1 |
CHEUNG G Y C , BAE J S , OTTO M . Pathogenicity and virulence of Staphylococcus aureus[J]. Virulence, 2021, 12 (1): 547- 569.
doi: 10.1080/21505594.2021.1878688
|
2 |
KARNAM S , JINDAL A B , AGNIHOTRI C , et al. Topical nanotherapeutics for treating MRSA-associated skin and soft tissue infection (SSTIs)[J]. AAPS PharmSciTech, 2023, 24 (5): 108.
doi: 10.1208/s12249-023-02563-2
|
3 |
HSIEH R C , LIU R , BURGIN D J , et al. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies[J]. Expert Rev Anti Infect Ther, 2023, 21 (9): 911- 928.
doi: 10.1080/14787210.2023.2242585
|
4 |
周志新. 白屈菜红碱对耐甲氧西林金黄色葡萄球菌抗菌作用研究[D]. 大庆: 黑龙江八一农垦大学, 2023.
|
|
ZHOU Z X. Research on the antibacterial effect of chelerythrine against methicillin-resistant Staphylococcus aureus[D]. Daqing: Heilongjiang Bayi Agricultural University, 2023. (in Chinese)
|
5 |
STOGIOS P J , SAVCHENKO A . Molecular mechanisms of vancomycin resistance[J]. Protein Sci, 2020, 29 (3): 654- 669.
doi: 10.1002/pro.3819
|
6 |
蒋庆佳, 杨放, 杨安迪, 等. 中药抑菌活性成分及其作用机制研究进展[J]. 中国抗生素杂志, 2023, 48 (8): 855- 861.
|
|
JIANG Q J , YANG F , YANG A D , et al. Research progress of bacteriostatic mechanism of traditional Chinese medicine based on chemical components[J]. Chinese Journal of Antibiotics, 2023, 48 (8): 855- 861.
|
7 |
徐志杰. 白屈菜红碱PLGA纳米粒的制备及其体内药动学研究[J]. 中成药, 2022, 44 (10): 3091- 3097.
|
|
XU Z J . Preparation and in vivo pharmacokinetics of chelerythrine PLGA nanoparticles[J]. Chinese Traditional Patent Medicine, 2022, 44 (10): 3091- 3097.
|
8 |
GIBBONS S , LEIMKUGEL J , OLUWATUYI M , et al. Activity of Zanthoxylum clava-herculis extracts against multi-drug resistant methicillin-resistant Staphylococcus aureus (mdr-MRSA)[J]. Phytother Res, 2003, 17 (3): 274- 275.
doi: 10.1002/ptr.1112
|
9 |
KHIN M , JONES A M , CECH N B , et al. Phytochemical analysis and antimicrobial efficacy of Macleaya cordata against extensively drug-resistant Staphylococcus aureus[J]. Nat Prod Commun, 2018, 13 (11)
doi: 10.1177/1934578X1801301117
|
10 |
WANG M Z , MA B , NI Y F , et al. Restoration of the antibiotic susceptibility of methicillin-resistant Staphylococcus aureus and extended-spectrum β-Lactamases Escherichia coli through combination with chelerythrine[J]. Microb Drug Resist, 2021, 27 (3): 337- 341.
doi: 10.1089/mdr.2020.0044
|
11 |
WANG P , ZHENG S Y , JIANG R L , et al. Necroptosis signaling and mitochondrial dysfunction cross-talking facilitate cell death mediated by chelerythrine in glioma[J]. Free Radic Biol Med, 2023, 202, 76- 96.
doi: 10.1016/j.freeradbiomed.2023.03.021
|
12 |
赵莹莹. MntC介导的白屈菜红碱抗金黄色葡萄球菌作用机制研究[D]. 郑州: 河南大学, 2021.
|
|
ZHAO Y Y. Chelerythrine mediates bactericidal activity against Staphylococcus aureus by targeting protein MntC[D]. Zhengzhou: Henan University, 2021. (in Chinese)
|
13 |
QIAN W D , SUN Z H , FU Y T , et al. Efficacy of chelerythrine against dual-species biofilms of Staphylococcus aureus and Staphylococcus lugdunensis[J]. 3 Biotech, 2020, 10 (10): 427.
doi: 10.1007/s13205-020-02401-3
|
14 |
徐冬雪. 白屈菜红碱对变形链球菌形态学影响的电镜观察[D]. 沈阳: 中国医科大学, 2010.
|
|
XU D X. Electron microscope investigation of morphologic effect of Chelerythrine on Streptococcus mutans[D]. Shenyang: China Medical University, 2010. (in Chinese)
|
15 |
MIAO F , YANG X J , ZHOU L , et al. Structural modification of sanguinarine and chelerythrine and their antibacterial activity[J]. Nat Prod Res, 2011, 25 (9): 863- 875.
doi: 10.1080/14786419.2010.482055
|
16 |
孙照欢. 白屈菜红碱对葡萄球菌的抗菌机制及脂质体的制备研究[D]. 西安: 陕西科技大学, 2021.
|
|
SUN Z H. Antibacterial activity and its mechnism of action of chelerythrine against Staphylococcus and preparation of its liposome[D]. Xi'an: Shaanxi University of Science & Technology, 2021. (in Chinese)
|
17 |
宋军, 周志新, 付琳清, 等. 大黄酸对伪中间葡萄球菌的抗菌活性及作用机制[J]. 畜牧兽医学报, 2021, 52 (8): 2275- 2283.
doi: 10.11843/j.issn.0366-6964.2021.08.020
|
|
SONG J , ZHOU Z X , FU L Q , et al. Antimicrobial activity and mechanism of rhein against Staphylococcus pseudintermedius[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (8): 2275- 2283.
doi: 10.11843/j.issn.0366-6964.2021.08.020
|
18 |
操庆国, 郭钦, 彭凯, 等. 盐酸小檗碱与左氧氟沙星联合抑制MRSA及其机制研究[J]. 畜牧兽医学报, 2022, 53 (9): 3208- 3220.
doi: 10.11843/j.issn.0366-6964.2022.09.035
|
|
CAO Q G , GUO Q , PENG K , et al. The inhibition and mechanism of the combination of berberine hydrochloride and levofloxacin on MRSA[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 3208- 3220.
doi: 10.11843/j.issn.0366-6964.2022.09.035
|
19 |
SONG J , XIA F F , JIANG H Y , et al. Identification and characterization of HolGH15:the holin of Staphylococcus aureus bacteriophage GH15[J]. J Gen Virol, 2016, 97 (5): 1272- 1281.
doi: 10.1099/jgv.0.000428
|
20 |
ZHAO Y , ZHANG T J , ZHOU C Y , et al. Development of an RT-PCR-based RspCas13d system to detect porcine deltacoronavirus[J]. Appl Microbiol Biotechnol, 2023, 107 (18): 5739- 5747.
doi: 10.1007/s00253-023-12690-2
|
21 |
LOE M W C , LEE R C H , CHIN W X , et al. Chelerythrine chloride inhibits Zika virus infection by targeting the viral NS4B protein[J]. Antiviral Res, 2023, 219, 105732.
doi: 10.1016/j.antiviral.2023.105732
|
22 |
CUI K Y , YANG W F , LIU Z Y , et al. Chenodeoxycholic acid-Amikacin combination enhances eradication of Staphylococcus aureus[J]. Microbiol Spectr, 2023, 11 (1): e0243022.
doi: 10.1128/spectrum.02430-22
|
23 |
刘武康, 吴淑燕, 陈国薇, 等. 细菌产生的活性氧及其功能[J]. 微生物学杂志, 2016, 36 (1): 89- 95.
|
|
LIU W K , WU S Y , CHEN G W , et al. The reactive oxygen species generated by bacteria and its functions[J]. Journal of Microbiology, 2016, 36 (1): 89- 95.
|
24 |
ZHU X H , LIU H , WANG Z G , et al. Dimethyl phthalate damages Staphylococcus aureus by changing the cell structure, inducing oxidative stress and inhibiting energy metabolism[J]. J Environ Sci (China), 2021, 107, 171- 183.
doi: 10.1016/j.jes.2021.01.031
|
25 |
LEE B S , HARDS K , ENGELHART C A , et al. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis[J]. EMBO Mol Med, 2021, 13 (1): e13207.
doi: 10.15252/emmm.202013207
|