352.2 |
R: TCGTTCTGGAGCTGAAAGGT | |||
SMYD3 | F: GACCATGGAGCCTTACAGGA | 135 | NM_001076406.2 |
R: TCAAAAGCCAGCCTCAGATT | |||
C-MOS | F:TCTACTCCTTCGCCATCACC | 260 | XM_002692654.4 |
R:GAGTCCTCCCAGCTCCTCTT | |||
GDF-9 | F:CTTTGCCTGGCTCTGTTTTC | 116 | NM_174681.2 |
R:GAGTCCTCCCAGCTCCTCTT | |||
POU5F1 | F:GTTTTGAGGCTTTGCAGCTC | 182 | NM_174580.3 |
R:CTCCAGGTTGCCTCTCACTC |
1 |
WANKARA K,RINDHES N,DOIJADN S.Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario[J].Trop Anim Health Prod,2021,53(1):70.
doi: 10.1007/s11250-020-02541-x |
2 |
HUBERE,NOTAROU S,RECCES,et al.Fetal programming in dairy cows: effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions[J].Anim Reprod Sci,2020,216,106348.
doi: 10.1016/j.anireprosci.2020.106348 |
3 |
BECKERC A,COLLIERR J,STONEA E.Invited review: physiological and behavioral effects of heat stress in dairy cows[J].J Dairy Sci,2020,103(8):6751-6770.
doi: 10.3168/jds.2019-17929 |
4 |
NARANJO-GOMEZJ S,URIBE-GARCIAH F,HERRERA-SANCHEZM P,et al.Heat stress on cattle embryo: gene regulation and adaptation[J].Heliyon,2021,7(3):e06570.
doi: 10.1016/j.heliyon.2021.e06570 |
5 |
DE AGUIARL H,HYDEK A,PEDROZAG H,et al.Heat stress impairs in vitro development of preantral follicles of cattle[J].Anim Reprod Sci,2020,213,106277.
doi: 10.1016/j.anireprosci.2020.106277 |
6 |
WANGJ J,LIJ H,WANGF X,et al.Heat stress on calves and heifers: a review[J].J Anim Sci Biotechnol,2020,11,79.
doi: 10.1186/s40104-020-00485-8 |
7 |
SAKATANIM.Effects of heat stress on bovine preimplantation embryos produced in vitro[J].J Reprod Dev,2017,63(4):347-352.
doi: 10.1262/jrd.2017-045 |
8 |
DE BARROSF R O,PAULA-LOPESF F.Cellular and epigenetic changes induced by heat stress in bovine preimplantation embryos[J].Mol Reprod Dev,2018,85(11):810-820.
doi: 10.1002/mrd.23040 |
9 |
MI TKIEWSKAK,KORDOWITZKIP,PAREEKC S.Effects of heat stress on bovine oocytes and early embryonic development-an update[J].Cells,2022,11(24):4073.
doi: 10.3390/cells11244073 |
10 | MAREI W F A, LEROY J L M R. Cellular stress responses in oocytes: molecular changes and clinical implications[M]// TURKSEN K. Cell Biology and Translational Medicine. Cham: Springer, 2022: 171-189. |
11 |
STAMPERNAK,GIANNOULIST,NANASI,et al.Short term temperature elevation during IVM affects embryo yield and alters gene expression pattern in oocytes, cumulus cells and blastocysts in cattle[J].Theriogenology,2020,156,36-45.
doi: 10.1016/j.theriogenology.2020.06.039 |
12 | DOHERTYR,O'FARRELLYC,MEADEK G.Comparative epigenetics: relevance to the regulation of production and health traits in cattle[J].Anim Genet,2014,45 Suppl 1,3-14. |
13 |
WANGM Q,IBEAGHA-AWEMUE M.Impacts of epigenetic processes on the health and productivity of livestock[J].Front Genet,2021,11,613636.
doi: 10.3389/fgene.2020.613636 |
14 |
CHENH H,ZHANGL,DENGT F,et al.Effects of oocyte vitrification on epigenetic status in early bovine embryos[J].Theriogenology,2016,86(3):868-878.
doi: 10.1016/j.theriogenology.2016.03.008 |
15 |
VAN ESCHB C A M,PORBAHAIEM,ABBRINGS,et al.The impact of milk and its components on epigenetic programming of immune function in early life and beyond: implications for allergy and asthma[J].Front Immunol,2020,11,2141.
doi: 10.3389/fimmu.2020.02141 |
16 |
HALUŠKOVÁJ,HOLEČKOVÁB,STANIČOVÁJ.DNA methylation studies in cattle[J].J Appl Genet,2021,62(1):121-136.
doi: 10.1007/s13353-020-00604-1 |
17 |
YANR,CHENGX,GUC,et al.Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development[J].Nat Genet,2023,55(1):130-143.
doi: 10.1038/s41588-022-01258-x |
18 |
ANDREWSS,KRUEGERC,MELLADO-LOPEZM,et al.Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B[J].Nat Commun,2023,14(1):371.
doi: 10.1038/s41467-023-36019-9 |
19 |
BRACKETTB G,OLIPHANTG.Capacitation of rabbit spermatozoa in vitro[J].Biol Reprod,1975,12(2):260-274.
doi: 10.1095/biolreprod12.2.260 |
20 |
DIAZF A,GUTIERREZ-CASTILLOE J,FOSTERB A,et al.Evaluation of seasonal heat stress on transcriptomic profiles and global DNA methylation of bovine oocytes[J].Front Genet,2021,12,699920.
doi: 10.3389/fgene.2021.699920 |
21 | LEEJ,KIMD,SONJ,et al.Effects of heat stress on conception in Holstein and Jersey cattle and oocyte maturation in vitro[J].J Anim Sci Techno,2023,65(2):324-335. |
22 |
PAYTONR R,ROMARR,COYP,et al.Susceptibility of bovine germinal vesicle-stage oocytes from antral follicles to direct effects of heat stress in vitro[J].Biol Reprod,2004,71(4):1303-1308.
doi: 10.1095/biolreprod.104.029892 |
23 | KHANI,MESALAMA,HEOY S,et al.Heat stress as a barrier to successful reproduction and potential alleviation strategies in cattle[J].Animals (Basel),2023,13(14):2359. |
24 |
ROTHZ.Symposium review: reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function[J].J Dairy Sci,2018,101(4):3642-3654.
doi: 10.3168/jds.2017-13389 |
25 |
ROTHZ,HANSENP J.Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation[J].Biol Reprod,2004,71(6):1898-1906.
doi: 10.1095/biolreprod.104.031690 |
26 |
SMITHZ D,MEISSNERA.DNA methylation: roles in mammalian development[J].Nat Rev Genet,2013,14(3):204-220.
doi: 10.1038/nrg3354 |
27 |
ZHUJ Q,LIUJ H,LIANGX W,et al.Heat stress causes aberrant DNA methylation of H19 and Igf-2r in mouse blastocysts[J].Mol Cells,2008,25(2):211-215.
doi: 10.1016/S1016-8478(23)17572-8 |
28 |
LIS,SHIY,DANGY N,et al.Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure[J].Biol Reprod,2022,107(6):1425-1438.
doi: 10.1093/biolre/ioac167 |
29 |
FUG,GHADAMP,SIROTKINA,et al.Mouse oocytes and early embryos express multiple histone H1 subtypes[J].Biol Reprod,2003,68(5):1569-1576.
doi: 10.1095/biolreprod.102.012336 |
30 |
FUNAYAS,OOGAM,SUZUKIM G,et al.Linker histone H1FOO regulates the chromatin structure in mouse zygotes[J].FEBS Lett,2018,592(14):2414-2424.
doi: 10.1002/1873-3468.13175 |
31 |
JOOH Y,JONESA,YANGC Y,et al.Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46[J].J Biol Chem,2011,286(9):7190-7201.
doi: 10.1074/jbc.M110.158311 |
32 |
RINALDOC,MONCADAA,GRADIA,et al.HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody[J].Mol Cell,2012,47(1):87-98.
doi: 10.1016/j.molcel.2012.04.029 |
33 |
DE LA BARREA E,ANGELOVD,MOLLAA,et al.The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation[J].EMBO J,2001,20(22):6383-6393.
doi: 10.1093/emboj/20.22.6383 |
34 |
KAFERG R,LEHNERTS A,PANTALEONM,et al.Expression of genes coding for histone variants and histone-associated proteins in pluripotent stem cells and mouse preimplantation embryos[J].Gene Expr Patterns,2010,10(6):299-305.
doi: 10.1016/j.gep.2010.06.003 |
35 |
IZUMIY,MATSUOK,YOKOYAA.Secondary structural analyses of histone H2A-H2B proteins extracted from heated cells[J].Chirality,2023,35(3):165-171.
doi: 10.1002/chir.23529 |
36 |
FREEMANL,KURUMIZAKAH,WOLFFEA P.Functional domains for assembly of histones H3 and H4 into the chromatin of Xenopus embryos[J].Proc Natl Acad Sci U S A,1996,93(23):12780-12785.
doi: 10.1073/pnas.93.23.12780 |
37 |
GHULEP N,XIER L,COLBYJ L,et al.Maternal expression and early induction of histone gene transcription factor Hinfp sustains development in pre-implantation embryos[J].Dev Biol,2016,419(2):311-320.
doi: 10.1016/j.ydbio.2016.09.003 |
38 |
ENDOT,IMAIA,SHIMAOKAT,et al.Histone exchange activity and its correlation with histone acetylation status in porcine oocytes[J].Reproduction,2011,141(4):397-405.
doi: 10.1530/REP-10-0164 |
39 |
ROZINEKJ,MULLERS,COURTENSJ L.Immunocytochemical localization of histones H2B, H3 and H4 in pronuclei and four-cell stages of porcine embryos.Preliminary results[J].Reprod Nutr Dev,1989,29(5):577-587.
doi: 10.1051/rnd:19890507 |
40 |
WEEG,KOOD B,SONGB S,et al.Inheritable histone H4 acetylation of somatic chromatins in cloned embryos[J].J Biol Chem,2006,281(9):6048-6057.
doi: 10.1074/jbc.M511340200 |
41 |
TESSADORIF,GILTAYJ C,HURSTJ A,et al.Germline mutations affecting the histone H4 core cause a developmental syndrome by altering DNA damage response and cell cycle control[J].Nat Genet,2017,49(11):1642-1646.
doi: 10.1038/ng.3956 |
42 |
SANTOSF,DEANW.Epigenetic reprogramming during early development in mammals[J].Reproduction,2004,127(6):643-651.
doi: 10.1530/rep.1.00221 |
43 |
LIANGY,FUX W,LIJ J,et al.DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: effect of oocyte vitrification[J].Zygote,2014,22(2):138-145.
doi: 10.1017/S0967199412000512 |
44 |
WANGL J,LIUL X,WANGY S,et al.Aberrant epigenetic reprogramming in the first cell cycle of bovine somatic cell nuclear transfer embryos[J].Cell Reprogram,2021,23(2):99-107.
doi: 10.1089/cell.2020.0079 |
45 |
ZHUL K,MARJANIS L,JIANGZ L.The epigenetics of gametes and early embryos and potential long-range consequences in livestock species—filling in the picture with epigenomic analyses[J].Front Genet,2021,12,557934.
doi: 10.3389/fgene.2021.557934 |
46 |
DOBBSK B,RODRIGUEZM,SUDANOM J,et al.Dynamics of DNA methylation during early development of the preimplantation bovine embryo[J].PLoS One,2013,8(6):e66230.
doi: 10.1371/journal.pone.0066230 |
47 |
NABENISHIH,TAKAGIS,KAMATAH,et al.The role of mitochondrial transition pores on bovine oocyte competence after heat stress, as determined by effects of cyclosporin A[J].Mol Reprod Dev,2012,79(1):31-40.
doi: 10.1002/mrd.21401 |
48 | GENDELMANM,ROTHZ.Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence[J].Biol Reprod,2012,87(5):118. |
49 |
VAN BLERKOMJ.Mitochondrial function in the human oocyte and embryo and their role in developmental competence[J].Mitochondrion,2011,11(5):797-813.
doi: 10.1016/j.mito.2010.09.012 |
50 |
SOTOP,SMITHL C.BH4 peptide derived from Bcl-xL and Bax-inhibitor peptide suppresses apoptotic mitochondrial changes in heat stressed bovine oocytes[J].Mol Reprod Dev,2009,76(7):637-646.
doi: 10.1002/mrd.20986 |
51 |
ZHAOX M,DUW H,WANGD,et al.Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes[J].Fertil Steril,2011,95(8):2786-2788.
doi: 10.1016/j.fertnstert.2011.04.089 |
52 |
YAACOBI-ARTZIS,SHIMONIC,KALOD,et al.Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts[J].Theriogenology,2020,158,477-489.
doi: 10.1016/j.theriogenology.2020.09.039 |
53 |
ROTHZ.Physiology and endocrinology symposium: cellular and molecular mechanisms of heat stress related to bovine ovarian function[J].J Anim Sci,2015,93(5):2034-2044.
doi: 10.2527/jas.2014-8625 |
54 |
ZHANGH,GONGW B,WUS,et al.Hsp70 in redox homeostasis[J].Cells,2022,11(5):829.
doi: 10.3390/cells11050829 |
55 |
DE CASTRO CAVALLARIF,LEALC L V,ZVIR,et al.Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation[J].Zygote,2019,27(3):180-186.
doi: 10.1017/S0967199419000236 |
56 | HIENDLEDERS,ZAKHARTCHENKOV,WOLFE.Mitochondria and the success of somatic cell nuclear transfer cloning: from nuclear-mitochondrial interactions to mitochondrial complementation and mitochondrial DNA recombination[J].Reprod Fertil Dev,2005,17(1/2):69-83. |
57 |
PAVANIK C,BARONE,CORREIAP,et al.Gene expression, oocyte nuclear maturation and developmental competence of bovine oocytes and embryos produced after in vivo and in vitro heat shock[J].Zygote,2016,24(5):748-759.
doi: 10.1017/S0967199416000071 |
58 |
GOLDINGM C,WESTHUSINM E.Analysis of DNA (cytosine 5) methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues[J].Gene Expr Patterns,2003,3(5):551-558.
doi: 10.1016/S1567-133X(03)00121-2 |
59 |
URREGOR,BERNAL-ULLOAS M,CHAVARRIAN A,et al.Satellite DNA methylation status and expression of selected genes in Bos indicus blastocysts produced in vivo and in vitro[J].Zygote,2017,25(2):131-140.
doi: 10.1017/S096719941600040X |
60 |
BETTEGOWDAA,PATELO V,IRELANDJ J,et al.Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, β-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, β-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro[J].Mol Reprod Dev,2006,73(3):267-278.
doi: 10.1002/mrd.20333 |
61 | LONGJ E,CAIX.Igf-2r expression regulated by epigenetic modification and the locus of gene imprinting disrupted in cloned cattle[J].Gene,2007,388(1/2):125-134. |
62 |
BAIH D,LIY,GAOH X,et al.Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development[J].Cytotechnology,2016,68(4):849-859.
doi: 10.1007/s10616-014-9838-5 |
63 |
GILCHRISTR B,LANEM,THOMPSONJ G.Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality[J].Hum Reprod Update,2008,14(2):159-177.
doi: 10.1093/humupd/dmm040 |
[1] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[2] | 张馨蕊, 付予, 马思佳, 杨卓, 陶金忠. 围产期奶牛生理调控与饲养管理[J]. 畜牧兽医学报, 2024, 55(6): 2325-2333. |
[3] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
[4] | 于有利, 王建东, 郭亚男, 张久盘, 薛峰, 曹钰莹. 鸟苷酸结合蛋白2b在牛分枝杆菌诱导巨噬细胞极化过程中的作用[J]. 畜牧兽医学报, 2024, 55(6): 2641-2651. |
[5] | 王选艺, 孙亚伟, 龙雨薇, 王俪颖, 周渝新, 李娜, 马雪连, 赵红琼, 姚刚. 屡配不孕母牛FOXP3、FSHR、FMR1基因多态性与生殖激素相关性分析[J]. 畜牧兽医学报, 2024, 55(6): 2727-2740. |
[6] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[7] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[8] | 陈丽丽, 赵康, 夏敏, 芦娜, 马毅. 不同出生季节对天津地区荷斯坦牛泌乳性能的影响[J]. 畜牧兽医学报, 2024, 55(5): 1970-1977. |
[9] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[10] | 黄金, 李思远, 毛立, 蔡旭航, 谢玲玲, 王府, 周华, 李基棕, 李彬. 牛冠状病毒S1蛋白的真核表达及间接ELISA方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(5): 2050-2060. |
[11] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[12] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[13] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[14] | 修豪宇, 李迎军, 原开敏, 汪超, 杨书含, 吕丽华, 王栋. 母牛发情期间躯体不同部位温度变化规律研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1381-1388. |
[15] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||