畜牧兽医学报 ›› 2021, Vol. 52 ›› Issue (10): 2698-2709.doi: 10.11843/j.issn.0366-6964.2021.010.002
岳永起1,3, 华永琳3, 熊燕1,2,3*, 林亚秋1,3, 熊显荣1,2,3, 李键1,2,3*
收稿日期:
2020-12-22
出版日期:
2021-10-23
发布日期:
2021-10-27
通讯作者:
熊燕,主要从事动物遗传育种与繁殖研究,E-mail:xiongyan0910@126.com;李键,主要从事牦牛细胞生物学研究,E-mail:jianli_1967@163.com
作者简介:
岳永起(1996-),男,甘肃靖远人,硕士生,主要从事动物细胞与胚胎工程研究,E-mail:2542438609@qq.com
基金资助:
YUE Yongqi1,3, HUA Yonglin3, XIONG Yan1,2,3*, LIN Yaqiu1,3, XIONG Xianrong1,2,3, LI Jian1,2,3*
Received:
2020-12-22
Online:
2021-10-23
Published:
2021-10-27
摘要: 脂肪组织是动物机体重要的能量代谢及内分泌器官,选择性的脂肪沉积对动物肉类的感官品质、风味性和加工特性具有至关重要的作用,因此动物不同部位脂肪沉积的特异性调控因子及其作用分子机理备受研究者的关注。microRNA(miRNA)是一类长度为22 nt左右的非编码小RNA,近年来采用组学技术对具有表型差异的脂肪组织和脂肪细胞进行高通量测序,筛选发现了许多差异表达的miRNAs,这些miRNAs可通过与靶基因mRNA相结合发挥生物学功能,对不同部位脂肪沉积调控具有重要作用。鉴于此,本文将从miRNA在动物皮下脂肪组织和肌内脂肪的调控作用等方面进行综述,为后续研究miRNA调控动物脂肪组织沉积的作用及机制提供理论参考和新的思路。
中图分类号:
岳永起, 华永琳, 熊燕, 林亚秋, 熊显荣, 李键. microRNA调控动物皮下脂肪组织和肌内脂肪沉积的研究进展[J]. 畜牧兽医学报, 2021, 52(10): 2698-2709.
YUE Yongqi, HUA Yonglin, XIONG Yan, LIN Yaqiu, XIONG Xianrong, LI Jian. Research Progress of microRNA Regulation on the Fat Deposition of Subcutaneous Adipose Tissue and Intramuscular Fat in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2698-2709.
[1] | CASTELLANO-CASTILLO D,RAMOS-MOLINA B,CARDONA F,et al.Epigenetic regulation of white adipose tissue in the onset of obesity and metabolic diseases[J].Obes Rev,2020,21(11):e13054. |
[2] | BARTELT A,HEEREN J.Adipose tissue browning and metabolic health[J].Nat Rev Endocrinol,2014,10(1):24-36. |
[3] | CHOUCHANI E T,KAZAK L,SPIEGELMAN B M.New advances in adaptive thermogenesis:UCP1 and beyond[J].Cell Metab,2019,29(1):27-37. |
[4] | SIDOSSIS L,KAJIMURA S.Brown and beige fat in humans:thermogenic adipocytes that control energy and glucose homeostasis[J].J Clin Invest,2015,125(2):478-486. |
[5] | COUSIN B,CINTI S,MORRONI M,et al.Occurrence of brown adipocytes in rat white adipose tissue:molecular and morphological characterization[J].J Cell Sci,1992,103(Pt 4):931-942. |
[6] | GIORDANO A,SMORLESI A,FRONTINI A,et al.MECHANISMS IN ENDOCRINOLOGY:White,brown and pink adipocytes:the extraordinary plasticity of the adipose organ[J].Eur J Endocrinol,2014,170(5):R159-R171. |
[7] | LIU L F,SHEN W J,UENO M,et al.Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes[J].BMC Genomics,2011,12(1):212. |
[8] | PRICE R C,ASENJO J F,CHRISTOU N V,et al.The role of excess subcutaneous fat in pain and sensory sensitivity in obesity[J].Eur J Pain,2013,17(9):1316-1326. |
[9] | DU M,HUANG Y,DAS A K,et al.Meat Science and Muscle Biology Symposium:manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle[J].J Anim Sci,2013, 91(3):1419-1427. |
[10] | 徐子叶,吴纬澈,汪以真,等.调控肌内脂肪沉积的分子机制研究进展[J].中国畜牧杂志,2018,54(5):1-5.XU Z Y,WU W C,WANG Y Z,et al.Research progress on the molecular mechanisms regulating intramuscular fat deposition[J].Chinese Journal of Animal Science,2018,54(5):1-5.(in Chinese) |
[11] | WEI W,SUN W X,HAN H Y,et al.miR-130a regulates differential lipid accumulation between intramuscular and subcutaneous adipose tissues of pigs via suppressing PPARG expression[J].Gene,2017,636:23-29. |
[12] | GULYAEVA O,DEMPERSMIER J,SUL H S.Genetic and epigenetic control of adipose development[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2019,1864(1):3-12. |
[13] | HAUSMAN G J,BERGEN W G,ETHERTON T D,et al.The history of adipocyte and adipose tissue research in meat animals[J].J Anim Sci,2018,96(2):473-486. |
[14] | SANCHEZ-GURMACHES J,GUERTIN D A.Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed[J].Nat Commun,2014,5:4099. |
[15] | SANCHEZ-GURMACHES J,HUNG C M,SPARKS C A,et al.PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors[J].Cell Metab,2012, 16(3):348-362. |
[16] | BILLON N,DANI C.Developmental origins of the adipocyte lineage:new insights from genetics and genomics studies[J].Stem Cell Rev Rep,2012,8(1):55-66. |
[17] | LEPPER C,FAN C M.Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells[J].Genesis,2010,48(7):424-436. |
[18] | CHAU Y Y,BANDIERA R,SERRELS A,et al.Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source[J].Nat Cell Biol,2014,16(4):367-375. |
[19] | WU J,BOSTRÖM P,SPARKS L M,et al.Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human[J].Cell,2012,150(2):366-376. |
[20] | FUNAKOSHI T,KANZAKI N,OTSUKA Y,et al.Quercetin inhibits adipogenesis of muscle progenitor cells in vitro[J].Biochem Biophys Rep,2018,13:39-44. |
[21] | UEZUMI A,ITO T,MORIKAWA D,et al.Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle[J].J Cell Sci,2011,124(21):3654-3664. |
[22] | STARKEY J D,YAMAMOTO M,YAMAMOTO S,et al.Skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt nonmyogenic fates[J].J Histochem Cytochem,2011,59(1):33-46. |
[23] | SCHULZ T J,HUANG T L,TRAN T T,et al.Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat[J].Proc Natl Acad Sci U S A,2011,108(1):143-148. |
[24] | LIU W Y,LIU Y Q,LAI X S,et al.Intramuscular adipose is derived from a non-Pax3 lineage and required for efficient regeneration of skeletal muscles[J].Dev Biol,2012,361(1):27-38. |
[25] | LI H Y,XI Q Y,XIONG Y Y,et al.Identification and comparison of microRNAs from skeletal muscle and adipose tissues from two porcine breeds[J].Anim Genet,2012,43(6):704-713. |
[26] | XU K,JI M,HUANG X,et al.Differential regulatory roles of microRNAs in porcine intramuscular and subcutaneous adipocytes[J].J Agric Food Chem,2020,68(13):3954-3962. |
[27] | ROPKA-MOLIK K,PAWLINA-TYSZKO K,Z·UKOWSKI K,et al.Identification of molecular mechanisms related to pig fatness at the transcriptome and miRNAome levels[J].Genes (Basel),2020,11(6):600. |
[28] | WANG H Y,ZHENG Y,WANG G L,et al.Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat[J].Mol BioSyst,2013,9(8):2154-2162. |
[29] | LIANG W C,WANG Y,LIANG P P,et al.MiR-25 suppresses 3T3-L1 adipogenesis by directly targeting KLF4 and C/EBPα[J].J Cell Biochem,2015,116(11):2658-2666. |
[30] | ZHOU G X,WANG X L,YUAN C,et al.Integrating miRNA and mRNA expression profiling uncovers miRNAs underlying fat deposition in sheep[J].Biomed Res Int,2017,2017:1857580. |
[31] | CHEN Y,ZHAO Y L,JIN W J,et al.MicroRNAs and their regulatory networks in Chinese Gushi chicken abdominal adipose tissue during postnatal late development[J].BMC Genomics,2019,20:778. |
[32] | ZHANG Y,LI C Y,LI H,et al.miR-378 activates the Pyruvate-PEP futile cycle and enhances lipolysis to ameliorate obesity in mice[J].EBioMedicine,2016,5:93-104. |
[33] | KULYTÉ A,LORENTE-CEBRIÁN S,GAO H,et al.MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia[J].Am J Physiol Endocrinol Metab,2014,306(3):E267-E274. |
[34] | LIN X L,JIA J S,DU T,et al.Overexpression of miR-155 in the liver of transgenic mice alters the expression profiling of hepatic genes associated with lipid metabolism[J].PLoS One,2015,10(3):e0118417. |
[35] | GAUDET A D,FONKEN L K,GUSHCHINA L V,et al.miR-155 deletion in female mice prevents diet-induced obesity[J].Sci Rep,2016,6:22862. |
[36] | ZHANG M L,CAO M W,KONG L H,et al.MiR-204-5p promotes lipid synthesis in mammary epithelial cells by targeting SIRT1[J].Biochem Biophys Res Commun,2020,533(4):1490-1496. |
[37] | 陶璇,顾以韧,杨雪梅,等.miR-27a、miR-27b和miR-378在不同猪种皮下脂肪中的差异表达研究[J].中国畜牧杂志,2018,54(11):45-48.TAO X,GU Y R,YANG X M,et al.Differential expression of miR-27a,miR-27b and miR-378 in subcutaneous adipose tissue of different pig breeds[J].Chinese Journal of Animal Science,2018,54(11):45-48.(in Chinese) |
[38] | QI R L,CHEN Y,HUANG J X,et al.Effects of conjugated linoleic acid on the expression levels of miR-27 and miR-143 in pig adipose tissue[J].Genet Mol Res,2015,14(2):6985-6992. |
[39] | CHEN W J,YIN K,ZHAO G J,et al.The magic and mystery of microRNA-27 in atherosclerosis[J]. Atherosclerosis, 2012,222(2):314-323. |
[40] | MA X Y,WEI D W,CHENG G,et al.Bta-miR-130a/b regulates preadipocyte differentiation by targeting PPARG and CYP2U1 in beef cattle[J].Mol Cell Probes,2018,42:10-17. |
[41] | HAIDER N,DUTT P,VAN DE KOOIJ B,et al.NEK10 tyrosine phosphorylates p53 and controls its transcriptional activity[J].Oncogene,2020,39(30):5252-5266. |
[42] | LIU H D,LI B J,QIAO L Y,et al.miR-340-5p inhibits sheep adipocyte differentiation by targeting ATF7[J].Anim Sci J,2020,91(1):e13462. |
[43] | WANG L,ZHANG S,CHENG G,et al.MiR-145 reduces the activity of PI3K/Akt and MAPK signaling pathways and inhibits adipogenesis in bovine preadipocytes[J].Genomics,2020,112(4):2688-2694. |
[44] | GAO Y,WANG Y Q,CHEN X C,et al.MiR-127 attenuates adipogenesis by targeting MAPK4 and HOXC6 in porcine adipocytes[J].J Cell Physiol,2019,234(12):21838-21850. |
[45] | CHEN X Y,RAZA S H A,MA X H,et al.Bovine pre-adipocyte adipogenesis is regulated by bta-miR-150 through mTOR signaling[J].Front Genet,2021,12:636550. |
[46] | LU X B,XIA H L,JIANG J Y,et al.MicroRNA-212 targets SIRT2 to influence lipogenesis in bovine mammary epithelial cell line[J].J Dairy Res,2020,87(2):232-238. |
[47] | XU Y T,CHEN X C,ZHAO C,et al.MiR-99b-5p attenuates adipogenesis by targeting SCD1 and Lpin1 in 3T3-L1 cells[J].J Agric Food Chem,2021,69(8):2564-2575. |
[48] | ESAU C,KANG X L,PERALTA E,et al.MicroRNA-143 regulates adipocyte differentiation[J].J Biol Chem,2004,279(50):52361-52365. |
[49] | YI C,XIE W D,LI F,et al.MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin[J].FEBS Lett,2011,585(20):3303-3309. |
[50] | ZHANG L,WU Z Q,WANG Y J,et al.MiR-143 regulates milk fat synthesis by targeting Smad3 in bovine mammary epithelial cells[J].Animals (Basel),2020,10(9):1453. |
[51] | QIU Q,ZHANG G J,MA T,et al.The yak genome and adaptation to life at high altitude[J].Nat Genet,2012, 44(8):946-949. |
[52] | ZHAO W,YANG H L,LI J T,et al.MiR-183 promotes preadipocyte differentiation by suppressing Smad4 in goats[J].Gene,2018,666:158-164. |
[53] | DONG P Y,MAI Y,ZHANG Z Y,et al.MiR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1[J].Acta Biochim Biophys Sin (Shanghai),2014,46(7):565-571. |
[54] | SUI M X,WANG Z W,XI D,et al.miR-142-5P regulates triglyceride by targeting CTNNB1 in goat mammary epithelial cells[J].Reprod Domest Anim,2020,55(5):613-623. |
[55] | XU H Y,SHAO J,YIN B Z,et al.Bovine bta-microRNA-1271 promotes preadipocyte differentiation by targeting activation transcription factor 3[J].Biochemistry (Mosc),2020,85(7):749-757. |
[56] | ZHANG Y F,WU X Y,LIANG C N,et al.MicroRNA-200a regulates adipocyte differentiation in the domestic yak Bos grunniens[J].Gene,2018,650:41-48. |
[57] | LIMA V M,LIU J M,BRANDO B B,et al.miRNA-22 deletion limits white adipose expansion and activates brown fat to attenuate high-fat diet-induced fat mass accumulation[J].Metabolism,2021,117:154723. |
[58] | CHEN F F,XIONG Y,PENG Y,et al.miR-425-5p inhibits differentiation and proliferation in porcine intramuscular preadipocytes[J].Int J Mol Sci,2017,18(10):2101. |
[59] | PENG Y,CHEN F F,GE J,et al.miR-429 inhibits differentiation and promotes proliferation in porcine preadipocytes[J]. Int J Mol Sci,2016,17(12):2047. |
[60] | JI H L,SONG C C,LI Y F,et al.miR-125a inhibits porcine preadipocytes differentiation by targeting ERRα[J].Mol Cell Biochem,2014,395(1):155-165. |
[61] | ZHOU X M,SHI X E,WANG J,et al.miR-324-5p promotes adipocyte differentiation and lipid droplet accumulation by targeting Krueppel-like factor 3(KLF3)[J].J Cell Physiol,2020,235(10):7484-7495. |
[62] | 杨娴婧.影响鸡肌内脂肪沉积相关miRNA的筛选与鉴定[D].石河子:石河子大学,2018.YANG X J.Screening and identification of miRNAs associated with intramuscular fat deposition in chickens[D]. Shihezi:Shihezi University,2018. (in Chinese) |
[63] | HUANG J P,WANG S Z,FENG X,et al.miRNA transcriptome comparison between muscle and adipose tissues indicates potential miRNAs associated with intramuscular fat in Chinese swamp buffalo[J].Genome, 2019,62(11):729-738. |
[64] | LI N,ZHANG Y,LI H P,et al.Differential expression of mRNA-miRNAs related to intramuscular fat content in the longissimus dorsi in Xinjiang brown cattle[J].PLoS One,2018,13(11):e0206757. |
[65] | SUN Y,WANG S,LIU H Y,et al.Profiling and characterization of miRNAs associated with intramuscular fat content in Yorkshire pigs[J].Anim Biotechnol,2020,31(3):256-263. |
[66] | MIAO Z G,WANG S,WANG Y M,et al.Comparison of microRNAs in the intramuscular adipose tissue from Jinhua and Landrace pigs[J].J Cell Biochem,2019,120(1):192-200. |
[67] | YU X,FANG X B,GAO M,et al.Isolation and identification of bovine preadipocytes and screening of MicroRNAs associated with adipogenesis[J].Animals (Basel),2020,10(5):818. |
[68] | GUO Y X,MO D L,ZHANG Y,et al.MicroRNAome comparison between intramuscular and subcutaneous vascular stem cell adipogenesis[J].PLoS One,2012,7(9):e45410. |
[69] | ZHANG M,LI D H,LI F,et al.Integrated analysis of MiRNA and genes associated with meat quality reveals that Gga-MiR-140-5p affects intramuscular fat deposition in chickens[J].Cell Physiol Biochem,2018,46(6):2421-2433. |
[70] | ZHAO W S,MENGAL K,YUAN M,et al.Comparative RNA-Seq analysis of differentially expressed genes in the epididymides of yak and cattleyak[J].Curr Genomics,2019,20(4):293-305. |
[71] | GAN M L,SHEN L Y,FAN Y,et al.ssc-miR-451 regulates porcine primary adipocyte differentiation by targeting ACACA[J].Animals (Basel),2020,10(10):1891. |
[72] | LI G X,FU S Y,CHEN Y,et al.MicroRNA-15a regulates the differentiation of intramuscular preadipocytes by targeting ACAA1,ACOX1 and SCP2 in chickens[J].Int J Mol Sci,2019,20(16):4063. |
[73] | XU S F,CHANG Y,WU G X,et al.Potential role of miR-155-5p in fat deposition and skeletal muscle development of chicken[J].Biosci Rep,2020,40(6):BSR20193796. |
[74] | XU H Y,SHAO J,FANG J C,et al.miR-381 targets KCTD15 to regulate bovine preadipocyte differentiation in vitro[J].Horm Metab Res,2021,53(1):63-70. |
[75] | 邵静,张珈溯,尹宝珍,等.miR-17-3p靶向KCTD15调控延边黄牛前体脂肪细胞分化[J].畜牧兽医学报, 2020,51(11):2689-2698.SHAO J,ZHANG J S,YIN B Z,et al.miR-17-3p regulates preadipocyte differentiation by targeting KCTD15 in Yanbian Yellow cattle[J].Acta Veterinaria et Zootechnica Sinica,2020,51(11):2689-2698. (in Chinese) |
[76] | HAMMARSTEDT A,HEDJAZIFAR S,JENNDAHL L,et al.WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4[J].Proc Natl Acad Sci U S A,2013,110(7):2563-2568. |
[77] | ZHANG M,LI F,SUN J W,et al.LncRNA IMFNCR promotes intramuscular adipocyte differentiation by sponging miR-128-3p and miR-27b-3p[J].Front Genet,2019,10:42. |
[78] | CHEN L,CHEN Y W,ZHANG S,et al.MiR-540 as a novel adipogenic inhibitor impairs adipogenesis via suppression of PPARγ[J].J Cell Biochem,2015,116(6):969-976. |
[79] | REN L,LI Q,HU X,et al.A novel mechanism of bta-miR-210 in bovine early intramuscular adipogenesis[J]. Genes (Basel), 2020,11(6):601. |
[80] | 杜宇,赵越,林亚秋,等.miR-106b-5p靶向KLF4调控山羊肌内前体脂肪细胞分化[J].畜牧兽医学报, 2020,51(6):1219-1228.DU Y,ZHAO Y,LIN Y Q,et al.miR-106b-5p regulates the differentiation of goat intramuscular preadipocytes by targeting KLF4[J].Acta Veterinaria et Zootechnica Sinica,2020,51(6):1219-1228. (in Chinese) |
[81] | BA K,YANG X,WU L,et al.Jagged-1-mediated activation of notch signalling induces adipogenesis of adipose-derived stem cells[J].Cell Prolif,2012,45(6):538-544. |
[82] | MA J Q,LIN Y Q,ZHU J J,et al.MiR-26b-5p regulates the preadipocyte differentiation by targeting FGF21 in goats[J].In Vitro Cell Dev Biol Anim,2021,57(3):257-263. |
[83] | SUN G R,LI F,MA X F,et al.gga-miRNA-18b-3p inhibits intramuscular adipocytes differentiation in chicken by targeting the ACOT13 gene[J].Cells,2019,8(6):556. |
[84] | HAN H Y,GU S H,CHU W W,et al.miR-17-5p regulates differential expression of NCOA3 in pig intramuscular and subcutaneous adipose tissue[J].Lipids,2017,52(11):939-949. |
[85] | DU J J,XU Y,ZHANG P W,et al.MicroRNA-125a-5p affects adipocytes proliferation,differentiation and fatty acid composition of porcine intramuscular fat[J].Int J Mol Sci,2018,19(2):501. |
[86] | LIU K Q,ZHANG X B,WEI W,et al.Myostatin/SMAD4 signaling-mediated regulation of miR-124-3p represses glucocorticoid receptor expression and inhibits adipocyte differentiation[J].Am J Physiol Endocrinol Metab,2019,316(4):E635-E645. |
[87] | PAN Y Y,JING J J,QIAO L Y,et al.miR-124-3p affects the formation of intramuscular fat through alterations in branched chain amino acid consumption in sheep[J].Biochem Biophys Res Commun,2018,495(2):1769-1774. |
[88] | SUN J K,WANG Y S,LI Y B,et al.Downregulation of PPARγ by miR-548 d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential[J].J Transl Med,2014,12(1):168. |
[1] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
[2] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
[3] | 韩皓哲, 帖子航, 庞卫军, 蔡瑞. IGF2BP2介导的m6A修饰调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3605-3612. |
[4] | 曲比伍且, 李艳艳, 李鑫, 王永, 王友利, 刘伟, 朱江江, 林亚秋. 山羊APOA4基因抑制肌内脂肪细胞分化[J]. 畜牧兽医学报, 2023, 54(5): 1927-1938. |
[5] | 秦雪, 沙懿文, 杨梦豪, 蔡瑞, 庞卫军. 非编码RNA调控哺乳动物子宫内膜容受性和蜕膜化的研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1347-1358. |
[6] | 金美林, 李桃桃, 孙东晓, 魏彩虹. 表观遗传调控在畜禽脂肪沉积机制中的研究进展[J]. 畜牧兽医学报, 2023, 54(3): 855-867. |
[7] | 韩露露, 韩德平, 赵启南, 刁其玉, 崔凯. miRNA介导应激幼畜肠道损伤的研究进展[J]. 畜牧兽医学报, 2023, 54(3): 877-888. |
[8] | 宋淑珍, 刘俊斌, 朱才业, 徐红伟, 刘立山, 孔艳龙. 断尾对兰州大尾羊生长性能、脂肪沉积分布和屠宰性能的影响[J]. 畜牧兽医学报, 2023, 54(2): 642-655. |
[9] | 张润, 刘海, 杨曼, 张龙超, 王源. 北京黑猪肌内脂肪含量高、低组间脂质组差异分析[J]. 畜牧兽医学报, 2022, 53(9): 3262-3271. |
[10] | 翟丽维, 赵延辉, 李文军, 邢凯, 王楚端. 系统分析多组织转录组鉴定影响猪脂肪沉积的关键基因[J]. 畜牧兽医学报, 2022, 53(6): 1702-1711. |
[11] | 孟珊, 杨阳, 李睿霄, 姬梦婷, 张娜, 路畅, 蔡春波, 高鹏飞, 郭晓红, 曹果清, 李步高. lncRNA-6617调控猪肌内前体脂肪细胞分化的筛选与功能研究[J]. 畜牧兽医学报, 2022, 53(6): 1712-1722. |
[12] | 张浩, 王永, 李艳艳, 罗成, 李鑫, 李志雄, 朱江江, 林亚秋. 山羊RPL26基因生物信息学分析及对肌内脂肪细胞分化的影响[J]. 畜牧兽医学报, 2022, 53(4): 1064-1076. |
[13] | 刘佳敏, 禹保军, 母童, 张迪, 冯小芳, 张娟, 王影, 温万, 顾亚玲. 奶牛乳脂代谢关键miRNAs的筛选及鉴定[J]. 畜牧兽医学报, 2022, 53(12): 4244-4257. |
[14] | 尹磊, 潘孝成, 沈学怀, 张丹俊, 戴银, 王洁茹. 鸡白痢沙门菌感染雏鸡的骨髓miRNA表达谱分析[J]. 畜牧兽医学报, 2022, 53(12): 4527-4534. |
[15] | 李艺阳, 殷诗舒, 廖印长, 徐康, 张跃博, 何俊. 宁乡猪FABPs、SLC13A5和NR1H4基因多态性及其与IMF含量的关联分析[J]. 畜牧兽医学报, 2022, 53(11): 3737-3747. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||