畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4475-4488.doi: 10.11843/j.issn.0366-6964.2024.10.020
丁修虎1,2(), 林志平3, 赵芳1, 陈坤琳1, 仲跻峰1, 张燕4, 高运东4, 李惠侠2, 王慧利1, 张建丽1,*(
), 丁强1,*(
)
收稿日期:
2024-04-01
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
张建丽,丁强
E-mail:dxh1825047521@163@.com;zhangjianli79@163.com;dingqiang198907@163.com
作者简介:
丁修虎(1998-), 男, 安徽滁州人, 硕士, 主要从事牛的分子育种研究, E-mail:dxh1825047521@163@.com
基金资助:
Xiuhu DING1,2(), Zhiping LIN3, Fang ZHAO1, Kunlin CHEN1, Jifeng ZHONG1, Yan ZHANG4, Yundong GAO4, Huixia LI2, Huili WANG1, Jianli ZHANG1,*(
), Qiang DING1,*(
)
Received:
2024-04-01
Online:
2024-10-23
Published:
2024-11-04
Contact:
Jianli ZHANG, Qiang DING
E-mail:dxh1825047521@163@.com;zhangjianli79@163.com;dingqiang198907@163.com
摘要:
旨在利用CRISPR/Cas9系统构建BLG基因敲除牛乳腺上皮细胞系(bovine mammary epithelial cells, bMECs),同时检测BLG基因敲除后对细胞的影响。本研究利用体外切割试验筛选获得靶向牛的BLG基因的第一外显子序列的3条sgRNA,与CRISPR/Cas9表达载体电转染入bMECs,利用浓度为1.8 μg·mL-1嘌呤霉素和6 μg·mL-1稻瘟菌素双药筛和PCR分析鉴定获得BLG基因编辑的单克隆细胞株;利用Western blot(WB)验证细胞BLG表达;绘制生长曲线和CCK-8试验检测BLG基因敲除对bMECs细胞增殖的影响;同时根据sgRNA序列,对基因组上潜在脱靶位点进行PCR测序分析。经筛选和PCR序列分析,共筛选获得了9株BLG基因编辑细胞株,其编辑效率为90%(9/10),其中4株细胞株BLG基因大片段删除。序列分析结果显示,单克隆细胞株编辑位点呈现片段插入缺失和碱基替换等多种编辑类型,WB结果显示敲除细胞株BLG蛋白表达显著降低,且细胞生长曲线和CCK-8检测结果表明BLG基因敲除的细胞生长速度加快。本研究利用CRISPR/Cas9技术成果构建了牛乳腺上皮细胞BLG基因高效敲除方法,BLG基因敲除后可显著影响牛乳腺上皮细胞的增殖,为探究BLG敲除牛在乳腺上皮细胞水平探究其功能机制提供细胞模型。
中图分类号:
丁修虎, 林志平, 赵芳, 陈坤琳, 仲跻峰, 张燕, 高运东, 李惠侠, 王慧利, 张建丽, 丁强. 利用CRISPR/Cas9技术制备BLG基因敲除牛乳腺上皮细胞系[J]. 畜牧兽医学报, 2024, 55(10): 4475-4488.
Xiuhu DING, Zhiping LIN, Fang ZHAO, Kunlin CHEN, Jifeng ZHONG, Yan ZHANG, Yundong GAO, Huixia LI, Huili WANG, Jianli ZHANG, Qiang DING. Highly Efficient BLG Knockout in Bovine Mammary Epithelial Cells by Using CRISPR/Cas9[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4475-4488.
表 1
sgRNAs引物信息"
sgRNA序列(5′→3′)(斜体为PAM区) sgRNA sequence (Italic indicate PAM) | 引物序列(5′→3′) sgRNA primers sequence | |
sgRNA1(sg1) | CACCCAGACCATGAAGGGCCTGG | F: ACCGCACCCAGACCATGAAGGGCC R: AAACGGCCCTTCATGGTCTGGGTG |
sgRNA2(sg2) | GCACTTCATGGCTGCAGCTGGGG | F: ACCGGCACTTCATGGCTGCAGCTG R: AAACCAGCTGCAGCCATGAAGTGC |
sgRNA3(sg3) | TGGATATCCAGAAGGTTCGAGGG | F: ACCGTGGATATCCAGAAGGTTCGA R: AAACTCGAACCTTCTGGATATCCA |
表 2
体外转录引物序列"
名称 Name | 引物序列(5′→3′) Primers sequence |
IVT-sg1-F | $\underline{{\rm{TAATACGACTCACACTATA}}}$CACCCAGACCATGAAGGGCC |
IVT-sg1-R | AAAAGCACCGACTCGGTGCC |
IVT-sg2-F | $\underline{{\rm{TAATACGACTCACACTATA}}}$GGCACTTCATGGCTGCAGCTG |
IVT-sg2-R | AAAAGCACCGACTCGGTGCC |
IVT-sg3-F | $\underline{{\rm{TAATACGACTCACACTATA}}}$GTGGATATCCAGAAGGTTCGA |
IVT-sg3-R | AAAAGCACCGACTCGGTGCC |
表 4
脱靶位点信息"
潜在脱靶位点 Potential off-target site | 潜在脱靶位点序列(5′→3′) Potential off-target site sequence | 方向 Direction | 错配碱基 Mismatched bases | 染色体 Chromosome |
sgRNA1 | CACCCAGACCATGAAGGGCCTGG | |||
sg1-OT-1 | gACCCAGACCATtAAGGGCCGGG | + | 2MMS (1:13) | chr4 |
sg1-OT-2 | gACCCAGtCCATGAAGGGCCTGG | + | 2MMS (1:8) | chr14 |
sg1-OT-3 | CtCCCAGACCAgGAAGGtCCAGG | + | 3MMS (2:12:18) | chr17 |
sg1-OT-4 | CACCCAaACCAaGAAGaGCCAGG | + | 3MMS (7:12:17) | chr3 |
sg1-OT-5 | gAgCCAGACCATaAAGGGCCTGG | + | 3MMS (1:3:13) | chr2 |
sgRNA3 | TGGATATCCAGAAGGTTCGAGGG | |||
sg3-OT1 | TGGATATCCAGgAGGTTaGAGGG | + | 2MMS (12:18) | chr18 |
sg3-OT2 | gGGAaATCCAGAAGGTTtGAAGG | + | 3MMS (1:5:17) | chr8 |
sg3-OT3 | TtGATATCCAGAAGGTTgtAAGG | + | 3MMS (2:18:19) | chr15 |
sg3-OT4 | TGGAcATCCtGAAGGTTaGAAGG | - | 3MMS (5:10:18) | chr5 |
sg3-OT5 | TGGATAcCCAGtAGGgTCGAAGG | + | 3MMS (7:12:16) | chr24 |
表 5
脱靶位点检测引物序列"
靶位点 Target site | 引物序列(5′→3′) Primers sequence | 产物大小/bp Product size | |
上游引物 Forward | 下游引物 Reverse | ||
sg1-OT-1 | GTGCAAATCTTCATCCATGCTG | AGGCCTCTGTTTCTCATCACA | 511 |
sg1-OT-2 | AGCGTCGCAGAAATCAGAAC | TCCCTAGTGGCTAAGATGGTAAA | 410 |
sg1-OT-3 | ACTCTTACAGGTGGTTGGTTTGC | TGGTCCTGCCATGCTGATT | 418 |
sg1-OT-4 | TGGCTGGGTATCACATGCAG | GGGAGACGTCAATCGTGGTT | 481 |
sg1-OT-5 | GCCAGGCCTTACACACTACA | TCCCCTCCTGGTTTGAGTCT | 349 |
sg3-OT-1 | TGCTCAGCCCCACTATCTCC | CCATAGACGGCAGCCCAAT | 334 |
sg3-OT-2 | ACCCATTTGTTCATCCATCTCC | TGTCCTCCCCTTCCATCTTT | 416 |
sg3-OT-3 | AATGGCAAGCCCCTCCT | AGCCCATTCTTTCCTCAGTTT | 410 |
sg3-OT-4 | GACTTCAGGCCCTGTCCTTG | TGCCTGTAAGATGAGTGTGGG | 504 |
sg3-OT-5 | AGGCAGGGTTTTAGGTTTCC | ATTCTCCTCCTTAACATGGGTG | 373 |
表 7
不同单克隆细胞株编辑类型统计分析"
编号 Number | sgRNA1 | sgRNA3 | 编辑类型 Type | 移码 Frameshift |
WT | CACCCAGACCATGAAGGGCC | TGGATATCCAGAAGGTTCGA | ||
1 | CACCCAGACCATGAAGGGGCC | gGaAaATCCAGAAGGTTTCGA | +2 bp | 3n+2 |
2 | CACCCAGACCgTGAA------ | ------TGCACAGGGT------ | -19 bp | 3n+2 |
3 | CACCCAGACCATGAAGGGGCC | gGaATATCCAGAAGGTTTCGA | +2 bp | 3n+2 |
4&8 | -------------------- | -------------------- | 大片段缺失 | |
6 | CACCCAGACCATGAAGGGGCC | cGGTATCCCAgAAGGTTTCaA | +3 bp | 3n |
7 | CACCCAGACCATGAAGGGCC | TGGATATCCAGgAccggCGA | 3n | |
9 | CACCCAGACCATGAAGGGCC | TGGATATTCCgGAgGGTGTCGA | +2 bp | 3n+2 |
10 | CACCCAGACCATGAA------ | --------------------- | 大片段缺失 |
表 8
T-A克隆检测细胞株编辑类型"
编号 Number | sgRNA1 | sgRNA3 | 插入编辑类型 Indes forms | 移码 Frameshift | 占比 Proportion |
WT | CACCCAGACCATGAAGGGCC | TGGATATCCAGAAGGTTCGA | wild type | ||
2-1 | CACCCAGACCATG----- | CCTGGATATCCAGAAaa-- | -5 bp | 3n+2 | 1/12 |
2-2 | CACCCAGACCATGAAGGGCC | CCTGGATATCCAGAAGGTT | 5/12 | ||
2-3 | CACCCAG-------------CC | TGGATATCCAGAAGGT---- | -17 bp | 3n+2 | 2/12 |
2-4 | CACCCAGACCATG-----CC | TGGATATCCAGAAG--TCGA | -7 bp | 3n+2 | 1/12 |
2-5 | CACCCAGACCATGAAGGGCC | TGGATATCC----------- | -11 bp | 3n+2 | 1/12 |
2-6 | CACCCAGACCATGAAGGGGCC | TGGATATCCAGAAGGTTTCGA | +2 bp | 3n+2 | 1/12 |
2-7 | CgCCCAG-----------CC | TGGATATCCAGAAGGT---- | -15 bp | 3n | 1/12 |
8-1 | ------------------------ | ------------------------ | 大片段缺失 | 12/12 | |
10-1 | CACCCAGACCATGAAG--CC | TGGATATCCAGAAGGTTTCG | -1 bp | 3n+1 | 4/12 |
10-2 | CACCCAGACCATGAAGGGCC | TGGATATCCAGAAGGTTCGA | 1/12 | ||
10-3 | CACCCAGACCATG----GCC | TGGATATCCAGAAGGTTTCGA | -3 bp | 3n | 3/12 |
10-4 | CACCCAGACCATG----GCC | TGGATATCCAGAAGGGTTCGA | -3 bp | 3n | 1/12 |
1 |
HOCHWALLNERH,SCHULMEISTERU,SWOBODAI,et al.Cow's milk allergy: from allergens to new forms of diagnosis, therapy and prevention[J].Methods,2014,66(1):22-33.
doi: 10.1016/j.ymeth.2013.08.005 |
2 |
LEMOSL,ASSISH C,ALVESJ L,et al.Neuroimmune circuits involved in β-lactoglobulin-induced food allergy[J].Brain Behav Immun Health,2022,23,100471.
doi: 10.1016/j.bbih.2022.100471 |
3 |
SCHOEMAKERA A,SPRIKKELMANA B,GRIMSHAWK E,et al.Incidence and natural history of challenge-proven cow's milk allergy in European children—EuroPrevall birth cohort[J].Allergy,2015,70(8):963-972.
doi: 10.1111/all.12630 |
4 |
GAIN,UNIACKE-LOWET,O'REGANJ,et al.Effect of protein genotypes on physicochemical properties and protein functionality of bovine milk: a review[J].Foods,2021,10(10):2409.
doi: 10.3390/foods10102409 |
5 |
GIANNETTIA,TOSCHI VESPASIANIG,RICCIG,et al.Cow's milk protein allergy as a model of food allergies[J].Nutrients,2021,13(5):1525.
doi: 10.3390/nu13051525 |
6 |
ABD EL-SALAMM H,EL-SHIBINYS.Preparation, properties, and uses of enzymatic milk protein hydrolysates[J].Crit Rev Food Sci Nutr,2017,57(6):1119-1132.
doi: 10.1080/10408398.2014.899200 |
7 | 王明礼,钱珊珊,李艾黎,等.降低牛乳致敏性方法的研究进展[J].中国乳品工业,2021,49(7):25-31. |
WANGM L,QIANS S,LIA L,et al.Research progress on methods of reducing allergenicity of milk[J].China Dairy Industry,2021,49(7):25-31. | |
8 | 吴雯倩,左姣丽,肖冰,等.热处理对蛋白质的影响[J].食品安全导刊,2015,(36):45. |
WUW Q,ZUOJ L,XIAOB,et al.Effect of heat treatment on proteins[J].China Food Safety Magazine,2015,(36):45. | |
9 |
HATTORIM,MIYAKAWAS,OHAMAY,et al.Reduced immunogenicity of β-lactoglobulin by conjugation with acidic oligosaccharides[J].J Agric Food Chem,2004,52(14):4546-4553.
doi: 10.1021/jf0353887 |
10 |
LIUY,COTTLEW T,HAT.Mapping cellular responses to DNA double-strand breaks using CRISPR technologies[J].Trends Genet,2023,39(7):560-574.
doi: 10.1016/j.tig.2023.02.015 |
11 |
BUW,CREIGHTONC J,HEAVENERK S,et al.Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice[J].Sci Adv,2023,9(19):eade0059.
doi: 10.1126/sciadv.ade0059 |
12 |
WANGY,QIT,LIUJ T,et al.A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing[J].Sci Adv,2023,9(6):eabo6405.
doi: 10.1126/sciadv.abo6405 |
13 |
CONGL,RANF A,COXD,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823.
doi: 10.1126/science.1231143 |
14 |
ZHANGX M,LIW R,WUY S,et al.Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos[J].Theriogenology,2017,91,163-172.
doi: 10.1016/j.theriogenology.2016.10.025 |
15 |
WANGX L,NIUY Y,ZHOUJ K,et al.Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep[J].Sci Rep,2016,6,32271.
doi: 10.1038/srep32271 |
16 |
CRISPOM,MULETA P,TESSONL,et al.Efficient generation of Myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J].PLoS One,2015,10(8):e0136690.
doi: 10.1371/journal.pone.0136690 |
17 |
ZHOUS W,KALDSP,LUOQ,et al.Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality[J].BMC Genomics,2022,23(1):348.
doi: 10.1186/s12864-022-08594-6 |
18 |
LIW R,LIUC X,ZHANGX M,et al.CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep[J].FEBS J,2017,284(17):2764-2773.
doi: 10.1111/febs.14144 |
19 |
ZHOUW J,WANY J,GUOR H,et al.Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9[J].PLoS One,2017,12(10):e0186056.
doi: 10.1371/journal.pone.0186056 |
20 | 李炜杰,杨娇,王聪慧,等.电转液L对绵羊成纤维细胞电转染条件优化[J].新疆农业科学,2015,52(8):1481-1485. |
LIW J,YANGJ,WANGC H,et al.Optimization of an electrotransfer solution-L for Ovis Aries fibroblasts[J].Xinjiang Agricultural Sciences,2015,52(8):1481-1485. | |
21 | 董海龙,吴琼,刘明超,等.奶牛乳腺上皮细胞的体外分离培养及超微结构鉴定[J].中国兽医学报,2016,36(10):1763-1768. |
DONGH L,WUQ,LIUM C,et al.Inprimary culture and ultrastructural changes of bovine mammary epithelial cells[J].Chinese Journal of Veterinary Science,2016,36(10):1763-1768. | |
22 |
BAES,PARKJ,KIMJ S.Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases[J].Bioinformatics,2014,30(10):1473-1475.
doi: 10.1093/bioinformatics/btu048 |
23 |
YUS L,LUOJ J,SONGZ Y,et al.Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle[J].Cell Res,2011,21(11):1638-1640.
doi: 10.1038/cr.2011.153 |
24 | 崔趁趁. TALEN介导的β-乳球蛋白基因敲除奶山羊的生产[D]. 杨凌: 西北农林科技大学, 2015. |
CUI C C. TALEN-mediated gene targeting of the β-lactoglobulin gene in goat[D]. Yangling: Northwest A&F University, 2015. (in Chinese) | |
25 | 周文君. 利用CRISPR/Cas9技术敲除山羊BLG基因与定点整合hLF基因的研究[D]. 南京: 南京农业大学, 2017. |
ZHOU W J. Knocking out goat BLG gene and intergration of hLF site-specifically using CRISP/Cas9 technology[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese) | |
26 | 张曼. 奶山羊BLG基因调控序列指导的乳腺特异性表达载体的构建和优化[D]. 杨凌: 西北农林科技大学, 2015. |
ZHANG M. Construction and optimizing of gland-specific expression vector by dairy goat BLG gene regulatory elements[D]. Yangling: Northwest A&F University, 2015. (in Chinese) | |
27 | 丁修虎, 丁强, 王悦, 等. 利用胞嘧啶碱基编辑器高效制备奶牛BLG基因敲除胚胎的研究[J/OL]. 南京农业大学学报, 1-10[2024-04-10]. http://kns.cnki.net/kcms/detail/32.1148.S.20240507.1850.008.html. |
DING X H, DING Q, WANG Y, et al. Highly efficient BLG gene knock out using base editors in cattle embryos[J/OL]. Journal of Nanjing Agricultural University, 1-10[2024-04-10]. http://kns.cnki.net/kcms/detail/32.1148.S.2240507.1850.008.html. (in Chinese) | |
28 | 张家翔,韩佃刚,师亚玲,等.利用CRISPR/Cas9技术构建PPARγ基因敲除的IPEC-J2细胞系[J].中国畜牧兽医,2023,50(7):2670-2677. |
ZHANGJ X,HANGD G,SHIY L,et al.Construction of IPEC-J2 cell lines with PPARγ gene knockout mediated by CRISPR/Cas9 technology[J].China Animal Husbandry & Veterinary Medicine,2023,50(7):2670-2677. | |
29 |
LIJ,KONGD L,KEY P,et al.Application of multiple sgRNAs boosts efficiency of CRISPR/Cas9-mediated gene targeting in Arabidopsis[J].BMC Biol,2024,22(1):6.
doi: 10.1186/s12915-024-01810-7 |
30 | 杨花,刘孜斐,吕文莉,等.基于CRISPR/Cas9系统构建绵羊VASA基因敲入载体及验证[J].生物工程学报,2023,39(10):4219-4233. |
YANGH,LIUZ F,LÜW L,et al.Construction and validation of sheep VASA gene knock-in vector based on CRISPR/Cas9 system[J].Chinese Journal of Biotechnology,2023,39(10):4219-4233. | |
31 |
ZHANGY R,YINT L,ZHOUL Q.CRISPR/Cas9 technology: applications in oocytes and early embryos[J].J Transl Med,2023,21(1):746.
doi: 10.1186/s12967-023-04610-9 |
32 |
张晨俭,李隐侠,丁强,等.CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J].畜牧兽医学报,2024,55(1):129-141.
doi: 10.11843/j.issn.0366-6964.2024.01.014 |
ZHANGC J,LIY X,DINGQ,et al.Efficient preparation of CRISPR/Cas9-mediated goat SOCS2 gene edited embryos[J].Acta Veterinaria et Zootechnica Sinica,2024,55(1):129-141.
doi: 10.11843/j.issn.0366-6964.2024.01.014 |
|
33 | ZHANGX H,TEEL Y,WANGX G,et al.Off-target effects in CRISPR/Cas9-mediated genome engineering[J].Mol Ther Nucleic Acids,2015,4(11):e264. |
34 |
CHENX Y,XUF,ZHUC M,et al.Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans[J].Sci Rep,2014,4(1):7581.
doi: 10.1038/srep07581 |
35 |
DOENCHJ G,FUSIN,SULLENDERM,et al.Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J].Nat Biotechnol,2016,34(2):184-191.
doi: 10.1038/nbt.3437 |
36 |
SMITHC,GOREA,YANW,et al.Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs[J].Cell Stem Cell,2014,15(1):12-13.
doi: 10.1016/j.stem.2014.06.011 |
37 | MAS Y,WANGA M,CHENX X,et al.Deep sequencing reveals the comprehensive CRISPR-Cas9 editing spectrum in Bombyx mori[J].CRISPR J,2021,4(3):371-380. |
38 | WANGD Q,ZHANGC D,WANGB,et al.Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning[J].Nat Commun,2019,10(1):4284. |
39 | HENDELA,BAKR O,CLARKJ T,et al.Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells[J].Nat Biotechnol,2015,33(9):985-989. |
40 | TAIC S,CHENY Y,CHENW L.β-Lactoglobulin influences human immunity and promotes cell proliferation[J].Biomed Res Int,2016,2016,7123587. |
[1] | 刘雯雯, 董发明, 毕延震. 多基因编辑技术的发展及其在畜牧种质创新中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3267-3275. |
[2] | 梁瑞英, 索静霞, 梁琳, 刘贤勇, 丁家波, 索勋, 汤新明. 艾美耳球虫的遗传操作:平台建立、应用与展望[J]. 畜牧兽医学报, 2024, 55(8): 3362-3373. |
[3] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[4] | 王家丽, 杨帆, 邵文华, 黄梦瑶, 曹伟军, 蒲秀瑛, 张伟, 郑海学. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55(4): 1810-1818. |
[5] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[6] | 费晓钰, 石超群, 刘雪明, 苏峰, 姜运良. CRISPR/Cas9系统介导的猪MRC1修饰基因降低PCV2复制的研究[J]. 畜牧兽医学报, 2023, 54(3): 934-946. |
[7] | 刘铃, 王丹丹, 崔凯, 马月辉, 蒋琳. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54(2): 434-442. |
[8] | 陈俊贞, 权冉, 付强, 葛丽娟, 袁圆圆, 张成远, 李建林, 史慧君. 热休克蛋白HSP90B1影响牛病毒性腹泻病毒复制的研究[J]. 畜牧兽医学报, 2023, 54(2): 683-693. |
[9] | 张硕, 周雨潇, 吴海波, 索伦. 长效CRISPR/Cas9基因编辑结局的动态追踪研究[J]. 畜牧兽医学报, 2023, 54(10): 4196-4208. |
[10] | 邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79. |
[11] | 李林, 曹萌, 宫彬彬, 赵梅, 王婕, 张晓辉. 丁酸钠通过AMPK通路调控LPS造成牛乳腺上皮细胞脂代谢紊乱的作用机制[J]. 畜牧兽医学报, 2022, 53(9): 3221-3230. |
[12] | 赵为民, 王慧利, 曹少先, 郭日红, 王泽平, 陈哲, 徐奎, 付言峰, 李碧侠, 任守文, 程金花. 猪CD163基因的单碱基编辑研究[J]. 畜牧兽医学报, 2022, 53(4): 1041-1050. |
[13] | 李兆龙, 张惠芳, 丰志华, 方舟. 携带CRISPR/Cas9的重组腺联病毒对伪狂犬病病毒感染小鼠的治疗效应[J]. 畜牧兽医学报, 2022, 53(3): 834-846. |
[14] | 邹惠影, 李俊良, 朱化彬. 引导编辑系统的研究与应用进展[J]. 畜牧兽医学报, 2022, 53(11): 3721-3730. |
[15] | 罗俊, 刘金玲, 郑鹿平, 罗琴, 滕蔓. 家禽疱疹病毒CRISPR/Cas9基因编辑最新研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3335-3344. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||