畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (10): 3279-3286.doi: 10.11843/j.issn.0366-6964.2022.10.001
侯任达, 张润, 侯欣华, 王立贤, 张龙超*
收稿日期:
2022-03-16
出版日期:
2022-10-23
发布日期:
2022-10-26
通讯作者:
张龙超,主要从事动物遗传育种研究,E-mail:zhlchias@163.com
作者简介:
侯任达(1996-),男,山东青岛人,硕士生,主要从事动物遗传育种研究,E-mail:806478267@qq.com
基金资助:
HOU Renda, ZHANG Run, HOU Xinhua, WANG Lixian, ZHANG Longchao*
Received:
2022-03-16
Online:
2022-10-23
Published:
2022-10-26
摘要: 肌肉组织分为骨骼肌、心肌和平滑肌3种类型。其中骨骼肌是畜禽最大的器官,约占畜禽身体质量的40%,它由大小、形状及肌肉收缩蛋白含量不同的肌纤维构成,对维持身体姿势、呼吸和体温调节是必不可少的。在肌纤维发育的各阶段,复杂的外在和内在机制共同调控着肌肉的发生,相关的信号机制在这当中起着决定性作用。畜禽的骨骼肌是主要的肉产品来源,而肉质性状的改善也是每个畜禽场的重要目标,因此对肌纤维的发生及相关机制的全面了解是很有必要的。本文通过整合1987—2022年国内外肌纤维研究相关文献,对肌纤维的发生、类型及调控机制进行了综述,重点介绍了与畜禽肌纤维发育规律相关的基因及信号通路,并对目前畜禽肌纤维调控机制研究存在的问题提出了建议和未来研究的方向进行了展望。
中图分类号:
侯任达, 张润, 侯欣华, 王立贤, 张龙超. 畜禽肌纤维发育规律及相关基因研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3279-3286.
HOU Renda, ZHANG Run, HOU Xinhua, WANG Lixian, ZHANG Longchao. Research Progress on the Pattern of Muscle Fiber Development and Related Genes in Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3279-3286.
[1] | WARDLE F C.Master control:Transcriptional regulation of mammalian Myod[J].J Muscle Res Cell Motil, 2019, 40(2):211-226. |
[2] | LEFAUCHEUR L.A second look into fibre typing- -relation to meat quality[J].Meat Sci, 2010, 84(2):257-270. |
[3] | MAHDY M A A.Skeletal muscle fibrosis:An overview[J].Cell Tissue Res, 2019, 375(3):575-588. |
[4] | HENDERSON C A, GOMEZ C G, NOVAK S M, et al.Overview of the muscle cytoskeleton[J].Compr Physiol, 2017, 7(3):891-944. |
[5] | CHRIST B, HUANG R J, SCAAL M.Amniote somite derivatives[J].Dev Dyn, 2007, 236(9):2382-2396. |
[6] | ENDO T.Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion[J].Bone, 2015, 80:2-13. |
[7] | SCHIAFFINO S, GORZA L, SARTORE S, et al.Three myosin heavy chain isoforms in type 2 skeletal muscle fibres[J].J Muscle Res Cell Motil, 1989, 10(3):197-205. |
[8] | 欧秀琼, 李 星.猪肌肉肌纤维生长发育与类型转化及营养调控[J].上海农业学报, 2019, 35(5):149-154.OU X Q, LI X.Growth, development and type transformation of muscle fiber in pigs and its nutrition regulation[J].Acta Agriculturae Shanghai, 2019, 35(5):149-154.(in Chinese) |
[9] | BANDMAN E, ROSSER B W C.Evolutionary significance of myosin heavy chain heterogeneity in birds[J].Microsc Res Tech, 2000, 50(6):473-491. |
[10] | MATARNEH S K, SILVA S L, GERRARD D E.New insights in muscle biology that alter meat quality[J].Annu Rev Anim Biosci, 2021, 9(1):355-377. |
[11] | SONG S M, AHN C H, KIM G D.Muscle fiber typing in bovine and porcine skeletal muscles using immunofluorescence with monoclonal antibodies specific to myosin heavy chain isoforms[J].Food Sci Anim Resour, 2020, 40(1):132-144. |
[12] | 刘露露, 宋 阳, 苏丁丁.猪肌纤维发育及其对肉品质的影响[J].湖南畜牧兽医, 2017(2):36-38.LIU L L, SONG Y, SU D D.Muscle fiber development in pigs and its effect on meat quality[J].Hunan Journal of Animal Science & Veterinary Medicine, 2017(2):36-38.(in Chinese) |
[13] | MASHIMA D, OKA Y, GOTOH T, et al.Correlation between skeletal muscle fiber type and free amino acid levels in Japanese Black steers[J].Anim Sci J, 2019, 90(4):604-609. |
[14] | HUO W R, WENG K Q, GU T T, et al.Effect of muscle fiber characteristics on meat quality in fast- and slow-growing ducks[J].Poult Sci, 2021, 100(8):101264. |
[15] | SCHIAFFINO S, REGGIANI C.Fiber types in mammalian skeletal muscles[J].Physiol Rev, 2011, 91(4):1447-1531. |
[16] | HUO W R, WENG K Q, LI Y, et al.Comparison of muscle fiber characteristics and glycolytic potential between slow- and fast-growing broilers[J].Poult Sci, 2022, 101(3):101649. |
[17] | CHEN X L, ZHANG M, XUE Y H, et al.Effect of dietary L-theanine supplementation on skeletal muscle fiber type transformation in vivo[J].J Nutr Biochem, 2022, 99:108859. |
[18] | YU J A, WANG Z J, YANG X, et al.LncRNA-FKBP1C regulates muscle fiber type switching by affecting the stability of MYH1B[J]. Cell Death Discov, 2021, 7(1):73. |
[19] | PICARD B, GAGAOUA M.Muscle fiber properties in cattle and their relationships with meat qualities:an overview[J].J Agric Food Chem, 2020, 68(22):6021-6039. |
[20] | JIANG H, GE X.MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM——mechanism of growth hormone stimulation of skeletal muscle growth in cattle[J].J Anim Sci, 2014, 92(1):21-29. |
[21] | 章 明, 单艳菊, 姬改革, 等.PRKAG3基因在鸡不同部位肌肉中的表达及其与肌纤维类型的相关性[J].江苏农业科学, 2021, 49(16):144-147.ZHANG M, SHAN Y J, JI G G, et al.Expression of PRKAG3 gene in different parts of muscle and its association with myofiber type in chicken[J].Jiangsu Agricultural Sciences, 2021, 49(16):144-147.(in Chinese) |
[22] | 张梓豪, 林树带, 黄 幸, 等.Sox6基因调控鸡骨骼肌分化和肌纤维类型的研究[J].中国家禽, 2019, 41(9):8-14.ZHANG Z H, LIN S D, HUANG X, et al.Study on the regulations of Sox6 gene on skeletal muscle differentiation and muscle fiber types in chicken[J].China Poultry, 2019, 41(9):8-14.(in Chinese) |
[23] | RYU Y C, LEE E A, CHAI H H, et al.Effects of a novel p.A41P mutation in the swine Myogenic factor 5(MYF5) gene on protein stabilizing, muscle fiber characteristics and meat quality[J].Korean J Food Sci Anim Resour, 2018, 38(4):711-717. |
[24] | DAVIS R L, WEINTRAUB H, LASSAR A B.Expression of a single transfected cDNA converts fibroblasts to myoblasts[J]. Cell, 1987, 51(6):987-1000. |
[25] | ZAMMIT P S.Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J].Semin Cell Dev Biol, 2017, 72:19-32. |
[26] | ZHAO C P, RAZA S H A, KHAN R, et al.Genetic variants in MYF5 affected growth traits and beef quality traits in Chinese Qinchuan cattle[J].Genomics, 2020, 112(4):2804-2812. |
[27] | SINGH K, DILWORTH F J.Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors[J].FEBS J, 2013, 280(17):3991-4003. |
[28] | GANASSI M, BADODI S, ORTUSTE QUIROGA H P, et al.Myogenin promotes myocyte fusion to balance fibre number and size[J].Nat Commun, 2018, 9:4232. |
[29] | HERNÁNDEZ-HERNÁNDEZ J M, GARCÍA-GONZÁLEZ E G, BRUN C E, et al.The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration[J].Semin Cell Dev Biol, 2017, 72:10-18. |
[30] | LI L, CHEN Y, NIE L, et al.MyoD-induced circular RNA CDR1as promotes myogenic differentiation of skeletal muscle satellite cells[J].Biochim Biophys Acta Gene Regul Mech, 2019, 1862(8):807-821. |
[31] | KASSAR-DUCHOSSOY L, GAYRAUD-MOREL B, GOMèS D, et al.Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice[J].Nature, 2004, 431(7007):466-471. |
[32] | PANNEERSELVAM A, KANNAN A, MARIAJOSEPH-ANTONY L F, et al.PAX proteins and their role in pancreas[J].Diabetes Res Clin Pract, 2019, 155:107792. |
[33] | DER VARTANIAN A, QUÉTIN M, MICHINEAU S, et al.PAX3 confers functional heterogeneity in skeletal muscle stem cell responses to environmental stress[J].Cell Stem Cell, 2019, 24(6):958-973.e9. |
[34] | DE MORREE A, KLEIN J D D, GAN Q, et al.Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function[J].Science, 2019, 366(6466):734-738. |
[35] | BUCKINGHAM M, RELAIX F.PAX3 and PAX7 as upstream regulators of myogenesis[J].Semin Cell Dev Biol, 2015, 44:115-125. |
[36] | MANSOURI A, STOYKOVA A, TORRES M, et al.Dysgenesis of cephalic neural crest derivatives in Pax7-/- mutant mice[J]. Development, 1996, 122(3):831-838. |
[37] | KUANG S H, CHARGÉ S B, SEALE P, et al.Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis[J].J Cell Biol, 2006, 172(1):103-113. |
[38] | CZERWINSKA A M, NOWACKA J, ASZER M, et al.Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7[J].Cell Cycle, 2016, 15(21):2931-2942. |
[39] | SINCENNES M C, BRUN C E, LIN A Y T, et al.Acetylation of PAX7 controls muscle stem cell self-renewal and differentiation potential in mice[J].Nat Commun, 2021, 12(1):3253. |
[40] | FLORKOWSKA A, MESZKA I, NOWACKA J, et al.PAX7 balances the cell cycle progression via regulating expression of Dnmt3b and Apobec2 in differentiating PSCs[J].Cells, 2021, 10(9):2205. |
[41] | WANG Y, ZHANG R P, ZHAO Y M, et al.Effects of Pax3 and Pax7 expression on muscle mass in the Pekin duck (Anas platyrhynchos domestica)[J].Genet Mol Res, 2015, 14(3):11495-11504. |
[42] | BOUDJADI S, CHATTERJEE B, SUN W Y, et al.The expression and function of PAX3 in development and disease[J].Gene, 2018, 666:145-157. |
[43] | RELAIX F, MONTARRAS D, ZAFFRAN S, et al.Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells[J].J Cell Biol, 2006, 172(1):91-102. |
[44] | GIRARDI F, LE GRAND F.Wnt signaling in skeletal muscle development and regeneration[J].Prog Mol Biol Transl Sci, 2018, 153:157-179. |
[45] | MARCELLE C, STARK M R, BRONNER-FRASER M.Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite[J].Development, 1997, 124(20):3955-3963. |
[46] | HULIN J A, NGUYEN T D T, CUI S, et al.Barx2 and Pax7 regulate Axin2 expression in myoblasts by interaction with β-catenin and chromatin remodelling[J].Stem Cells, 2016, 34(8):2169-2182. |
[47] | TAJBAKHSH S, BORELLO U, VIVARELLI E, et al.Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5[J].Development, 1998, 125(21):4155-4162. |
[48] | TAKATA H, TERADA K, OKA H, et al.Involvement of Wnt4 signaling during myogenic proliferation and differentiation of skeletal muscle[J].Dev Dyn, 2007, 236(10):2800-2807. |
[49] | MA L, DUAN C C, YANG Z Q, et al.Crosstalk between Activin A and Shh signaling contributes to the proliferation and differentiation of antler chondrocytes[J].Bone, 2019, 123:176-188. |
[50] | MCDERMOTT A, GUSTAFSSON M, ELSAM T, et al.Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation[J].Development, 2005, 132(2):345-357. |
[51] | HAMMOND C L, HINITS Y, OSBORN D P S, et al.Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish[J].Dev Biol, 2007, 302(2):504-521. |
[52] | VORONOVA A, COYNE E, AL MADHOUN A, et al.Hedgehog signaling regulates MyoD expression and activity[J].J Biol Chem, 2013, 288(6):4389-4404. |
[53] | BORELLO U, BERARDUCCI B, MURPHY P, et al.The Wnt/β-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis[J].Development, 2006, 133(18):3723-3732. |
[54] | DENG B, ZHANG F, WEN J H, et al.The function of myostatin in the regulation of fat mass in mammals[J].Nutr Metab (Lond), 2017, 14:29. |
[55] | FIEMS L O.Double muscling in cattle:Genes, husbandry, carcasses and meat[J].Animals (Basel), 2012, 2(3):472-506. |
[56] | LIU H H, MAO H G, DONG X Y, et al.Expression of MSTN gene and its correlation with pectoralis muscle fiber traits in the domestic pigeons (Columba livia)[J].Poult Sci, 2019, 98(11):5265-5271. |
[57] | GRIFONE R, DEMIGNON J, GIORDANI J, et al.Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo[J].Dev Biol, 2007, 302(2):602-616. |
[58] | WU W J, REN Z Q, WANG Y, et al.Molecular characterization, expression patterns and polymorphism analysis of porcine Six1 gene[J].Mol Biol Rep, 2011, 38(4):2619-2632. |
[59] | HERNANDEZ-TORRES F, RODRÍGUEZ-OUTEIRIÑO L, FRANCO D, et al.Pitx2 in embryonic and adult myogenesis[J].Front Cell Dev Biol, 2017, 5:46. |
[60] | WU W J, ZUO B, REN Z Q, et al.Identification of four SNPs and association analysis with meat quality traits in the porcine Pitx2c gene[J].Sci China Life Sci, 2011, 54(5):426-433. |
[61] | CAO H Y, ZHOU W, TAN Y G, et al.Chronological expression of PITX2 and SIX1 genes and the association between their polymorphisms and chicken meat quality traits[J].Animals (Basel), 2021, 11(2):445. |
[62] | LAHOUTE C, SOTIROPOULOS A, FAVIER M, et al.Premature aging in skeletal muscle lacking serum response factor[J].PLoS One, 2008, 3(12):e3910. |
[1] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
[2] | 崔晟頔, 王凯, 赵真坚, 陈栋, 申琦, 余杨, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1945-1957. |
[3] | 吕世琪, 周荣艳, 田树军, 陈晓勇. 线粒体tRNA-Lys(T7719G)基因变异影响绵羊颗粒细胞凋亡生理机制研究[J]. 畜牧兽医学报, 2024, 55(5): 2011-2021. |
[4] | 熊挺, 何献铭, 赵希雅, 庄婷婷, 黄美珍, 梁世金, 余传照, 梁雪静, 陈瑞爱. 三株鸡传染性支气管炎病毒优势流行毒株全基因组分析及其致病性[J]. 畜牧兽医学报, 2024, 55(5): 2109-2122. |
[5] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[6] | 曹玉珠, 邢雨欣, 马乘霖, 管宏波, 贾其辉, 康相涛, 田亚东, 李转见, 刘小军, 李红. 鸡FGF6基因生物学特性及其多态性与经济性状的关联分析[J]. 畜牧兽医学报, 2024, 55(4): 1536-1550. |
[7] | 杨杨, 余乾, 刘昱成, 杨华, 赵卓, 王立民, 周平, 杨庆勇, 代蓉. 绵羊MYL基因家族的鉴定与组织表达分析[J]. 畜牧兽医学报, 2024, 55(4): 1551-1564. |
[8] | 黄显朋, 邢嘉仪, 白媛媛, 姜雨婷, 麻志伟, 付伟, 兰道亮. 牦牛六个多能性相关转录因子OSKMNL的克隆和多顺反子慢病毒载体的构建[J]. 畜牧兽医学报, 2024, 55(4): 1579-1591. |
[9] | 江锦秀, 张靖鹏, 林裕胜, 刘维巍, 胡奇林, 万春和. 基于Hsp70基因的绵羊肺炎支原体TaqMan检测方法的建立及其遗传演化分析[J]. 畜牧兽医学报, 2024, 55(4): 1684-1695. |
[10] | 戴帆, 刘占有, 张旭阳, 李武. 乌头酸脱羧酶1对BCG诱导巨噬细胞炎症反应的调控作用研究[J]. 畜牧兽医学报, 2024, 55(4): 1696-1706. |
[11] | 田睿, 徐思翔, 谢烽, 刘广锦, 王刚, 李庆霞, 代蕾, 谢国信, 张琼文, 陆亚警, 王光文, 王金秀, 张炜. 黄牛源产气荚膜梭菌分离株基因组的生物信息学分析[J]. 畜牧兽医学报, 2024, 55(4): 1707-1715. |
[12] | 王家丽, 杨帆, 邵文华, 黄梦瑶, 曹伟军, 蒲秀瑛, 张伟, 郑海学. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55(4): 1810-1818. |
[13] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
[14] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[15] | 徐东辉, 徐宇辉, 李瑞哲, 成海建, 马志杰. 牦牛基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(3): 933-943. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||