畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5431-5439.doi: 10.11843/j.issn.0366-6964.2024.12.010
收稿日期:
2023-12-01
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
陈奡蕾
E-mail:Huangdr1999@163.com;chenolay@scau.edu.cn
作者简介:
黄德如(1999-), 女, 广东东莞人, 硕士生, 主要从事犬乳腺肿瘤研究, E-mail: Huangdr1999@163.com
基金资助:
HUANG Deru(), CHANG Yirui, DING Ziyan, ZHANG Yashan, CHEN Aolei*(
)
Received:
2023-12-01
Online:
2024-12-23
Published:
2024-12-27
Contact:
CHEN Aolei
E-mail:Huangdr1999@163.com;chenolay@scau.edu.cn
摘要:
近年来,多种家畜和伴侣动物的肠类器官培养方法已被建立。肠类器官具有肠道上皮的结构和功能,是介于稳定细胞系和动物模型之间的一种体外模型。目前,动物肠类器官可用于研究肠道疾病发病机制与治疗方法,还能用于探究宿主-病原体的相互作用。在肠道营养学与肠道免疫学的研究中,肠类器官可用于提高饲料利用率、寻找适合添加剂,提高动物性能。此外,动物肠类器官在人转化医学与再生医学领域具有巨大发展潜力。本文综述了近5年来动物肠类器官的主要应用,并对其未来的研究方向进行了展望。
中图分类号:
黄德如, 常宜睿, 丁梓妍, 张雅珊, 陈奡蕾. 动物肠类器官应用进展[J]. 畜牧兽医学报, 2024, 55(12): 5431-5439.
HUANG Deru, CHANG Yirui, DING Ziyan, ZHANG Yashan, CHEN Aolei. Progress on Application of Animal Intestinal Organoids[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5431-5439.
表 1
用于宿主与病原体相互作用研究的动物肠类器官汇总"
类器官的动物来源 Animal sources of organoids | 研究内容 Research contents | 参考文献 References |
鼠、人、猪、鸡 Mouse,human,pig,chicken | 建立鼠、人、猪、鸡的极化单层肠类器官后,用弓形虫感染各类器官,比较弓形虫-宿主相互作用 | Holthaus等[ |
牛、猪 Cow,pig | 从牛和猪空肠中分离肠隐窝,培养获得肠类器官;刚地弓形虫和鼠伤寒沙门菌成功感染肠类器官 | Derricott等[ |
猪 Pig | 从十二指肠、空肠和回肠的肠隐窝干细胞中生成了猪肠类器官,该类器官可受PEDV感染 | Li等[ |
猪 Pig | 开发了一种猪顶端上皮朝外的肠类器官培养系统;该肠类器官可受TGEV感染 | Li等[ |
猪 Pig | 从十二指肠、空肠和回肠的隐窝干细胞中生成了猪肠类器官;猪三角洲冠状病毒(PDcoV)可在该肠类器官中复制 | Luo等[ |
猪 Pig | 从猪的空肠中分离并建立了猪肠类器官;哺乳动物正呼肠孤病毒3型(MRV3)可感染该猪肠类器官且能够在该类器官中复制 | Lee等[ |
猪 Pig | 用C组轮状病毒(RVC)感染猪肠类器官与类器官衍生的单层细胞,探究胆固醇和唾液酸在RVC复制中的作用 | Guo等[ |
猪 Pig | 构建了仔猪肠道类器官的PEDV感染模型,发现源自牛奶的细胞外囊泡(msEVs)抑制了PEDV感染 | Liang等[ |
猪 Pig | 用产肠毒素大肠杆菌(ETEC)感染猪肠类器官和单层猪肠类器官,观察肠类器官对ETEC的反应 | Vermeire等[ |
牛 Cow | 用A组轮状病毒感染牛肠类器官,研究其感染肠道的机制 | Alfajaro等[ |
兔 Rabbit | 成功培养出兔小肠类器官和类器官衍生的细胞单层;用兔杯状病毒Australia-1感染兔类器官,但没有检测到该病毒的复制 | Kardia等[ |
猫 Cat | 成功分离、培养和传代猫回肠和结肠类器官;其中结肠类器官能够被猫肠道冠状病毒(FECV)轻度感染 | Tekes等[ |
犬 Dog | 建立犬肠类器官后,使用蛔虫线虫的外泌体样囊泡(EV)对其进行感染,发现EV通过上皮细胞转运到肠腔中 | Chandra等[ |
1 |
SAMBUY Y , DE ANGELIS I , RANALDI G , et al. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics[J]. Cell Biol Toxicol, 2005, 21 (1): 1- 26.
doi: 10.1007/s10565-005-0085-6 |
2 |
SATO T , VRIES R G , SNIPPERT H J , et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459 (7244): 262- 265.
doi: 10.1038/nature07935 |
3 | JOO S S , GU B H , PARK Y J , et al. Porcine intestinal apical-out organoid model for gut function study[J]. Animals (Basel), 2022, 12 (3): 372. |
4 | NALAPAREDDY K, GEIGER H. Analysis of aged dysfunctional intestinal stem cells[M]//ORDÓÑEZ-MORÁN P. Intestinal Stem Cells: Methods and Protocols. New York: Springer, 2020: 41-52. |
5 |
MIDDENDORP S , SCHNEEBERGER K , WIEGERINCK C L , et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function[J]. Stem Cells, 2014, 32 (5): 1083- 1091.
doi: 10.1002/stem.1655 |
6 |
陈奡蕾, 黄德如, 安娅菲, 等. 动物肠类器官培养技术[J]. 畜牧兽医学报, 2023, 54 (7): 2743- 2750.
doi: 10.11843/j.issn.0366-6964.2023.07.008 |
CHEN A L , HUANG D R , AN Y F , et al. Animal intestinal organoids culture[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (7): 2743- 2750.
doi: 10.11843/j.issn.0366-6964.2023.07.008 |
|
7 | 张言, 朱春玲, 杨蕊, 等. 类器官培养方法及家畜类器官研究进展[J]. 生命科学, 2023, 35 (8): 994- 1003. |
ZHANG Y , ZHU C L , YANG R , et al. Advances in organoid methodology and livestock organoids[J]. Chinese Bulletin of Life Sciences, 2023, 35 (8): 994- 1003. | |
8 |
LUO W W , TIAN L , TAN B , et al. Update: innate lymphoid cells in inflammatory bowel disease[J]. Dig Dis Sci, 2022, 67 (1): 56- 66.
doi: 10.1007/s10620-021-06831-8 |
9 |
SAEZ A , GOMEZ-BRIS R , HERRERO-FERNANDEZ B , et al. Innate lymphoid cells in intestinal homeostasis and inflammatory bowel disease[J]. Int J Mol Sci, 2021, 22 (14): 7618.
doi: 10.3390/ijms22147618 |
10 |
RALLABANDI H R , YANG H , OH K B , et al. Evaluation of intestinal epithelial barrier function in inflammatory bowel diseases using murine intestinal organoids[J]. Tissue Eng Regen Med, 2020, 17 (5): 641- 650.
doi: 10.1007/s13770-020-00278-0 |
11 |
POLTORAK A , HE X L , SMIRNOVA I , et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene[J]. Science, 1998, 282 (5396): 2085- 2088.
doi: 10.1126/science.282.5396.2085 |
12 | KOLTES D A , GABLER N K . Characterization of porcine intestinal enteroid cultures under a lipopolysaccharide challenge[J]. J Anim Sci, 2016, 94 (S3): 335- 339. |
13 |
CERQUETELLA M , SPATERNA A , LAUS F , et al. Inflammatory bowel disease in the dog: differences and similarities with humans[J]. World J Gastroenterol, 2010, 16 (9): 1050- 1056.
doi: 10.3748/wjg.v16.i9.1050 |
14 |
KARARLI T T . Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals[J]. Biopharm Drug Dispos, 1995, 16 (5): 351- 380.
doi: 10.1002/bdd.2510160502 |
15 |
KOPPER J J , IENNARELLA-SERVANTEZ C , JERGENS A E , et al. Harnessing the biology of canine intestinal organoids to heighten understanding of inflammatory bowel disease pathogenesis and accelerate drug discovery: a one health approach[J]. Front Toxicol, 2021, 3, 773953.
doi: 10.3389/ftox.2021.773953 |
16 |
CHANDRA L , BORCHERDING D C , KINGSBURY D , et al. Derivation of adult canine intestinal organoids for translational research in gastroenterology[J]. BMC Biol, 2019, 17 (1): 33.
doi: 10.1186/s12915-019-0652-6 |
17 | PODOLSKY D K . Mucosal immunity and inflammation.V.Innate mechanisms of mucosal defense and repair: the best offense is a good defense[J]. Am J Physiol, 1999, 277 (3): G495- G499. |
18 | STIELER S A , FREUND J M , BLIKSLAGER A T , et al. Intestinal stem cell isolation and culture in a porcine model of segmental small intestinal ischemia[J]. J Vis Exp, 2018, (135): 57647. |
19 |
STEWART A S , SCHAAF C R , LUFF J A , et al. HOPX+ injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 321 (5): G588- G602.
doi: 10.1152/ajpgi.00165.2021 |
20 | HUANG J J , XU Z Y , JIAO J , et al. Microfluidic intestinal organoid-on-a-chip uncovers therapeutic targets by recapitulating oxygen dynamics of intestinal IR injury[J]. Bioact Mater, 2023, 30, 1- 14. |
21 |
FELCHLE H , BRUNNER V , GROLL T , et al. Novel tumor organoid-based mouse model to study image-guided radiation therapy of rectal cancer after non-invasive and precise endoscopic implantation[J]. Int J Radiat Oncol Biol Phys, 2024, 118 (4): 1094- 1104.
doi: 10.1016/j.ijrobp.2023.10.008 |
22 |
HU X , ZHANG L , LI Y Q , et al. Organoid modelling identifies that DACH1 functions as a tumour promoter in colorectal cancer by modulating BMP signalling[J]. EbioMedicine, 2020, 56, 102800.
doi: 10.1016/j.ebiom.2020.102800 |
23 |
XU H L , YAN Y Q , DEB S , et al. Cohesin Rad21 mediates loss of heterozygosity and is upregulated via Wnt promoting transcriptional dysregulation in gastrointestinal tumors[J]. Cell Rep, 2014, 9 (5): 1781- 1797.
doi: 10.1016/j.celrep.2014.10.059 |
24 |
TANAKA M , YAMAGUCHI S , IWASA Y . Enhanced risk of cancer in companion animals as a response to the longevity[J]. Sci Rep, 2020, 10 (1): 19508.
doi: 10.1038/s41598-020-75684-4 |
25 |
SAHOO D K , BORCHERDING D C , CHANDRA L , et al. Differential transcriptomic profiles following stimulation with lipopolysaccharide in intestinal organoids from dogs with inflammatory bowel disease and intestinal mast cell tumor[J]. Cancers (Basel), 2022, 14 (14): 3525.
doi: 10.3390/cancers14143525 |
26 |
DERRICOTT H , LUU L , FONG W Y , et al. Developing a 3D intestinal epithelium model for livestock species[J]. Cell Tissue Res, 2019, 375 (2): 409- 424.
doi: 10.1007/s00441-018-2924-9 |
27 | YIN L D , CHEN J F , LI L , et al. Aminopeptidase N expression, not interferon responses, determines the intestinal segmental tropism of porcine deltacoronavirus[J]. J Virol, 2020, 94 (14): e00480- 20. |
28 | LI L , FU F , GUO S S , et al. Porcine intestinal enteroids: a new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response[J]. J Virol, 2019, 93 (5): e01682. |
29 |
WILLIAMSON I A , ARNOLD J W , SAMSA L A , et al. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology[J]. Cell Mol Gastroenterol Hepatol, 2018, 6 (3): 301- 319.
doi: 10.1016/j.jcmgh.2018.05.004 |
30 |
VAN DER HEE B , LOONEN L M P , TAVERNE N , et al. Optimized procedures for generating an enhanced, near physiological 2D culture system from porcine intestinal organoids[J]. Stem Cell Res, 2018, 28, 165- 171.
doi: 10.1016/j.scr.2018.02.013 |
31 | LI Y , YANG N , CHEN J N , et al. Next-generation porcine intestinal organoids: an apical-out organoid model for swine enteric virus infection and immune response investigations[J]. J Virol, 2020, 94 (21): e01006- 20. |
32 |
ACHARYA M , ARSI K , DONOGHUE A M , et al. Production and characterization of avian crypt-villus enteroids and the effect of chemicals[J]. BMC Vet Res, 2020, 16 (1): 179.
doi: 10.1186/s12917-020-02397-1 |
33 |
PARK K W , YANG H , LEE M G , et al. Establishment of intestinal organoids from small intestine of growing cattle (12 months old)[J]. J Anim Sci Technol, 2022, 64 (6): 1105- 1116.
doi: 10.5187/jast.2022.e70 |
34 |
AMBROSINI Y M , PARK Y , JERGENS A E , et al. Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions[J]. PLoS One, 2020, 15 (4): e0231423.
doi: 10.1371/journal.pone.0231423 |
35 |
MUSSARD E , POUZET C , HELIES V , et al. Culture of rabbit caecum organoids by reconstituting the intestinal stem cell niche in vitro with pharmacological inhibitors or L-WRN conditioned medium[J]. Stem Cell Research, 2020, 48, 101980.
doi: 10.1016/j.scr.2020.101980 |
36 |
HOLTHAUS D , DELGADO-BETANCOURT E , AEBISCHER T , et al. Harmonization of protocols for multi-species organoid platforms to study the intestinal biology of Toxoplasma gondii and other protozoan infections[J]. Front Cell Infect Microbiol, 2021, 10, 610368.
doi: 10.3389/fcimb.2020.610368 |
37 |
LUO H , ZHENG J Y , CHEN Y L , et al. Utility evaluation of porcine enteroids as PDCoV infection model in vitro[J]. Front Microbiol, 2020, 11, 821.
doi: 10.3389/fmicb.2020.00821 |
38 |
LEE S A , LEE H J , GU N Y , et al. Evaluation of porcine intestinal organoids as an in vitro model for mammalian orthoreovirus 3 infection[J]. J Vet Sci, 2023, 24 (4): e53.
doi: 10.4142/jvs.23017 |
39 |
GUO Y S , RAEV S , KICK M K , et al. Rotavirus C replication in porcine intestinal enteroids reveals roles for cellular cholesterol and sialic acids[J]. Viruses, 2022, 14 (8): 1825.
doi: 10.3390/v14081825 |
40 |
LIANG J Q , XIE M Y , HOU L J , et al. miRNAs derived from milk small extracellular vesicles inhibit porcine epidemic diarrhea virus infection[J]. Antiviral Res, 2023, 212, 105579.
doi: 10.1016/j.antiviral.2023.105579 |
41 |
VERMEIRE B , GONZALEZ L M , JANSENS R J J , et al. Porcine small intestinal organoids as a model to explore ETEC-host interactions in the gut[J]. Vet Res, 2021, 52 (1): 94.
doi: 10.1186/s13567-021-00961-7 |
42 | ALFAJARO M M , KIM J Y , BARBÉ L , et al. Dual recognition of sialic acid and αgal epitopes by the VP8* domains of the bovine rotavirus G6P[J]. J Virol, 2019, 93 (18): e00941- 19. |
43 |
KARDIA E , FRESE M , SMERTINA E , et al. Culture and differentiation of rabbit intestinal organoids and organoid-derived cell monolayers[J]. Sci Rep, 2021, 11 (1): 5401.
doi: 10.1038/s41598-021-84774-w |
44 |
TEKES G , EHMANN R , BOULANT S , et al. Development of feline ileum- and colon-derived organoids and their potential use to support feline coronavirus infection[J]. Cells, 2020, 9 (9): 2085.
doi: 10.3390/cells9092085 |
45 |
KAR S K , VAN DER HEE B , LOONEN L M P , et al. Effects of undigested protein-rich ingredients on polarised small intestinal organoid monolayers[J]. J Anim Sci Biotechnol, 2020, 11, 51.
doi: 10.1186/s40104-020-00443-4 |
46 |
WANG Z B , LI J , WANG Y , et al. Dietary vitamin A affects growth performance, intestinal development, and functions in weaned piglets by affecting intestinal stem cells[J]. J Anim Sci, 2020, 98 (2): skaa020.
doi: 10.1093/jas/skaa020 |
47 |
SATITSRI S , AKRIMAJIRACHOOTE N , NUNTA K , et al. Piperine as potential therapy of post-weaning porcine diarrheas: an in vitro study using a porcine duodenal enteroid model[J]. BMC Vet Res, 2023, 19 (1): 4.
doi: 10.1186/s12917-022-03536-6 |
48 |
LIU L J , ZHANG S Y , BAO J Y , et al. Melatonin improves laying performance by enhancing intestinal amino acids transport in hens[J]. Front Endocrinol (Lausanne), 2018, 9, 426.
doi: 10.3389/fendo.2018.00426 |
49 |
NASH T J , MORRIS K M , MABBOTT N A , et al. Inside-out chicken enteroids with leukocyte component as a model to study host-pathogen interactions[J]. Commun Biol, 2021, 4 (1): 377.
doi: 10.1038/s42003-021-01901-z |
50 |
NOEL G , BAETZ N W , STAAB J F , et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions[J]. Sci Rep, 2017, 7, 45270.
doi: 10.1038/srep45270 |
51 |
LIU P F , CAO Y W , ZHANG S D , et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model[J]. Oncotarget, 2015, 6 (35): 37695- 37705.
doi: 10.18632/oncotarget.6070 |
52 |
BOUFFI C , WIKENHEISER-BROKAMP K A , CHATURVEDI P , et al. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice[J]. Nat Biotechnol, 2023, 41 (6): 824- 831.
doi: 10.1038/s41587-022-01558-x |
53 |
ZIEGLER A , GONZALEZ L , BLIKSLAGER A . Large animal models: the key to translational discovery in digestive disease research[J]. Cell Mol Gastroenterol Hepatol, 2016, 2 (6): 716- 724.
doi: 10.1016/j.jcmgh.2016.09.003 |
54 |
BLOCK T , ISAKSSON H S , ACOSTA S , et al. Altered mRNA expression due to acute mesenteric ischaemia in a porcine model[J]. Eur J Vasc Endovasc Surg, 2011, 41 (2): 281- 287.
doi: 10.1016/j.ejvs.2010.09.012 |
55 |
PEREIRA-FANTINI P M , THOMAS S L , TAYLOR R G , et al. Colostrum supplementation restores insulin-like growth factor-1 levels and alters muscle morphology following massive small bowel resection[J]. JPEN J Parenter Enteral Nutr, 2008, 32 (3): 266- 275.
doi: 10.1177/0148607108316197 |
56 |
CILIEBORG M S , THYMANN T , SIGGERS R , et al. The incidence of necrotizing enterocolitis is increased following probiotic administration to preterm pigs[J]. J Nutr, 2011, 141 (2): 223- 230.
doi: 10.3945/jn.110.128561 |
57 |
BLIKSLAGER A T , ROBERTS M C , RHOADS J M , et al. Is reperfusion injury an important cause of mucosal damage after porcine intestinal ischemia?[J]. Surgery, 1997, 121 (5): 526- 534.
doi: 10.1016/S0039-6060(97)90107-0 |
58 | ARGENZIO R A , ARMSTRONG M , BLIKSLAGER A , et al. Peptide YY inhibits intestinal Cl- secretion in experimental porcine cryptosporidiosis through a prostaglandin-activated neural pathway[J]. J Pharmacol Exp Ther, 1997, 283 (2): 692- 697. |
59 |
LI X G , ZHU M , CHEN M X , et al. Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway[J]. Toxicol Lett, 2019, 305, 19- 31.
doi: 10.1016/j.toxlet.2019.01.008 |
60 |
ZHOU J Y , HUANG D G , ZHU M , et al. Wnt/β-catenin-mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress[J]. J Cell Physiol, 2020, 235 (7-8): 5613- 5627.
doi: 10.1002/jcp.29492 |
61 |
ZHOU J Y , LIN H L , WANG Z , et al. Zinc L-aspartate enhances intestinal stem cell activity to protect the integrity of the intestinal mucosa against deoxynivalenol through activation of the Wnt/β-catenin signaling pathway[J]. Environ Pollut, 2020, 262, 114290.
doi: 10.1016/j.envpol.2020.114290 |
62 | MOCHEL J P , JERGENS A E , KINGSBURY D , et al. Intestinal stem cells to advance drug development, precision, and regenerative medicine: a paradigm shift in translational research[J]. AAPS J, 2017, 20 (1): 17. |
63 |
SCHAEFER K , RENSING S , HILLEN H , et al. Is science the only driver in species selection?An internal study to evaluate compound requirements in the minipig compared to the dog in preclinical studies[J]. Toxicol Pathol, 2016, 44 (3): 474- 479.
doi: 10.1177/0192623315624572 |
64 | ERICSSON A C , CRIM M J , FRANKLIN C L . A brief history of animal modeling[J]. Mo Med, 2013, 110 (3): 201- 205. |
65 |
SAHOO D K , MARTINEZ M N , DAO K , et al. Canine intestinal organoids as a novel in vitro model of intestinal drug permeability: a proof-of-concept study[J]. Cells, 2023, 12 (9): 1269.
doi: 10.3390/cells12091269 |
66 |
YUI S , NAKAMURA T , SATO T , et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell[J]. Nat Med, 2012, 18 (4): 618- 623.
doi: 10.1038/nm.2695 |
[1] | 章琦, 郭江鹏, 倪爱心, 杜洪峰, 陈继兰, 孙研研. 蛋鸡啄羽行为的影响因素与遗传调控基础研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3745-3756. |
[2] | 张肖旭, 李昊, 冯平捷, 杨豪, 李新月, 吕冉, 潘章源, 储明星. 单细胞转录组测序技术在家养动物中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3276-3287. |
[3] | 陈秀琴, 林甦, 张世忠, 郑敏, 黄梅清. 基于CRISPR/Cas系统的生物传感器在动物疫病诊断中的应用[J]. 畜牧兽医学报, 2024, 55(7): 2859-2876. |
[4] | 郑焕琴, 姜晓敏, 岳红, 王宝岩, 刘洋, 张兴晓, 张建龙, 朱洪伟. 猫1型疱疹病毒分离鉴定及部分生物学特性分析[J]. 畜牧兽医学报, 2024, 55(7): 3040-3048. |
[5] | 李竟, 张元旭, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 机器学习全基因组选择研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2281-2292. |
[6] | 季小禹, 王永伟, 邱妍, 张才. 甘草多糖的生理功能及其在畜禽生产中的应用[J]. 畜牧兽医学报, 2024, 55(6): 2379-2387. |
[7] | 陈莹, 陈大勇, 乌日嘎, 仇春娟, 范利宏, 包梅荣, 岳媛, 梁红艳, 张家新, 田见晖, 安磊, 汪立芹. 肉羊体外胚胎生产技术规模化应用中品种的影响[J]. 畜牧兽医学报, 2024, 55(6): 2451-2459. |
[8] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
[9] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[10] | 邓梏男, 张家祺, 保志鹏, 陈涛云, 喻琦胜, 丁露, 朱晨曦, 王怡, 任玉鹏, 贺超, 张斌. 猫疱疹病毒1型的检测及一株分离毒株的致病性[J]. 畜牧兽医学报, 2024, 55(5): 2253-2258. |
[11] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[12] | 刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431. |
[13] | 李菲菲, 张晨淼, 童津津, 蒋林树. 线粒体自噬调节NLRP3炎症小体活性改善动物健康的作用机制[J]. 畜牧兽医学报, 2024, 55(4): 1446-1455. |
[14] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[15] | 罗承慧, 高江瑞, 陈俊威, 魏春洁, 韦双双, 裴业春. 尘螨诱导特应性皮炎小鼠模型和哮喘小鼠模型的构建[J]. 畜牧兽医学报, 2024, 55(3): 1257-1267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||