

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4998-5006.doi: 10.11843/j.issn.0366-6964.2025.10.020
陈思颍(
), 李伉, 孙雅雯, 冷璇, 王栋*(
), 庞云渭*(
)
收稿日期:2025-03-05
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
王栋,庞云渭
E-mail:82101222353@caas.cn;dwangcn2002@vip.sina.com;pangyunwei@caas.cn
作者简介:陈思颍(2000-),女,黑龙江齐齐哈尔人,硕士生,主要从事家畜繁殖技术研究,E-mail:82101222353@caas.cn
基金资助:
CHEN Siying(
), LI Kang, SUN Yawen, LENG Xuan, WANG Dong*(
), PANG Yunwei*(
)
Received:2025-03-05
Online:2025-10-23
Published:2025-11-01
Contact:
WANG Dong, PANG Yunwei
E-mail:82101222353@caas.cn;dwangcn2002@vip.sina.com;pangyunwei@caas.cn
摘要:
旨在应用拉曼光谱技术研究猪体外成熟卵母细胞玻璃化冷冻前后分子结构的变化。本研究采集屠宰场猪离体卵巢,经实验室抽取卵丘-卵母细胞复合体,体外成熟培养后,分别收集新鲜卵母细胞和玻璃化冷冻-解冻卵母细胞,采用激光共焦拉曼光谱仪获取两组卵母细胞的拉曼光谱信息,对数据进行质控后,分析玻璃化冷冻前后卵母细胞的分子结构变化。结果表明,与新鲜组卵母细胞相比,玻璃化冷冻-解冻组卵母细胞在1 020~1 140 cm-1的碳水化合物信号范围内,N-乙酰半乳糖胺等碳水化合物成分减少;在1 230~1 300 cm-1的酰胺Ⅲ带信号范围内蛋白质二级构象发生显著改变,β-折叠显著增加,α-螺旋减少;在2 800~3 100 cm-1的脂质信号范围内,长链脂肪酸含量下降,支链脂肪酸含量上升。综上所述,玻璃化冷冻会改变猪卵母细胞蛋白质二级结构、脂肪酸组成及N-乙酰半乳糖胺等关键成分,导致蛋白质结构损伤、脂质组成改变以及碳水化合物代谢异常等多重冷冻损伤。
中图分类号:
陈思颍, 李伉, 孙雅雯, 冷璇, 王栋, 庞云渭. 基于拉曼光谱分析猪卵母细胞玻璃化冷冻前后变化[J]. 畜牧兽医学报, 2025, 56(10): 4998-5006.
CHEN Siying, LI Kang, SUN Yawen, LENG Xuan, WANG Dong, PANG Yunwei. Analysis of Changes of Porcine Oocytes before and after Vitrification Based on Raman Spectroscopy[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4998-5006.
表 1
拉曼平均光谱峰"
| 峰/(cm-1) Peak | 核酸 DNA/RNA | 蛋白质 Protein | 脂质 Lipid | 碳水化合物 Carbohydrate | 其他成分 Others |
| 944 | C-C BK str | ||||
| 1 004 | sym ring br Phe | ||||
| 1 097 | sym str PO2- | C-N str | sym str PO43- | ||
| 1 128 | C-N str | C-O str | |||
| 1 020~1 140 | C-N str | C-O str, C-O-H br | |||
| 1 262 | T, A | Amide Ⅲ | ═C-H ben | ||
| 1 303 | CH3/CH2 twi, ben | CH2 twi, ben | |||
| 1 340 | C-H def | ||||
| 1 444 | CH def | CH def | CH def | ||
| 1 659 | Amide Ⅰ | C═C str | |||
| 1 747 | C═O str[ | ||||
| 2 820~3 000 | sym str CH3/CH2 | sym str CH3/CH2 |
| 1 |
MCEVOY T G , COULL G D , BROADBENT P J , et al. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida[J]. J Reprod Fertil, 2000, 118 (1): 163- 170.
doi: 10.1530/reprod/118.1.163 |
| 2 |
GAJDA B . Factors and methods of pig oocyte and embryo quality improvement and their application in reproductive biotechnology[J]. Reprod Biol, 2009, 9 (2): 97- 112.
doi: 10.1016/S1642-431X(12)60020-5 |
| 3 |
MULLEN S F , FAHY G M . A chronologic review of mature oocyte vitrification research in cattle, pigs, and sheep[J]. Theriogenology, 2012, 78 (8): 1709- 1719.
doi: 10.1016/j.theriogenology.2012.06.008 |
| 4 |
SOMFAI T , YOSHIOKA K , TANIHARA F , et al. Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitroembryo production[J]. PLoS One, 2014, 9 (5): e97731.
doi: 10.1371/journal.pone.0097731 |
| 5 | GAJDA B , SKRZYPCZAK-ZIELIŃSKA M , GAWRO-ŃSKA B , et al. Successful production of piglets derived from mature oocytes vitrified using OPS method[J]. Cryo Letters, 2015, 36 (1): 8- 18. |
| 6 |
SHI L Y , JIN H F , KIM J G , et al. Ultra-structural changes and developmental potential of porcine oocytes following vitrification[J]. Anim Reprod Sci, 2007, 100 (1-2): 128- 140.
doi: 10.1016/j.anireprosci.2006.06.020 |
| 7 |
WU C , RUI R , DAI J , et al. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes[J]. Mol Reprod Dev, 2006, 73 (11): 1454- 1462.
doi: 10.1002/mrd.20579 |
| 8 |
SOMFAI T . Vitrification of immature oocytes in pigs[J]. Anim Sci J, 2024, 95 (1): e13943.
doi: 10.1111/asj.13943 |
| 9 |
MATEO-OTERO Y , YESTE M , DAMATO A , et al. Cryopreservation and oxidative stress in porcine oocytes[J]. Res Vet Sci, 2021, 135, 20- 26.
doi: 10.1016/j.rvsc.2020.12.024 |
| 10 |
OLZMANN J A , CARVALHO P . Dynamics and functions of lipid droplets[J]. Nat Rev Mol Cell Biol, 2019, 20 (3): 137- 155.
doi: 10.1038/s41580-018-0085-z |
| 11 |
BOGLIOLO L , LEDDA S , INNOCENZI P , et al. Raman microspectroscopy as a non-invasive tool to assess the vitrification-induced changes of ovine oocyte zona pellucida[J]. Cryobiology, 2012, 64 (3): 267- 272.
doi: 10.1016/j.cryobiol.2012.02.010 |
| 12 | MATTHÄUS C , BIRD B , MILJKOVÍC M , et al. Chapter 10: Infrared and Raman microscopy in cell biology[J]. Methods Cell Biol, 2008, 89, 275- 308. |
| 13 |
WOOD B R , CHERNENKO T , MATTHÄUS C , et al. Shedding new light on the molecular architecture of oocytes using a combination of synchrotron Fourier transform-infrared and Raman spectroscopic mapping[J]. Anal Chem, 2008, 80 (23): 9065- 9072.
doi: 10.1021/ac8015483 |
| 14 |
RUSCIANO G , PESCE G , SALEMME M , et al. Raman spectroscopy of xenopus laevis oocytes[J]. Methods, 2010, 51 (1): 27- 36.
doi: 10.1016/j.ymeth.2009.12.009 |
| 15 |
DAVIDSON B , MURRAY A A , ELFICK A , et al. Raman micro-spectroscopy can be used to investigate the developmental stage of the mouse oocyte[J]. PLoS One, 2013, 8 (7): e67972.
doi: 10.1371/journal.pone.0067972 |
| 16 |
HUANG X , HONG L , WU Y , et al. Raman spectrum of follicular fluid: A potential biomarker for oocyte developmental competence in polycystic ovary syndrome[J]. Front Cell Dev Biol, 2021, 9, 777224.
doi: 10.3389/fcell.2021.777224 |
| 17 |
MARIA NOWAKOWSKA A , BOREK-DOROSZ A , LESZCZENKO P , et al. Reliable cell preparation protocol for Raman imaging to effectively differentiate normal leukocytes and leukemic blasts[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2023, 292, 122408.
doi: 10.1016/j.saa.2023.122408 |
| 18 |
KOBAYASHI-KIRSCHVINK K J , COMITER C S , GADDAM S , et al. Prediction of single-cell RNA expression profiles in live cells by Raman microscopy with Raman2RNA[J]. Nat Biotechnol, 2024, 42 (11): 1726- 1734.
doi: 10.1038/s41587-023-02082-2 |
| 19 |
NÖTZEL M , MAHAMID M , KRONSTEIN-WIEDEMANN R , et al. Raman spectroscopy of optically trapped living human T cell subsets and monocytes[J]. Int J Mol Sci, 2024, 25 (17): 9557.
doi: 10.3390/ijms25179557 |
| 20 |
OKOTRUB K A , MOKROUSOVA V I , AMSTISLAVSKY S Y , et al. Lipid droplet phase transition in freezing cat embryos and oocytes probed by Raman spectroscopy[J]. Biophys J, 2018, 115 (3): 577- 587.
doi: 10.1016/j.bpj.2018.06.019 |
| 21 |
BUTLER H J , ASHTON L , BIRD B , et al. Using Raman spectroscopy to characterize biological materials[J]. Nat Protoc, 2016, 11 (4): 664- 687.
doi: 10.1038/nprot.2016.036 |
| 22 |
NOTINGHER I , BISSON I , BISHOP A E , et al. In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro[J]. Anal Chem, 2004, 76 (11): 3185- 3193.
doi: 10.1021/ac0498720 |
| 23 |
ISHIGAKI M , HOSHINO Y , OZAKI Y . Phosphoric acid and phosphorylation levels are potential biomarkers indicating developmental competence of matured oocytes[J]. Analyst, 2019, 144 (5): 1527- 1534.
doi: 10.1039/C8AN01589A |
| 24 |
PEREVEDENTSEVA E , KRIVOKHARCHENKO A , KARMENYAN A V , et al. Raman spectroscopy on live mouse early embryo while it continues to develop into blastocyst in vitro[J]. Sci Rep, 2019, 9 (1): 6636.
doi: 10.1038/s41598-019-42958-5 |
| 25 |
ISHIGAKI M , HASHIMOTO K , SATO H , et al. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy[J]. Sci Rep, 2017, 7, 43942.
doi: 10.1038/srep43942 |
| 26 |
BANSIL R , YANNAS I V , STANLEY H E . Raman spectroscopy: A structural probe of glycosa-minoglycans[J]. Biochim Biophys Acta, 1978, 541 (4): 535- 542.
doi: 10.1016/0304-4165(78)90163-0 |
| 27 |
NI H , DESSAI C P , LIN H , et al. High-content stimulated Raman histology of human breast cancer[J]. Theranostics, 2024, 14 (4): 1361- 1370.
doi: 10.7150/thno.90336 |
| 28 |
MANGINI M , LIMATOLA N , FERRARA M A , et al. Application of Raman spectroscopy to the evaluation of F-actin changes in sea urchin eggs at fertilization[J]. Zygote, 2024, 32 (1): 38- 48.
doi: 10.1017/S0967199423000552 |
| 29 |
SUI M , SI L , CHEN Z , et al. Non-invasive applications of Raman spectroscopy in assisted reproduction[J]. Front Endocrinol (Lausanne), 2025, 16, 1577702.
doi: 10.3389/fendo.2025.1577702 |
| 30 |
MENG H , HUANG S , DIAO F , et al. Rapid and non-invasive diagnostic techniques for embryonic developmental potential: a metabolomic analysis based on Raman spectroscopy to identify the pregnancy outcomes of IVF-ET[J]. Front Cell Dev Biol, 2023, 11, 1164757.
doi: 10.3389/fcell.2023.1164757 |
| 31 |
MOVASAGHI Z , REHMAN S , REHMAN I U . Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2007, 42 (5): 493- 541.
doi: 10.1080/05704920701551530 |
| 32 |
BISOGNO S , DEPCIUCH J , GULZAR H , et al. Female-age-dependent changes in the lipid fingerprint of the mammalian oocytes[J]. Hum Reprod, 2024, 39 (12): 2754- 2767.
doi: 10.1093/humrep/deae225 |
| 33 | 孙韩, 王学凯, 彭宗根. 细胞内脂滴的生命周期和功能[J]. 生理科学进展, 2022, 53 (4): 247- 253. |
| SUN H , WANG X K , PENG Z G . The life cycle and function of intracellular lipid droplets[J]. Progress in Physiological Sciences, 2022, 53 (4): 247- 253. | |
| 34 |
孙雅雯, 陈思颍, 李伉, 等. 猪卵母细胞玻璃化冷冻损伤的缓解策略[J]. 畜牧兽医学报, 2025, 56 (1): 36- 44.
doi: 10.11843/j.issn.0366-6964.2025.01.004 |
|
SUN Y W , CHEN S Y , LI K , et al. Strategies for alleviating cryoinjury of porcine vitrified-oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (1): 36- 44.
doi: 10.11843/j.issn.0366-6964.2025.01.004 |
|
| 35 |
TANG Y , ZHANG Y , LIU L , et al. Glycine and melatonin improve preimplantation development of porcine oocytes vitrified at the germinal vesicle stage[J]. Front Cell Dev Biol, 2022, 10, 856486.
doi: 10.3389/fcell.2022.856486 |
| 36 |
WASSARMAN P M , LITSCHER E S . Female fertility and the zona pellucida[J]. Elife, 2022, 11, e76106.
doi: 10.7554/eLife.76106 |
| 37 |
HU J , WANG H , JIANG R , et al. Effects of indented zona pellucida on oocyte growth and development explored from changes of gene expression in cumulus cells[J]. Arch Gynecol Obstet, 2023, 308 (3): 1023- 1033.
doi: 10.1007/s00404-023-07104-7 |
| 38 |
BOGLIOLO L , MURRONE O , PICCININI M , et al. Evaluation of the impact of vitrification on the actin cytoskeleton of in vitro matured ovine oocytes by means of Raman microspectroscopy[J]. J Assist Reprod Genet, 2015, 32 (2): 185- 193.
doi: 10.1007/s10815-014-0389-7 |
| 39 |
KHAJEHPOUR M , DASHNAU J L , VANDERKOOI J M . Infrared spectroscopy used to evaluate glycosylation of proteins[J]. Anal Biochem, 2006, 348 (1): 40- 48.
doi: 10.1016/j.ab.2005.10.009 |
| 40 | 李春苑, 许常龙. 拉曼光谱分析在生殖医学领域的应用[J]. 中国妇幼健康研究, 2017, 28 (S4): 138- 139. |
| LI C Y , XU C L . Application of Raman spectroscopy in reproductive medicine[J]. Chinese Journal of Woman and Child Health Research, 2017, 28 (S4): 138- 139. | |
| 41 |
BANDEKAR J . Amide modes and protein conformation[J]. Biochim Biophys Acta, 1992, 1120 (2): 123- 143.
doi: 10.1016/0167-4838(92)90261-B |
| 42 |
RUSCIANO G , DE CANDITIIS C , ZITO G , et al. Raman-microscopy investigation of vitrification-induced structural damages in mature bovine oocytes[J]. PLoS One, 2017, 12 (5): e0177677.
doi: 10.1371/journal.pone.0177677 |
| [1] | 杨明颖, 王娜, 刘源壹, 李昕俞, 巴音那木拉, 石玉杰, 芒来, 杜明. 马卵母细胞玻璃化冷冻保存研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4143-4155. |
| [2] | 田姣, 龙菊烟, 陈霞, 岑晓丽, 牛熙, 黄世会, 王嘉福, 冉雪琴. 香猪ENTPD1基因3'UTR的SINE插入下调其基因表达[J]. 畜牧兽医学报, 2025, 56(9): 4303-4314. |
| [3] | 王蕊, 衡诺, 胡樱凡, 王欢, 朱妮, 何维, 轩秀丽, 胡智辉, 熊铿, 巩建飞, 郝海生, 朱化彬, 赵善江. 不同等级牛卵丘-卵母细胞复合体体外成熟后卵母细胞发育能力差异的机制分析[J]. 畜牧兽医学报, 2025, 56(9): 4432-4451. |
| [4] | 覃阳, 夏嗣廷, 何流琴, 王天丽, 刘宇炎, 姜肖翰, 刘智豪, 刘思危, 李铁军, 印遇龙. 慢性氧化应激对断奶仔猪器官组织微量元素含量的影响[J]. 畜牧兽医学报, 2025, 56(9): 4452-4460. |
| [5] | 茹敏, 蒋小丰, 罗国升, 武永厚. 饲粮添加枯草芽孢杆菌对大肠杆菌攻毒仔猪生长性能、血清免疫及抗氧化功能、肠道形态和微生物的影响[J]. 畜牧兽医学报, 2025, 56(9): 4461-4471. |
| [6] | 桂若虹, 曹洪战, 刘松瓒, 刘吉祥, 赵嘉龙, 芦春莲. 饲粮不同代谢能和SID赖氨酸水平对高产哺乳深县母猪相关性能的影响[J]. 畜牧兽医学报, 2025, 56(9): 4472-4490. |
| [7] | 邱话龙传, 金芊芊, 许潇涵, 周静, 蔡承志, 李龙. 基于纳米孔测序的十种猪病原检测方法的建立[J]. 畜牧兽医学报, 2025, 56(9): 4546-4558. |
| [8] | 刘君君, 郭东辉, 刘缓缓, 宋润泽, 赵赛娅, 杨钧尧, 魏战勇, 项玉强, 陈丽颖. 基于免疫磁珠的智能手机辅助比色传感平台用于PDCoV/TGEV IgG抗体的快速检测[J]. 畜牧兽医学报, 2025, 56(9): 4559-4571. |
| [9] | 李慧敏, 雷铭楷, 阮胜男, 李盼盼, 李文涛, 何启盖. 猪流行性腹泻病毒荧光微球免疫层析抗原检测方法的建立[J]. 畜牧兽医学报, 2025, 56(9): 4572-4580. |
| [10] | 国桂海, 马茹梦, 尹方洁, 刘芯孜, 王梓, 孟伟静, 李佳璇, 崔文, 姜艳平, 唐丽杰, 赵海渊, 王晓娜. 表达猪流行性腹泻病毒S1基因重组罗伊氏黏液乳杆菌诱导仔猪特异性免疫应答的研究[J]. 畜牧兽医学报, 2025, 56(9): 4581-4592. |
| [11] | 陶丽寒, 林翠, 吴诚诚, 康昭风, 黄建珍. 猪丁型冠状病毒编码蛋白结构与功能研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3678-3689. |
| [12] | 胡金玲, 钟奇祺, 黄程, 雷明刚. AKR1B1介导AMPK/mTOR/S6通路调控猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2025, 56(8): 3722-3733. |
| [13] | 迟顺顺, 吴丹, 王楠, 王婉洁, 聂雨欣, 牟玉莲, 刘志国, 朱振东, 李奎. 基于RPA-CRISPR/Cas12a的MSTN基因编辑猪检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(8): 3734-3748. |
| [14] | 刘莎, 杨彩春, 张晓雨, 陈琼, 刘雄, 陈洪波, 周焕焕, 史良玉. 基于80K SNP芯片的梅花星猪群体遗传结构解析及全基因组连续纯合片段特征研究[J]. 畜牧兽医学报, 2025, 56(8): 3749-3760. |
| [15] | 李伉, 陈思颍, 孙雅雯, 冷璇, 王栋, 崔凯, 庞云渭. 甜菜碱对猪孤雌激活胚胎体外发育的影响[J]. 畜牧兽医学报, 2025, 56(8): 3826-3836. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||