畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4417-4427.doi: 10.11843/j.issn.0366-6964.2024.10.015
李聪聪1(), 黄子珂1, 黄念旎1, 马诗语1, 刘晗1, 肖志标2, 宋果2, 蒋亮2, 彭为波2, 杨联熙3, 郭云涛4, 黄生强1,*(
)
收稿日期:
2024-03-07
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
黄生强
E-mail:lcc199308@126.com;hsq07@126.com
作者简介:
李聪聪(1993-), 女, 河南南阳人, 硕士, 主要从事家兔遗传与分子育种研究, E-mail: lcc199308@126.com
基金资助:
Congcong LI1(), Zike HUANG1, Nianni HUANG1, Shiyu MA1, Han LIU1, Zhibiao XIAO2, Guo SONG2, Liang JIANG2, Weibo PENG2, Lianxi YANG3, Yuntao GUO4, Shengqiang HUANG1,*(
)
Received:
2024-03-07
Online:
2024-10-23
Published:
2024-11-04
Contact:
Shengqiang HUANG
E-mail:lcc199308@126.com;hsq07@126.com
摘要:
旨在对九疑山兔线粒体基因组进行组装,探究其系统进化和分类地位。本研究采用高通量测序技术对20只150日龄九疑山兔的耳组织进行了全基因组测序,利用生物信息学软件对线粒体基因组进行组装,并对获得的线粒体基因组进行序列分析、基因预测和注释,随后基于已发表的家兔、野兔、经济动物和模式动物的线粒体基因组序列进行多序列比对和系统进化分析,对研究群体的多态性位点进行鉴定。组装获得长度为17 306 bp的九疑山兔线粒体基因组全序列,其碱基组成、基因分布与已发表的5个家兔品种的线粒体基因组基本一致。基于D-loop区的系统进化分析表明, 九疑山兔与福建黄兔进化关系较近,而与欧洲穴兔、沂蒙毛兔、川白獭兔和新西兰白兔较远。通过其与14种野兔及11种经济/模式动物的种间系统进化分析表明, 九疑山兔与欧洲野兔、海南兔和白靴兔亲缘关系较近,与其他野兔和经济/模式动物较远。研究群体的线粒体基因组保守区共鉴定到了12个突变位点,其中有3个突变的群体等位基因频率大于0.8,为多态性位点。本研究组装获得了首个九疑山兔的完整线粒体基因组序列,明确了九疑山兔与其它品种家兔、野兔和常见经济/模式动物的亲缘关系和分类地位,为九疑山兔的种质资源利用和品种选育等研究提供了基础数据。
中图分类号:
李聪聪, 黄子珂, 黄念旎, 马诗语, 刘晗, 肖志标, 宋果, 蒋亮, 彭为波, 杨联熙, 郭云涛, 黄生强. 九疑山兔线粒体基因组组装及系统进化分析[J]. 畜牧兽医学报, 2024, 55(10): 4417-4427.
Congcong LI, Zike HUANG, Nianni HUANG, Shiyu MA, Han LIU, Zhibiao XIAO, Guo SONG, Liang JIANG, Weibo PENG, Lianxi YANG, Yuntao GUO, Shengqiang HUANG. Mitochondrial Genome Assembly and Phylogenetic Analysis of the Jiuyishan Rabbit[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4417-4427.
表 1
研究纳入的已发表线粒体基因组"
分类 Classification | 拉丁名 Latin name | 中文名 Chinese name | GenBank登录号 GenBank accession No. |
家兔Rabbit | Oryctolagus cuniculus | 新西兰白兔 | MH985853.1 |
Oryctolagus cuniculus | 川白獭兔 | MN953621.1 | |
Oryctolagus cuniculus | 沂蒙毛兔 | MN296708.1 | |
Oryctolagus cuniculus | 欧洲穴兔 | NC_001913.1 | |
Oryctolagus cuniculus | 福建黄兔 | MN518689.1 | |
野兔Hare | Lepus oiostolus | 高原兔 | NC_050983.1 |
Lepus yarkandensis | 塔里木兔 | NC_050569.1 | |
Lepus hainanus | 海南兔 | NC_025902.1 | |
Lepus europaeus | 欧洲野兔 | NC_004028.1 | |
Lepus americanus | 白靴兔 | NC_024043.1 | |
Lepus timidus | 雪兔 | NC_024040.1 | |
Lepus capensis | 草兔-开普野兔 | NC_015841.1 | |
Lepus tibetanus pamirensis | 藏兔 | LC073697.1 | |
Lepus sinensis | 华南兔 | NC_025316.1 | |
Lepus tolai | 草兔-托氏兔 | NC_025748.1 | |
Lepus coreanus | 韩国野兔 | NC_024259.1 | |
Lepus granatensis | 格拉纳达野兔 | NC_024042.1 | |
Lepus townsendii | 白尾长耳大野兔 | NC_024041.1 | |
Lepus arcticus | 北极兔 | NC_044769.1 | |
外群External species | Ovis aries | 绵羊 | NC_001941.1 |
Capricornis crispus | 山羊 | NC_005044.2 | |
Homo sapiens | 人 | NC_012920.1 | |
Bos taurus | 牛 | NC_006853.1 | |
Equus caballus | 马 | NC_001640.1 | |
Sus scrofa | 猪 | NC_012095.1 | |
Gallus gallus | 鸡 | NC_040902.1 | |
Danio rerio | 斑马鱼 | NC_002333.2 | |
Drosophila immigrans | 果蝇 | NC_044669.1 | |
Mus musculus | 小鼠 | NC_005089.1 | |
Rattus norvegicus | 大鼠 | NC_001665.2 |
表 2
测序数据质量统计"
样本编号 Sample ID | 总数据量/G Total data amount | Q30/% | GC含量/% GC content | 插入片段长度/bp Insert size | 比对率/% Mapping rate | 平均深度(×) Average depth | 线粒体平均深度(×) Average depth of the mitochondria genome |
S1 | 58.83 | 93.79 | 45.20 | 290 | 99.02 | 18.83 | 3 741.22 |
S2 | 52.51 | 93.06 | 43.87 | 324 | 99.15 | 17.32 | 3 110.19 |
S3 | 53.71 | 92.77 | 43.67 | 343 | 99.11 | 18.15 | 5 757.16 |
S4 | 52.11 | 92.72 | 43.13 | 324 | 99.21 | 17.35 | 6 505.76 |
S5 | 53.98 | 92.86 | 43.12 | 334 | 99.28 | 18.33 | 10 553.55 |
S6 | 51.34 | 93.09 | 43.97 | 334 | 99.08 | 17.34 | 9 259.27 |
S7 | 52.34 | 93.35 | 43.72 | 321 | 99.14 | 17.32 | 4 583.41 |
S8 | 53.22 | 93.27 | 43.34 | 326 | 99.18 | 17.85 | 5 490.54 |
S9 | 51.09 | 89.87 | 42.61 | 374 | 99.21 | 17.71 | 5 217.01 |
S10 | 54.63 | 92.57 | 43.21 | 349 | 99.11 | 18.69 | 8 937.94 |
S11 | 55.35 | 93.06 | 43.32 | 327 | 99.21 | 18.53 | 6 778.39 |
S12 | 58.89 | 93.26 | 43.44 | 337 | 99.12 | 19.93 | 8 297.15 |
S13 | 52.44 | 93.81 | 42.75 | 356 | 99.17 | 18.03 | 5 308.23 |
S14 | 52.72 | 94.20 | 42.99 | 332 | 99.20 | 17.84 | 5 193.53 |
S15 | 58.10 | 94.03 | 43.38 | 331 | 99.17 | 19.68 | 2 968.24 |
S16 | 56.20 | 93.55 | 43.20 | 348 | 99.17 | 19.13 | 3 254.84 |
S17 | 56.34 | 93.27 | 43.14 | 339 | 99.21 | 19.12 | 3 918.06 |
S18 | 60.49 | 93.33 | 43.16 | 349 | 99.16 | 20.65 | 3 944.40 |
S19 | 48.38 | 93.09 | 43.70 | 364 | 99.12 | 16.63 | 2 805.76 |
S20 | 53.52 | 93.79 | 43.16 | 341 | 99.18 | 18.18 | 3 922.48 |
Mean | 54.31 | 93.14 | 43.40 | 337 | 99.16 | 18.33 | 5 477.36 |
Min | 48.38 | 89.87 | 42.61 | 290 | 99.02 | 16.63 | 2 805.76 |
Max | 60.49 | 94.20 | 45.20 | 374 | 99.28 | 20.65 | 10 553.55 |
表 3
九疑山兔线粒体基因组结构"
基因 Gene | 开始 Start | 结束 End | 长度/bp Length | 链 Strand | A含量/% Per_A | T含量/% Per_T | C含量/% Per_C | G含量/% Per_G | AT含量/% Per_AT | CG含量/% Per_CG |
tRNA-Phe | 1 | 69 | 69 | H | 37.68 | 21.74 | 23.19 | 17.39 | 59.42 | 40.58 |
rrnS | 70 | 1 026 | 957 | H | 35.84 | 23.93 | 22.05 | 18.18 | 59.77 | 40.23 |
tRNA-Val | 1 027 | 1 092 | 66 | H | 30.30 | 27.27 | 25.76 | 16.67 | 57.58 | 42.42 |
rrnL | 1 093 | 2 671 | 1 579 | H | 36.35 | 25.46 | 20.39 | 17.80 | 61.81 | 38.19 |
tRNA-Leu | 2 672 | 2 746 | 75 | H | 32.00 | 26.67 | 22.67 | 18.67 | 58.67 | 41.33 |
ND1 | 2 749 | 3 705 | 957 | H | 28.74 | 28.84 | 30.09 | 12.33 | 57.58 | 42.42 |
tRNA-Ile | 3 704 | 3 773 | 70 | H | 37.14 | 34.29 | 11.43 | 17.14 | 71.43 | 28.57 |
tRNA-Gln | 3 771 | 3 842 | 72 | L | 31.94 | 25.00 | 29.17 | 13.89 | 56.94 | 43.06 |
tRNA-Met | 3 851 | 3 919 | 69 | H | 28.99 | 27.54 | 24.64 | 18.84 | 56.52 | 43.48 |
ND2 | 3 920 | 4 963 | 1 044 | H | 34.96 | 28.26 | 27.68 | 9.10 | 63.22 | 36.78 |
tRNA-Trp | 4 971 | 5 037 | 67 | H | 34.33 | 22.39 | 23.88 | 19.40 | 56.72 | 43.28 |
tRNA-Ala | 5 040 | 5 106 | 67 | L | 32.84 | 29.85 | 22.39 | 14.93 | 62.69 | 37.31 |
tRNA-Asn | 5 107 | 5 179 | 73 | L | 28.77 | 24.66 | 28.77 | 17.81 | 53.42 | 46.58 |
tRNA-Cys | 5 212 | 5 280 | 69 | L | 24.64 | 28.99 | 24.64 | 21.74 | 53.62 | 46.38 |
tRNA-Tyr | 5 281 | 5 346 | 66 | L | 27.27 | 33.33 | 22.73 | 16.67 | 60.61 | 39.39 |
COX1 | 5 354 | 6 895 | 1 542 | H | 26.39 | 31.06 | 25.23 | 17.32 | 57.46 | 42.54 |
tRNA-Ser | 6 898 | 6 966 | 69 | L | 33.33 | 21.74 | 27.54 | 17.39 | 55.07 | 44.93 |
tRNA-Asp | 6 970 | 7 038 | 69 | H | 36.20 | 39.13 | 14.49 | 10.14 | 75.36 | 24.64 |
COX2 | 7 039 | 7 722 | 684 | H | 30.26 | 28.65 | 26.61 | 14.47 | 58.92 | 41.08 |
tRNA-Lys | 7 726 | 7 794 | 69 | H | 31.88 | 26.09 | 18.84 | 23.19 | 57.97 | 42.03 |
ATP8 | 7 796 | 7 999 | 204 | H | 34.31 | 28.43 | 29.41 | 7.84 | 62.75 | 37.25 |
ATP6 | 7 957 | 8 637 | 681 | H | 29.52 | 29.66 | 29.52 | 11.31 | 59.18 | 40.82 |
COX3 | 8 637 | 9 419 | 783 | H | 27.20 | 28.74 | 28.74 | 15.33 | 55.94 | 44.06 |
tRNA-Gly | 9 421 | 9 490 | 70 | H | 32.86 | 30.00 | 22.86 | 14.29 | 62.86 | 37.14 |
ND3 | 9 491 | 9 847 | 357 | H | 31.37 | 33.05 | 23.81 | 11.76 | 64.43 | 35.57 |
tRNA-Arg | 9 838 | 9 904 | 67 | H | 40.30 | 35.82 | 10.45 | 13.43 | 76.12 | 23.88 |
ND4L | 9 906 | 10 202 | 297 | H | 29.63 | 34.34 | 25.59 | 10.44 | 63.97 | 36.03 |
ND4 | 10 196 | 11 572 | 1 377 | H | 30.14 | 29.27 | 29.19 | 11.40 | 59.40 | 40.60 |
tRNA-His | 11 574 | 11 642 | 69 | H | 37.68 | 30.43 | 17.39 | 14.49 | 68.12 | 31.88 |
tRNA-Ser | 11 643 | 11 701 | 59 | H | 25.42 | 28.81 | 28.81 | 16.95 | 54.24 | 45.76 |
tRNA-Leu | 11 702 | 11 771 | 70 | H | 41.43 | 25.71 | 14.29 | 18.57 | 67.14 | 32.86 |
ND5 | 11 772 | 13 583 | 1 812 | H | 30.85 | 30.63 | 27.04 | 11.48 | 61.48 | 38.52 |
ND6 | 13 579 | 14 103 | 525 | L | 40.38 | 19.81 | 33.33 | 6.48 | 60.19 | 39.81 |
tRNA-Glu | 14 104 | 14 171 | 68 | L | 36.76 | 30.88 | 17.65 | 14.71 | 67.65 | 32.35 |
CYTB | 14 175 | 15 314 | 1 140 | H | 27.98 | 28.95 | 30.35 | 12.72 | 56.93 | 43.07 |
tRNA-Thr | 15 314 | 15 379 | 66 | H | 28.79 | 27.27 | 21.21 | 22.73 | 56.06 | 43.94 |
tRNA-Pro | 15 380 | 15 445 | 66 | L | 28.79 | 21.21 | 34.85 | 15.15 | 50.00 | 50.00 |
D-loop | 15 446 | 17 306 | 1 861 | H | 31.06 | 24.61 | 30.63 | 13.70 | 55.67 | 44.33 |
表 4
九疑山兔群体保守区突变位点"
线粒体位置 Location | 参考碱基 Reference base | 突变碱基 Alternative base | 突变功能 Mutation function | 突变类型 Mutation type | 突变所在基因名 Gene name | HGVS写法(外显子) HGVS.c | HGVS写法(蛋白) HGVS.p | 杂合个体数 Heterozygote number | 纯合个体数 Homozygote number | 群体等位基因频率 MAF | 携带突变个体 Rabbits carrying mutations |
1647 | A | T | ncRN$\underline{\rm{A}}$ exonic | . | rrnaL | . | . | 0 | 1 | 0.05 | S12 |
2228 | T | C | ncRN$\underline{\rm{A}}$ exonic | . | rrnaL | . | . | 0 | 3 | 0.15 | S4/S6/S10 |
4643 | T | G | exonic | missens$\underline{\rm{e}}$ variant | ND2 | c.724T>G | p.Ser242Ala | 0 | 1 | 0.05 | S12 |
5195 | - | A | intergentic | . | . | . | . | 2 | 0 | 0.05 | S15/S18 |
5870 | G | C | exonic | missens$\underline{\rm{e}}$ variant | COX1 | c.517G>C | p.Ala173Pro | 0 | 20 | 1 | S1/S2/S3/S4/S5/ S6/S7/S8/S9/S10/ S11/S12/S13/S14/ S15/S16/S17/S18/ S19/S20 |
6781 | C | T | exonic | synonymou$\underline{\rm{s}}$ variant | COX1 | c.1428C>T | p.Phe476Phe | 0 | 6 | 0.3 | S13/S14/S16/ S17/S19/S20 |
7379 | A | G | exonic | missens$\underline{\rm{e}}$ variant | COX2 | c.341A>G | p.Glu114Gly | 0 | 2 | 0.1 | S16/S20 |
10402 | G | A | exonic | synonymou$\underline{\rm{s}}$ variant | ND4 | c.207G>A | p.Thr69Thr | 0 | 1 | 0.05 | S3 |
10894 | T | C | exonic | synonymou$\underline{\rm{s}}$ variant | ND4 | c.699T>C | p.Ala233Ala | 0 | 2 | 0.1 | S5/S9 |
11565 | T | C | exonic | missens$\underline{\rm{e}}$ variant | ND4 | c.1370T>C | p.Leu457Pro | 0 | 19 | 0.95 | S2/S3/S4/S5/S6/ S7/S8/S9/S10/ S11/S12/S13/S14/ S15/S16/S17/S18/ S19/S20 |
12400 | T | C | exonic | missens$\underline{\rm{e}}$ variant | ND5 | c.629T>C | p.Ile210Thr | 0 | 1 | 0.05 | S12 |
15341 | T | C | ncRN$\underline{\rm{A}}$ exonic | . | tRNA-Thr | . | . | 0 | 17 | 0.85 | S1/S2/S3/S4/S6/ S7/S8/S10/S11/ S13/S14/S15/ S16/S17/S18/ S19/S20 |
1 |
秦应和.家兔的起源驯化与育种[J].生物学通报,2011,46(1):9-11.
doi: 10.3969/j.issn.0006-3193.2011.01.003 |
QINY H.Origin, domestication and breeding of the rabbit[J].Bulletin of Biology,2011,46(1):9-11.
doi: 10.3969/j.issn.0006-3193.2011.01.003 |
|
2 |
肖志标,黄冬云,李之平,等.九疑山兔畜禽遗传资源介绍、保护与利用[J].湖南畜牧兽医,2013,(2):13-16.
doi: 10.3969/j.issn.1006-4907.2013.02.006 |
XIAOZ B,HUANGD Y,LIZ P,et al.Introduction, protection and utilization of livestock and poultry genetic resources of Jiuyishan rabbit[J].Hunan Journal of Animal Science & Veterinary Medicine,2013,(2):13-16.
doi: 10.3969/j.issn.1006-4907.2013.02.006 |
|
3 |
BIRÓB,GÁLZ,SCHIAVOG,et al.Nuclear mitochondrial DNA sequences in the rabbit genome[J].Mitochondrion,2022,66,1-6.
doi: 10.1016/j.mito.2022.07.003 |
4 |
LIUC M,WANGS H,DONGX G,et al.Exploring the genomic resources and analysing the genetic diversity and population structure of Chinese indigenous rabbit breeds by RAD-seq[J].BMC Genomics,2021,22(1):573.
doi: 10.1186/s12864-021-07833-6 |
5 |
TAPANAINENR,AASUMETSK,FEKETEZ,et al.Species-specific variation in mitochondrial genome tandem repeat polymorphisms in hares (Lepus spp., Lagomorpha, Leporidae) provides insight into their evolution[J].Gene,2024,926,148644.
doi: 10.1016/j.gene.2024.148644 |
6 |
NITSCHL,LAREAUC A,LUDWIGL S.Mitochondrial genetics through the lens of single-cell multi-omics[J].Nat Genet,2024,56(7):1355-1365.
doi: 10.1038/s41588-024-01794-8 |
7 | 曹萍,徐宇辉,刘瑞林,等.天祝白牦牛全线粒体基因组母系遗传多样性[J].青海大学学报,2024,42(2):28-34. |
CAOP,XUY H,LIUR L,et al.Maternal genetic diversity of complete mitogenome of Tianzhu white yak[J].Journal of Qinghai University,2024,42(2):28-34. | |
8 |
何金明,徐凯,杜亚丽,等.蜜蜂线粒体基因组多态性应用研究进展[J].环境昆虫学报,2024,46(2):341-353.
doi: 10.3969/j.issn.1674-0858.2024.02.5 |
HEJ M,XUK,DUY L,et al.Progress in research on mitochondrial genome of honey bees and their polymorphisms[J].Journal of Environmental Entomology,2024,46(2):341-353.
doi: 10.3969/j.issn.1674-0858.2024.02.5 |
|
9 |
李广祯,马志杰,陈生梅,等.野牦牛及青海地方牦牛品种全线粒体基因组母系遗传多样性、分化及系统发育分析[J].畜牧兽医学报,2022,53(5):1420-1430.
doi: 10.11843/j.issn.0366-6964.2022.05.010 |
LIG Z,MAZ J,CHENS M,et al.Maternal genetic diversity, differentiation and phylogeny of mitogenome sequence variations of wild yak and local yak breeds in Qinghai[J].Acta Veterinaria et Zootechnica Sinica,2022,53(5):1420-1430.
doi: 10.11843/j.issn.0366-6964.2022.05.010 |
|
10 | 王利丹,谢跃.动物寄生性线虫线粒体基因组研究进展[J].中国畜牧兽医,2023,50(11):4600-4611. |
WANGL D,XIEY.Research progress of animal parasitic nematode mitogenomes[J].China Animal Husbandry & Veterinary Medicine,2023,50(11):4600-4611. | |
11 |
LÓPEZ-CUAMATZII L,ORTEGAJ,BAEZAJ A.The complete mitochondrial genome of the 'Zacatuche' Volcano rabbit (Romerolagus diazi), an endemic and endangered species from the volcanic belt of central mexico[J].Mol Biol Rep,2022,49(2):1141-1149.
doi: 10.1007/s11033-021-06940-7 |
12 |
GISSIC,GULLBERGA,ARNASONU.The complete mitochondrial DNA sequence of the rabbit, Oryctolagus cuniculus[J].Genomics,1998,50(2):161-169.
doi: 10.1006/geno.1998.5282 |
13 |
WANGX,ZENGH M,WANGY,et al.The complete mitochondrial DNA sequence of Chuanbai Rex rabbit (Oryctolagus cuniculus)[J].Mitochondrial DNA B,2021,6(1):129-130.
doi: 10.1080/23802359.2020.1848476 |
14 |
YAOC Y,LIY Y,LIUL X,et al.The complete mitochondrial DNA sequence of Yimeng wool rabbit[J].Mitochondrial DNA B,2019,4(2):3858-3859.
doi: 10.1080/23802359.2019.1687022 |
15 | 周娟,李佳丽,陈秋燃,等.獭兔线粒体基因组全序列的测定与分析[J].中国兽医学报,2020,40(4):823-827. |
ZHOUJ,LIJ L,CHENQ R,et al.Complete sequence determination and analysis of mitochondrial genome of Rex rabbit[J].Chinese Journal of Veterinary Science,2020,40(4):823-827. | |
16 | 周彤,周娟,梁爽,等.福建黄兔线粒体基因组全序列测定与分析[J].西北农业学报,2020,29(9):1295-1303. |
ZHOUT,ZHOUJ,LIANGS,et al.Complete mitochondrial genome sequence and analysis of Fujian yellow rabbit[J].Acta Agriculturae Boreali-occidentalis Sinica,2020,29(9):1295-1303. | |
17 |
XIEK R,NINGC,YANGA G,et al.Resequencing analyses revealed genetic diversity and selection signatures during rabbit breeding and improvement[J].Genes,2024,15(4):433.
doi: 10.3390/genes15040433 |
18 |
CHENS F,ZHOUY Q,CHENY R,et al.fastp: an ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,2018,34(17):i884-i890.
doi: 10.1093/bioinformatics/bty560 |
19 |
LIH,DURBINR.Fast and accurate short read alignment with burrows-wheeler transform[J].Bioinformatics,2009,25(14):1754-1760.
doi: 10.1093/bioinformatics/btp324 |
20 |
LIH,HANDSAKERB,WYSOKERA,et al.The sequence alignment/map format and SAMtools[J].Bioinformatics,2009,25(16):2078-2079.
doi: 10.1093/bioinformatics/btp352 |
21 |
TARASOVA,VILELLAA J,CUPPENE,et al.Sambamba: fast processing of NGS alignment formats[J].Bioinformatics,2015,31(12):2032-2034.
doi: 10.1093/bioinformatics/btv098 |
22 |
KOBOLDTD C,ZHANGQ Y,LARSOND E,et al.VarScan 2:somatic mutation and copy number alteration discovery in cancer by exome sequencing[J].Genome Res,2012,22(3):568-576.
doi: 10.1101/gr.129684.111 |
23 |
WANGK,LIM Y,HAKONARSONH.ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J].Nucleic Acids Res,2010,38(16):e164.
doi: 10.1093/nar/gkq603 |
24 |
CINGOLANIP,PLATTSA,WANGL L,et al.A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2;iso-3[J].Fly (Austin),2012,6(2):80-92.
doi: 10.4161/fly.19695 |
25 |
PEDERSENB S,QUINLANA R.Mosdepth: quick coverage calculation for genomes and exomes[J].Bioinformatics,2018,34(5):867-868.
doi: 10.1093/bioinformatics/btx699 |
26 |
SONGM H,YANC C,LIJ T.MEANGS: an efficient seed-free tool for de novo assembling animal mitochondrial genome using whole genome NGS data[J].Brief Bioinform,2022,23(1):bbab538.
doi: 10.1093/bib/bbab538 |
27 |
ALLIOR,SCHOMAKER-BASTOSA,ROMIGUIERJ,et al.MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics[J].Mol Ecol Resour,2020,20(4):892-905.
doi: 10.1111/1755-0998.13160 |
28 |
GREINERS,LEHWARKP,BOCKR.Organellar Genome DRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes[J].Nucleic Acids Res,2019,47(W1):W59-W64.
doi: 10.1093/nar/gkz238 |
29 |
TAMURAK,STECHERG,KUMARS.MEGA11:molecular evolutionary genetics analysis version 11[J].Mol Biol Evol,2021,38(7):3022-3027.
doi: 10.1093/molbev/msab120 |
30 |
ZHANGX Z,FUL,GUOS C.The sequence and characterization of mitochondrial of Lepus oiostolus (Lagomorpha: Leporidae)[J].Mitochondrial DNA B,2020,5(3):2135-2136.
doi: 10.1080/23802359.2020.1768930 |
31 |
HUANGY L,CHENY X,GUOH T,et al.The complete mitochondrial genome sequence of Yarkand hare (Lepus yarkandensis)[J].Mitochondrial DNA B,2019,4(2):3727-3728.
doi: 10.1080/23802359.2019.1681321 |
32 |
ARNASONU,ADEGOKEJ A,BODINK,et al.Mammalian mitogenomic relationships and the root of the eutherian tree[J].Proc Natl Acad Sci U S A,2002,99(12):8151-8156.
doi: 10.1073/pnas.102164299 |
33 |
HIENDLEDERS,LEWALSKIH,WASSMUTHR,et al.The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype[J].J Mol Evol,1998,47(4):441-448.
doi: 10.1007/PL00006401 |
34 |
XUX F,ÁRNASONÚ.The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region[J].Gene,1994,148(2):357-362.
doi: 10.1016/0378-1119(94)90713-7 |
35 |
DINGL,CHENC M,WANGH,et al.Complete mitochondrial DNA sequence of Lepus tolai (Leporidae: Lepus)[J].Mitochondrial DNA A,2016,27(3):2085-2086.
doi: 10.3109/19401736.2014.982568 |
36 |
MELO-FERREIRAJ,VILELAJ,FONSECAM M,et al.The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression[J].Genome Biol Evol,2014,6(4):886-896.
doi: 10.1093/gbe/evu059 |
37 | HASSANINA,BONILLOC,NGUYENB X,et al.Comparisons between mitochondrial genomes of domestic goat (Capra hircus) reveal the presence of numts and multiple sequencing errors[J].Mitochondrial DNA,2010,21(3/4):68-76. |
38 |
BROUGHTONR E,MILAMJ E,ROEB A.The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA[J].Genome Res,2001,11(11):1958-1967.
doi: 10.1101/gr.156801 |
39 |
LONGJ R,QIUX P,ZENGF T,et al.Origin of rabbit (Oryctolagus cuniculus) in China: evidence from mitochondrial DNA control region sequence analysis[J].Anim Genet,2003,34(2):82-87.
doi: 10.1046/j.1365-2052.2003.00945.x |
40 |
SETIAJIA,LESTARID A,PANDUPUSPITASARIN S,et al.Genetic characteristics of complete mtDNA genome sequence of Indonesian local rabbit (Oryctolagus cuniculus)[J].J Genet Eng Biotechnol,2023,21(1):96.
doi: 10.1186/s43141-023-00546-1 |
[1] | 娜梅拉, 李科南, 杜海东, 郭文亮, 娜仁花. 不同日龄内蒙古白绒山羊瘤胃及粪便真菌多样性差异研究[J]. 畜牧兽医学报, 2024, 55(8): 3526-3540. |
[2] | 郑焕琴, 姜晓敏, 岳红, 王宝岩, 刘洋, 张兴晓, 张建龙, 朱洪伟. 猫1型疱疹病毒分离鉴定及部分生物学特性分析[J]. 畜牧兽医学报, 2024, 55(7): 3040-3048. |
[3] | 朱昊天, 刘路瑶, 杨聪山, 姜纪, 石涵, 刘笑笑, 陈木新, 徐前明. 一例海豚源典型异尖线虫形态观察和分子鉴定[J]. 畜牧兽医学报, 2024, 55(6): 2599-2606. |
[4] | 宋艳, 袁永丰, 钱虹宇, 李鑫灿, 罗洪艳, 王芝英, 周作勇. 羊伪结核棒状杆菌的分离鉴定及部分生物学特性分析[J]. 畜牧兽医学报, 2024, 55(2): 680-687. |
[5] | 付涵, 卢冲, 缪荣浩, 卢亚宾, 李建龙, 刘建华, 耿明阳, 郭庆勇, 买占海, 况玲. 流产对母马阴道和肠道菌群多样性的影响及阴道细菌的分离鉴定[J]. 畜牧兽医学报, 2024, 55(10): 4700-4719. |
[6] | 张道亮, 丁红研, 王留幸, 邰文俊, 孔昊, 赵畅, 冯士彬, 王希春, 薛艳锋, 吴金节, 李玉. 瘤胃酸中毒对山羊胃肠道功能、形态和菌群的影响[J]. 畜牧兽医学报, 2024, 55(10): 4760-4772. |
[7] | 马淑娟, 徐祎洁, 何珂, 马瑞丰, 朱英. 反刍动物Toll样受体多基因家族的分子进化及表达模式分析[J]. 畜牧兽医学报, 2023, 54(9): 3722-3734. |
[8] | 杨晴, 巩静, 赵雪艳, 朱晓东, 耿立英, 张传生, 王继英. 芯片和重测序在猪遗传结构研究中的应用比较[J]. 畜牧兽医学报, 2023, 54(7): 2772-2782. |
[9] | 吴祎程, 冉涛, 周传社, 谭支良. 宏基因组学技术分析山羊瘤胃病毒的多样性[J]. 畜牧兽医学报, 2023, 54(7): 2932-2941. |
[10] | 李蔚, 张强, 瞿嘉豪, 吴亚平, 胡若辰, 贾若艺, 郭如海, 马清义, 潘广林, 王兴龙. 大熊猫肠道菌群年龄演替规律分析[J]. 畜牧兽医学报, 2023, 54(6): 2619-2630. |
[11] | 秦蕾, 吴慧敏, 徐琦琦, 陈万昭, 王东, 李宏博, 夏盼盼, 刘泽鹏, 夏利宁. 外源MDR鼠伤寒沙门菌对健康小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2158-2169. |
[12] | 胥辉豪, 刘江渝, 李启卷, 郑小波, 林珈好, 金艺鹏, 林德贵. 己糖激酶2在犬乳腺肿瘤中的表达及预后研究[J]. 畜牧兽医学报, 2023, 54(3): 1310-1324. |
[13] | 李超, 赵雪艳, 王永军, 王彦平, 任一帆, 李菁璇, 王怀中, 王继英, 宋勤叶. 莱芜猪和杜长大猪盲肠和结肠微生物菌群结构组成和功能分析[J]. 畜牧兽医学报, 2023, 54(12): 5033-5045. |
[14] | 陈璐, 常新宇, 沈嘉忱, 沈瑞廷, 赵振华, 侯晓林. 鸡传染性支气管炎病毒感染HD11细胞的转录组分析[J]. 畜牧兽医学报, 2023, 54(11): 4860-4865. |
[15] | 佟盼盼, 黄顺敏, 王芋丹, 施旭辉, 陈文霞, 宋鑫龙, 张毅, 苏战强, 谢金鑫. 新疆地区腹泻仔猪源大肠杆菌的分群、血清型鉴定及耐药性分析[J]. 畜牧兽医学报, 2023, 54(1): 414-420. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||