畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5398-5411.doi: 10.11843/j.issn.0366-6964.2024.12.007
吕岱玥1,2(), 陈延飞1, 翟天舒1, 曹胜波2, 薛青红1,*(
)
收稿日期:
2024-01-25
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
薛青红
E-mail:2541931135@qq.com;732574709@qq.com
作者简介:
吕岱玥(1998-), 女, 陕西咸阳人, 博士, 主要从事微生物与免疫学研究, E-mail: 2541931135@qq.com
基金资助:
LÜ Daiyue1,2(), CHEN Yanfei1, ZHAI Tianshu1, CAO Shengbo2, XUE Qinghong1,*(
)
Received:
2024-01-25
Online:
2024-12-23
Published:
2024-12-27
Contact:
XUE Qinghong
E-mail:2541931135@qq.com;732574709@qq.com
摘要:
近年来,随着人口的快速增长,国际贸易日益频繁,由未知病毒感染引起的新发传染病对人类健康、畜牧业的发展以及公共卫生安全的威胁正在不断增加。因此快速、精确地监测和检测新发病毒是控制和预防传染病疫情最有效的方法之一。传统的病毒检测方法操作简单、技术要求低,但在准确性、时效性等方面存在较多局限。而利用适宜的分子生物学方法及测序技术可直接从临床样本中检测未知病毒,这对于病原的快速识别并及时发现新型病毒具有重要意义。本文综述了近年来应用于新发病毒检测的方法及测序技术的基本原理、发展情况和应用领域,分析比较其差异及优缺点,以供读者参考。
中图分类号:
吕岱玥, 陈延飞, 翟天舒, 曹胜波, 薛青红. 新发病毒检测方法与测序技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(12): 5398-5411.
LÜ Daiyue, CHEN Yanfei, ZHAI Tianshu, CAO Shengbo, XUE Qinghong. Research Progress and Application of Emerging Virus Detection Methods and Sequencing Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5398-5411.
表 1
新发病毒分子生物学检测方法的优缺点及其应用"
方法 Method | 主要原理 Main principles | 优、缺点 Advantage, disadvantage | 主要应用 Main application |
变性寡核苷酸引物PCR DOP-PCR | 部分随机引物法 | 对模板质量要求低,操作简单。但扩增产物平均长度较短,基因组覆盖率低 | 可鉴定未知DNA、RNA 病毒序列 |
滚环复制技术 RCA | 自然滚环复制的简化衍生 | 高灵敏度,高序列特异性,无需制定引物,高通量,操作方便。但合成费用较高,信号检测时存在背景干扰问题 | 可鉴定未知环状DNA 病毒序列 |
多重置换扩增技术 MDA | φ29 DNA聚合酶的链置换机制 | 技术操作简单、产物质量稳定。但对模板质量要求高 | 可鉴定未知线状DNA 病毒序列 |
代表性差异分析 RDA | 基因组的消减杂交 | 具有较高的灵敏度,无需文库的筛选,可重复性好。但操作过程相对繁琐复杂,实验周期长,会出现假阳性结果 | 可鉴定未知DNA、RNA 病毒序列 |
序列非依赖的单引物扩增 SISPA | 平末端连接扩增 | 不依赖于组织培养,可用于不同类型的临床样本。 但样品中存在其他污染序列,而且价格昂贵 | 可鉴定未知DNA、RNA 病毒序列 |
cDNA扩增片段长度多态性 VIDISCA | 一种SISPA衍生方法 | 灵敏度较高 | 可鉴定未知DNA、RNA 病毒序列 |
随机引物PCR AP-PCR | 随机引物法 | 对模板DNA的纯度要求不高;技术简单;灵敏度高,可提供丰富的多态性但随机引物PCR技术易受外界因素的影响,且扩增产物的稳定性较低 | 可鉴定未知DNA、RNA 病毒序列 |
表达cDNA文库 cDNA library | 特异性表位筛选与鉴定 | 耗时长且阳性率低 | 可鉴定未知RNA 病毒序列 |
1 |
MARRA M A , JONES S J M , ASTELL C R , et al. The genome sequence of the SARS-associated coronavirus[J]. Science, 2003, 300 (5624): 1399- 1404.
doi: 10.1126/science.1085953 |
2 |
HANDELSMAN J , RONDON M R , BRADY S F , et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products[J]. Chem Biol, 1998, 5 (10): R245- R249.
doi: 10.1016/S1074-5521(98)90108-9 |
3 |
EDWARDS R A , ROHWER F . Viral metagenomics[J]. Nat Rev Microbiol, 2005, 3 (6): 504- 510.
doi: 10.1038/nrmicro1163 |
4 |
THURBER R V , HAYNES M , BREITBART M , et al. Laboratory procedures to generate viral metagenomes[J]. Nat Protoc, 2009, 4 (4): 470- 483.
doi: 10.1038/nprot.2009.10 |
5 | 张雨青, 曹佳宝, 赵娜, 等. 病毒组研究: 微生物组研究新热点[J]. 生物工程学报, 2020, 36 (12): 2566- 2581. |
ZHANG Y Q , CAO J B , ZHAO N , et al. Virome: the next hotspot in microbiome research[J]. Chinese Journal of Biotechnology, 2020, 36 (12): 2566- 2581. | |
6 |
CONCEIÇÃO-NETO N , ZELLER M , LEFRōRE H , et al. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis[J]. Scientific Reports, 2015, 5, 16532.
doi: 10.1038/srep16532 |
7 | KHAN A S , NG S H S , VANDEPUTTE O , et al. A multicenter study to evaluate the performance of high-throughput sequencing for virus detection[J]. mSphere, 2017, 2 (5): e00307- 17. |
8 |
NG S H , BRAXTON C , ELOIT M , et al. Current perspectives on high-throughput sequencing (HTS) for adventitious virus detection: upstream sample processing and library preparation[J]. Viruses, 2018, 10 (10): 566.
doi: 10.3390/v10100566 |
9 |
TELENIUS H , PONDER B A J , TUNNACLIFFE A , et al. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes[J]. Genes Chromosomes Cancer, 1992, 4 (3): 257- 263.
doi: 10.1002/gcc.2870040311 |
10 |
TELENIUS H K , CARTER N P , BEBB C E , et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer[J]. Genomics, 1992, 13 (3): 718- 725.
doi: 10.1016/0888-7543(92)90147-K |
11 |
NANDA S , JAYAN G , VOULGAROPOULOU F , et al. Universal virus detection by degenerate-oligonucleotide primed polymerase chain reaction of purified viral nucleic acids[J]. J Virol Methods, 2008, 152 (1-2): 18- 24.
doi: 10.1016/j.jviromet.2008.06.007 |
12 |
UHLENHAUT C , COHEN J I , PAVLETIC S , et al. Use of a novel virus detection assay to identify coronavirus HKU1 in the lungs of a hematopoietic stem cell transplant recipient with fatal pneumonia[J]. Transpl Infect Dis, 2012, 14 (1): 79- 85.
doi: 10.1111/j.1399-3062.2011.00657.x |
13 |
UHLENHAUT C , COHEN J I , FEDORKO D , et al. Use of a universal virus detection assay to identify human metapneumovirus in a hematopoietic stem cell transplant recipient with pneumonia of unknown origin[J]. J Clin Virol, 2009, 44 (4): 337- 339.
doi: 10.1016/j.jcv.2009.01.011 |
14 |
MCCLENAHAN S D , SCHERBA G , BORST L , et al. Discovery of a bovine enterovirus in alpaca[J]. PLoS One, 2013, 8 (8): e68777.
doi: 10.1371/journal.pone.0068777 |
15 |
ARTHUR J L , HIGGINS G D , DAVIDSON G P , et al. A novel bocavirus associated with acute gastroenteritis in Australian children[J]. PLoS Pathog, 2009, 5 (4): e1000391.
doi: 10.1371/journal.ppat.1000391 |
16 | 陈玉静. 未知RNA病毒性病原体序列非依赖性单引物扩增技术的建立及应用[D]. 石家庄: 河北医科大学, 2016. |
CHEN Y J. Establishment and application of sequence independent single primer amplification technology of unknown RNA viral pathogens[D]. Shijiazhuang: Hebei Medical University, 2016. (in Chinese) | |
17 |
BANÉR J , NILSSON M , MENDEL-HARTVIG M , et al. Signal amplification of padlock probes by rolling circle replication[J]. Nucleic Acids Res, 1998, 26 (22): 5073- 5078.
doi: 10.1093/nar/26.22.5073 |
18 |
MOHSEN M G , KOOL E T . The discovery of rolling circle amplification and rolling circle transcription[J]. Acc Chem Res, 2016, 49 (11): 2540- 2550.
doi: 10.1021/acs.accounts.6b00417 |
19 |
ALI M M , LI F , ZHANG Z Q , et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine[J]. Chem Soc Rev, 2014, 43 (10): 3324- 3341.
doi: 10.1039/c3cs60439j |
20 |
JOHNE R , MÜLLER H , RECTOR A , et al. Rolling-circle amplification of viral DNA genomes using phi29 polymerase[J]. Trends Microbiol, 2009, 17 (5): 205- 211.
doi: 10.1016/j.tim.2009.02.004 |
21 | 张俊, 曾照芳. 滚环扩增技术的原理及其应用的研究[J]. 生物信息学, 2012, 10 (1): 12- 14. |
ZHANG J , ZENG Z F . Principle of rolling circle amplification and its discussion in application[J]. Chinese Journal of Bioinformatics, 2012, 10 (1): 12- 14. | |
22 |
LIZARDI P M , HUANG X H , ZHU Z R , et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification[J]. Nat Genet, 1998, 19 (3): 225- 232.
doi: 10.1038/898 |
23 |
DEAN F B , NELSON J R , GIESLER T L , et al. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification[J]. Genome Res, 2001, 11 (6): 1095- 1099.
doi: 10.1101/gr.180501 |
24 |
LI J J , PAN Y Q , DENG Q J , et al. Identification and characterization of eleven novel human gamma-papillomavirus isolates from healthy skin, found at low frequency in a normal population[J]. PLoS One, 2013, 8 (10): e77116.
doi: 10.1371/journal.pone.0077116 |
25 | NIEL C , DINIZ-MENDES L , DEVALLE S . Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup[J]. J Gen Virol, 2005, 86 (Pt 5): 1343- 1347. |
26 |
DA SILVA F R C , CIBULSKI S P , DAUDT C , et al. Novel bovine papillomavirus type discovered by rolling-circle amplification coupled with next-generation sequencing[J]. PLoS One, 2016, 11 (9): e0162345.
doi: 10.1371/journal.pone.0162345 |
27 |
DEAN F B , HONSONO S , FANG L H , et al. Comprehensive human genome amplification using multiple displacement amplification[J]. Proc Natl Acad Sci U S A, 2002, 99 (8): 5261- 5266.
doi: 10.1073/pnas.082089499 |
28 | 杨华昕, 丁梅, 王保捷, 等. 多重置换扩增技术及其法医学应用展望[J]. 中国法医学杂志, 2012, 27 (5): 379- 382. |
YANG H X , DING M , WANG B J , et al. Multiple displacement amplification and its application prospect in forensic science[J]. Chinese Journal of Forensic Medicine, 2012, 27 (5): 379- 382. | |
29 |
ANGLY F E , FELTS B , BREITBART M , et al. The marine viromes of four oceanic regions[J]. PLoS Biol, 2006, 4 (11): e368.
doi: 10.1371/journal.pbio.0040368 |
30 |
WILLNER D , FURLAN M , HAYNES M , et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals[J]. PLoS One, 2009, 4 (10): e7370.
doi: 10.1371/journal.pone.0007370 |
31 |
NG T F F , MANIRE C , BORROWMAN K , et al. Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics[J]. J Virol, 2009, 83 (6): 2500- 2509.
doi: 10.1128/JVI.01946-08 |
32 |
SUN Y , QU Y G , YAN X M , et al. Comprehensive evaluation of RNA and DNA viromic methods based on species richness and abundance analyses using marmot rectal samples[J]. mSystems, 2022, 7 (4): e0043022.
doi: 10.1128/msystems.00430-22 |
33 |
KIM K H , CHANG H W , NAM Y D , et al. Amplification of uncultured single-stranded DNA viruses from rice paddy soil[J]. Appl Environ Microbiol, 2008, 74 (19): 5975- 5985.
doi: 10.1128/AEM.01275-08 |
34 |
PARRAS-MOLTÓ M , RODRÍGUEZ-GALET A , SUÁREZ-RODRÍGUEZ P , et al. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses[J]. Microbiome, 2018, 6 (1): 119.
doi: 10.1186/s40168-018-0507-3 |
35 |
RHEE M , LIGHT Y K , MEAGHER R J , et al. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples[J]. PLoS One, 2016, 11 (5): e0153699.
doi: 10.1371/journal.pone.0153699 |
36 |
DIREITO S O L , ZAURA E , LITTLE M , et al. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification[J]. Environ Microbiol, 2014, 16 (3): 643- 657.
doi: 10.1111/1462-2920.12365 |
37 |
PICHER Á J , BUDEUS B , WAFZIG O , et al. TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol[J]. Nat Commun, 2016, 7, 13296.
doi: 10.1038/ncomms13296 |
38 |
LISITSYN N , LISITSYN N , WIGLER M . Cloning the differences between two complex genomes[J]. Science, 1993, 259 (5097): 946- 951.
doi: 10.1126/science.8438152 |
39 |
HUBANK M , SCHATZ D G . Identifying differences in mRNA expression by representational difference analysis of cDNA[J]. Nucleic Acids Res, 1994, 22 (25): 5640- 5648.
doi: 10.1093/nar/22.25.5640 |
40 |
BRATANICH A C , ELLIS J A , BLANCHETOT A . Representational differential analysis detects amplification of satellite sequences in postweaning multisystemic wasting syndrome of pigs[J]. J Vet Diagn Invest, 2000, 12 (4): 328- 331.
doi: 10.1177/104063870001200405 |
41 |
SIMONS J N , PILOT-MATIAS T J , LEARY T P , et al. Identification of two flavivirus-like genomes in the GB hepatitis agent[J]. Proc Natl Acad Sci U S A, 1995, 92 (8): 3401- 3405.
doi: 10.1073/pnas.92.8.3401 |
42 |
NISHIZAWA T , OKAMOTO H , KONISHI K , et al. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology[J]. Biochem Biophys Res Commun, 1997, 241 (1): 92- 97.
doi: 10.1006/bbrc.1997.7765 |
43 | 沈倍奋. 分子文库[M]. 北京: 科学出版社, 2001. |
SHEN B F . Molecular library[M]. Beijing: Science Press, 2001. | |
44 |
ALLANDER T , EMERSON S U , ENGLE R E , et al. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species[J]. Proc Natl Acad Sci U S A, 2001, 98 (20): 11609- 11614.
doi: 10.1073/pnas.211424698 |
45 |
JONES M S , KAPOOR A , LUKASHOV V V , et al. New DNA viruses identified in patients with acute viral infection syndrome[J]. J Virol, 2005, 79 (13): 8230- 8236.
doi: 10.1128/JVI.79.13.8230-8236.2005 |
46 |
REYES G R , KIM J P . Sequence-independent, single-primer amplification (SISPA) of complex DNA populations[J]. Mol Cell Probes, 1991, 5 (6): 473- 481.
doi: 10.1016/S0890-8508(05)80020-9 |
47 |
DJIKENG A , HALPIN R , KUZMICKAS R , et al. Viral genome sequencing by random priming methods[J]. BMC Genomics, 2008, 9, 5.
doi: 10.1186/1471-2164-9-5 |
48 | BIAGINI P , UCH R , BELHOUCHET M , et al. Circular genomes related to anelloviruses identified in human and animal samples by using a combined rolling-circle amplification/sequence-independent single primer amplification approach[J]. J Gen Virol, 2007, 88 (Pt 10): 2696- 2701. |
49 |
VAN DER HOEK L , PYRC K , JEBBINK M F , et al. Identification of a new human coronavirus[J]. Nat Med, 2004, 10 (4): 368- 373.
doi: 10.1038/nm1024 |
50 |
SRIDHAR S , TO K K W , CHAN J F W , et al. A systematic approach to novel virus discovery in emerging infectious disease outbreaks[J]. J Mol Diagn, 2015, 17 (3): 230- 241.
doi: 10.1016/j.jmoldx.2014.12.002 |
51 | PYRC K, JEBBINK M F, BERKHOUT B, et al. Detection of new viruses by VIDISCA: virus discovery based on cDNA-amplified fragment length polymorphism[M]//CAVANAGH D. SARS- and Other Coronaviruses. Totowa: Humana Press, 2008: 73-89. |
52 | VAN TAN L , VAN DOORN H R , VAN DER HOEK L , et al. Random PCR and ultracentrifugation increases sensitivity and throughput of VIDISCA for screening of pathogens in clinical specimens[J]. J Infect Dev Ctries, 2011, 5 (2): 142- 148. |
53 |
EDRIDGE A W D , DEIJS M , NAMAZZI R , et al. Novel orthobunyavirus identified in the cerebrospinal fluid of a Ugandan child with severe encephalopathy[J]. Clin Infect Dis, 2019, 68 (1): 139- 142.
doi: 10.1093/cid/ciy486 |
54 |
EDRIDGE A W D , ABD-ELFARAG G , DEIJS M , et al. Divergent rhabdovirus discovered in a patient with new-onset nodding syndrome[J]. Viruses, 2022, 14 (2): 210.
doi: 10.3390/v14020210 |
55 |
CANUTI M , EIS-HUEBINGER A M , DEIJS M , et al. Two novel parvoviruses in frugivorous New and Old World bats[J]. PLoS One, 2011, 6 (12): e29140.
doi: 10.1371/journal.pone.0029140 |
56 |
CANUTI M , WILLIAMS C V , SAGAN S M , et al. Virus discovery reveals frequent infection by diverse novel members of the Flaviviridae in wild lemurs[J]. Arch Virol, 2019, 164 (2): 509- 522.
doi: 10.1007/s00705-018-4099-9 |
57 |
WELSH J , MCCLELLAND M . Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Res, 1990, 18 (24): 7213- 7218.
doi: 10.1093/nar/18.24.7213 |
58 |
WILLIAMS J G K , KUBELIK A R , LIVAK K J , et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18 (22): 6531- 6535.
doi: 10.1093/nar/18.22.6531 |
59 |
ALLANDER T , TAMMI M T , ERIKSSON M , et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples[J]. Proc Natl Acad Sci U S A, 2005, 102 (36): 12891- 12896.
doi: 10.1073/pnas.0504666102 |
60 |
ALLANDER T , ANDREASSON K , GUPTA S , et al. Identification of a third human polyomavirus[J]. J Virol, 2007, 81 (8): 4130- 4136.
doi: 10.1128/JVI.00028-07 |
61 |
FOUCHIER R A M , HARTWIG N G , BESTEBROER T M , et al. A previously undescribed coronavirus associated with respiratory disease in humans[J]. Proc Natl Acad Sci U S A, 2004, 101 (16): 6212- 6216.
doi: 10.1073/pnas.0400762101 |
62 |
STANG A , KORN K , WILDNER O , et al. Characterization of virus isolates by particle-associated nucleic acid PCR[J]. J Clin Microbiol, 2005, 43 (2): 716- 720.
doi: 10.1128/JCM.43.2.716-720.2005 |
63 |
CHOO Q L , KUO G , WEINER A J , et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome[J]. Science, 1989, 244 (4902): 359- 362.
doi: 10.1126/science.2523562 |
64 | 熊倩灵. 基于Nanopore平台的病毒快速识别及全基因组测序研究[D]. 广州: 南方医科大学, 2022. |
XIONG Q L. Rapid identification and whole-genome sequencing of viruses on Nanopore sequencing platform[D]. Guangzhou: Southern Medical University, 2022. (in Chinese) | |
65 |
MARGULIES M , EGHOLM M , ALTMAN W E , et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437 (7057): 376- 380.
doi: 10.1038/nature03959 |
66 |
CELESTI F , CELESTI A , WAN J F , et al. Why deep learning is changing the way to approach NGS data processing: a review[J]. IEEE Rev Biomed Eng, 2018, 11, 68- 76.
doi: 10.1109/RBME.2018.2825987 |
67 |
QUAIL M A , SMITH M , COUPLAND P , et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers[J]. BMC Genomics, 2012, 13, 341.
doi: 10.1186/1471-2164-13-341 |
68 |
LANG J D , ZHU R R , SUN X , et al. Evaluation of the MGISEQ-2000 sequencing platform for illumina target capture sequencing libraries[J]. Front Genet, 2021, 12, 730519.
doi: 10.3389/fgene.2021.730519 |
69 |
JEON S A , PARK J L , PARK S J , et al. Comparison between MGI and Illumina sequencing platforms for whole genome sequencing[J]. Genes Genomics, 2021, 43 (7): 713- 724.
doi: 10.1007/s13258-021-01096-x |
70 |
MCCLENAHAN S D , KRAUSE P R . Towards dynamic monitoring of cell cultures using high throughput sequencing[J]. Vaccine, 2019, 37 (7): 1001- 1005.
doi: 10.1016/j.vaccine.2018.12.019 |
71 |
TOWNER J S , SEALY T K , KHRISTOVA M L , et al. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda[J]. PLoS Pathog, 2008, 4 (11): e1000212.
doi: 10.1371/journal.ppat.1000212 |
72 |
HOFFMANN B , SCHEUCH M , HÖPER D , et al. Novel orthobunyavirus in Cattle, Europe, 2011[J]. Emerg Infect Dis, 2012, 18 (3): 469- 472.
doi: 10.3201/eid1803.111905 |
73 |
STREMLAU M H , ANDERSEN K G , FOLARIN O A , et al. Discovery of novel rhabdoviruses in the blood of healthy individuals from West Africa[J]. PLoS Negl Trop Dis, 2015, 9 (3): e0003631.
doi: 10.1371/journal.pntd.0003631 |
74 |
LU H Y , GIORDANO F , NING Z M . Oxford nanopore MinION sequencing and genome assembly[J]. Genomics Proteomics Bioinformatics, 2016, 14 (5): 265- 279.
doi: 10.1016/j.gpb.2016.05.004 |
75 | 张皓博, 樊晓旭, 刘蒙达, 等. 纳米孔测序技术在疾病检测中的研究进展[J]. 中国动物检疫, 2021, 38 (6): 82- 89. |
ZHANG H B , FAN X X , LIU M D , et al. Research progress on nanopore sequencing technology in disease detection[J]. China Animal Health Inspection, 2021, 38 (6): 82- 89. | |
76 | 闫晓敏, 任照文, 涂长春, 等. Nanopore快速测序诊断饲养野猪非洲猪瘟疫情[J]. 中国动物传染病学报, 2020, 28 (4): 79- 84. |
YAN X M , REN Z W , TU C C , et al. Rapid diagnosis of African swine fever in farmed wild boar using Nanopore sequencing[J]. Chinese Journal of Animal Infectious Diseases, 2020, 28 (4): 79- 84. | |
77 |
ZHU N , ZHANG D Y , WANG W L , et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382 (8): 727- 733.
doi: 10.1056/NEJMoa2001017 |
78 |
CHAN W M , IP J D , CHU A W H , et al. Identification of nsp1 gene as the target of SARS-CoV-2 real-time RT-PCR using nanopore whole-genome sequencing[J]. J Med Virol, 2020, 92 (11): 2725- 2734.
doi: 10.1002/jmv.26140 |
79 |
WANG M , FU A S , HU B , et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses[J]. Small, 2021, 17 (32): 2104078.
doi: 10.1002/smll.202104078 |
80 |
SHEPHERD B A , TANJIL M R E , JEONG Y , et al. Ångström- and nano-scale pore-based nucleic acid sequencing of current and emergent pathogens[J]. MRS Adv, 2020, 5 (56): 2889- 2906.
doi: 10.1557/adv.2020.402 |
81 |
QUICK J , GRUBAUGH N D , PULLAN S T , et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples[J]. Nat Protoc, 2017, 12 (6): 1261- 1276.
doi: 10.1038/nprot.2017.066 |
82 | HOENEN T . Sequencing of ebola virus genomes using nanopore technology[J]. Bio Protoc, 2016, 6 (21): e1998. |
83 |
VANDENBOGAERT M , KWASIBORSKI A , GONOFIO E , et al. Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic[J]. Sci Rep, 2022, 12 (1): 10768.
doi: 10.1038/s41598-022-15073-1 |
84 | 庄子, 孟雨桐, 刘润旸, 等. 纳米孔测序技术及其在病原学诊断中的应用进展[J]. 江苏大学学报(医学版), 2023, 33 (6): 502- 508. |
ZHUANG Z , MENG Y T , LIU R Y , et al. Nanopore sequencing technology and its application in pathogenetic diagnosis[J]. Journal of Jiangsu University (Medicine Edition), 2023, 33 (6): 502- 508. | |
85 |
GALLARDO C M , WANG S Y , MONTIEL-GARCIA D J , et al. MrHAMER yields highly accurate single molecule viral sequences enabling analysis of intra-host evolution[J]. Nucleic Acids Res, 2021, 49 (12): e70.
doi: 10.1093/nar/gkab231 |
86 | SARCHESE V , FRUCI P , PALOMBIERI A , et al. Molecular identification and characterization of a genotype 3 hepatitis E virus (HEV) strain detected in a wolf faecal sample, Italy[J]. Animals (Basel), 2021, 11 (12): 3465. |
87 |
BRINKMANN A , UDDIN S , KRAUSE E , et al. Utility of a sequence-independent, single-primer-amplification (SISPA) and nanopore sequencing approach for detection and characterization of tick-borne viral pathogens[J]. Viruses, 2021, 13 (2): 203.
doi: 10.3390/v13020203 |
88 |
VAN DER HEIJDEN M , DE VRIES M , VAN STEENBEEK F G , et al. Sequence-independent VIDISCA-454 technique to discover new viruses in canine livers[J]. J Virol Methods, 2012, 185 (1): 152- 155.
doi: 10.1016/j.jviromet.2012.05.019 |
89 |
PESERICO A , MARCACCI M , MALATESTA D , et al. Diagnosis and characterization of canine distemper virus through sequencing by MinION nanopore technology[J]. Sci Rep, 2019, 9 (1): 1714.
doi: 10.1038/s41598-018-37497-4 |
90 |
WOLLANTS E , MAES P , MERINO M , et al. First genomic characterization of a Belgian Enterovirus C104 using sequence-independent Nanopore sequencing[J]. Infect Genet Evol, 2020, 81, 104267.
doi: 10.1016/j.meegid.2020.104267 |
91 |
TOH X , WANG Y F , RAJAPAKSE M P , et al. Use of nanopore sequencing to characterize African horse sickness virus (AHSV) from the African horse sickness outbreak in thailand in 2020[J]. Transbound Emerg Dis, 2022, 69 (3): 1010- 1019.
doi: 10.1111/tbed.14056 |
[1] | 娜梅拉, 李科南, 杜海东, 郭文亮, 娜仁花. 不同日龄内蒙古白绒山羊瘤胃及粪便真菌多样性差异研究[J]. 畜牧兽医学报, 2024, 55(8): 3526-3540. |
[2] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[3] | 李竟, 张元旭, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 机器学习全基因组选择研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2281-2292. |
[4] | 陈莹, 陈大勇, 乌日嘎, 仇春娟, 范利宏, 包梅荣, 岳媛, 梁红艳, 张家新, 田见晖, 安磊, 汪立芹. 肉羊体外胚胎生产技术规模化应用中品种的影响[J]. 畜牧兽医学报, 2024, 55(6): 2451-2459. |
[5] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[6] | 王晋宇, 张凯川, 王芮杰, 高铎, 蒋祺丰, 贾坤. 一株铜绿假单胞菌噬菌体全基因组分析及与抗生素体外联合应用效果[J]. 畜牧兽医学报, 2024, 55(2): 727-738. |
[7] | 黄德如, 常宜睿, 丁梓妍, 张雅珊, 陈奡蕾. 动物肠类器官应用进展[J]. 畜牧兽医学报, 2024, 55(12): 5431-5439. |
[8] | 贤歌, 刘慧敏, 王加启, 郑楠. 牛奶中A1和A2 β-酪蛋白的结构、功能和检测方法研究进展[J]. 畜牧兽医学报, 2024, 55(12): 5440-5451. |
[9] | 芦烘德, 刘昊阳, 龚诗淼, 杨植, 王煜轩, 王禄皓, 何至远, 董虹. 免疫层析技术在猪常见病毒病快速检测中的应用[J]. 畜牧兽医学报, 2024, 55(11): 4900-4911. |
[10] | 杨恒, 李占鸿, 宋子昂, 高林, 李卓然, 廖德芳, 肖雷, 李华春. 帕利亚姆病毒实时荧光定量RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(1): 395-400. |
[11] | 王静瑜, 潘阳阳, 徐庚全, 张瑞, 张文兰, 王筱珊, 乌仁套迪, 照日格图, 崔燕, 余四九. 牦牛Fas相关因子1多克隆抗体制备及初步应用[J]. 畜牧兽医学报, 2023, 54(8): 3369-3382. |
[12] | 吴祎程, 冉涛, 周传社, 谭支良. 宏基因组学技术分析山羊瘤胃病毒的多样性[J]. 畜牧兽医学报, 2023, 54(7): 2932-2941. |
[13] | 李昭燕, 高江, 郭时惠, 赵茹茜, 马文强. 猫过敏原检测方法与控制措施的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2272-2279. |
[14] | 田艳红, 于江旭, 焦宇洲, 高东阳, 蔡旭旺. 沙门菌脂多糖的结构修饰及其效应的研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1392-1402. |
[15] | 孙东晓, 张胜利, 张勤, 李姣, 张桂香, 刘丑生, 郑伟杰. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54(10): 4028-4039. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||