| 1 |
MACDONALD W A , MANN M R W . Long noncoding RNA functionality in imprinted domain regulation[J]. PLoS Genet, 2020, 16 (8): e1008930.
doi: 10.1371/journal.pgen.1008930
|
| 2 |
THAMBAN T , AGARWAAL V , KHOSLA S . Role of genomic imprinting in mammalian development[J]. J Biosci, 2020, 45, 20.
doi: 10.1007/s12038-019-9984-1
|
| 3 |
BUTLER M G . Imprinting disorders in humans: a review[J]. Curr Opin Pediatr, 2020, 32 (6): 719- 729.
doi: 10.1097/MOP.0000000000000965
|
| 4 |
ELBRACHT M , MACKAY D , BEGEMANN M , et al. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences[J]. Hum Reprod Update, 2020, 26 (2): 197- 213.
doi: 10.1093/humupd/dmz045
|
| 5 |
WEINBERG-SHUKORN A , BEN-YAIR R , TAKAHASHI N , et al. Balanced gene dosage control rather than parental origin underpins genomic imprinting[J]. Nat Commun, 2022, 13 (1): 4391.
doi: 10.1038/s41467-022-32144-z
|
| 6 |
GLASER J , IRANZO J , BORENSZTEIN M , et al. The imprinted Zdbf2 gene finely tunes control of feeding and growth in neonates[J]. Elife, 2022, 11, e65641.
doi: 10.7554/eLife.65641
|
| 7 |
SAPEHIA D , MAHAJAN A , SINGH P , et al. Enrichment of trimethyl histone 3 lysine 4 in the Dlk1 and Grb10 genes affects pregnancy outcomes due to dietary manipulation of excess folic acid and low vitamin B12[J]. Biol Res, 2024, 57 (1): 85.
doi: 10.1186/s40659-024-00557-3
|
| 8 |
ANGIOLINI E , SANDOVICI I , COAN P M , et al. Deletion of the imprinted Phlda2 gene increases placental passive permeability in the mouse[J]. Genes (Basel), 2021, 12 (5): 639.
doi: 10.3390/genes12050639
|
| 9 |
LIU S , YU Y , ZHANG S , et al. Epigenomics and genotype-phenotype association analyses reveal conserved genetic architecture of complex traits in cattle and human[J]. BMC Biol, 2020, 18 (1): 80.
doi: 10.1186/s12915-020-00792-6
|
| 10 |
王丁香, 赵红波. 牛印记基因的研究进展[J]. 中国牛业科学, 2022, 48 (6): 80- 84.
|
|
WANG D X , ZHAO H B . Research advances on imprinted genes in cattle[J]. China Cattle Science, 2022, 48 (6): 80- 84.
|
| 11 |
BENVENUTO M , PALUMBO P , DI MURO E , et al. Identification of a novel FOXP1 variant in a patient with hypotonia, intellectual disability, and severe speech impairment[J]. Genes (Basel), 2023, 14 (10): 1958.
doi: 10.3390/genes14101958
|
| 12 |
PERUMAL C M , THULO M , BUTHELEZI S , et al. Unraveling the interplay between the leucine zipper and forkhead domains of FOXP2: Implications for DNA binding, stability and dynamics[J]. Proteins, 2024, 92 (10): 1177- 1189.
doi: 10.1002/prot.26699
|
| 13 |
CHE F , LI C , ZHANG L , et al. Novel FOXP2 variant associated with speech and language dysfunction in a Chinese family and literature review[J]. J Appl Genet, 2024, 65 (2): 367- 373.
doi: 10.1007/s13353-024-00849-0
|
| 14 |
TURNER S J , HILDEBRAND M S , BLOCK S , et al. Small intragenic deletion in FOXP2 associated with childhood apraxia of speech and dysarthria[J]. Am J Med Genet A, 2013, 161A (9): 2321- 2326.
|
| 15 |
SU W , HU S , ZHOU L , et al. FOXP2 inhibits the aggressiveness of lung cancer cells by blocking TGFβ signaling[J]. Oncol Lett, 2024, 27 (5): 227.
doi: 10.3892/ol.2024.14361
|
| 16 |
YANG F , XIAO Z , ZHANG S . FOXP2 regulates thyroid cancer cell proliferation and apoptosis via transcriptional activation of RPS6KA6[J]. Exp Ther Med, 2022, 23 (6): 434.
doi: 10.3892/etm.2022.11361
|
| 17 |
THOMAS A C , FROST J M , ISHIDA M , et al. The speech gene FOXP2 is not imprinted[J]. J Med Genet, 2012, 49 (11): 669- 670.
doi: 10.1136/jmedgenet-2012-101242
|
| 18 |
ADEGBOLA A A , COX G F , BRADSHAW E M , et al. Monoallelic expression of the human FOXP2 speech gene[J]. Proc Natl Acad Sci U S A, 2015, 112 (22): 6848- 6854.
doi: 10.1073/pnas.1411270111
|
| 19 |
REGMI S , GIHA L , ALI A , et al. Methylation is maintained specifically at imprinting control regions but not other DMRs associated with imprinted genes in mice bearing a mutation in the Dnmt1 intrinsically disordered domain[J]. Front Cell Dev Biol, 2023, 11, 1192789.
doi: 10.3389/fcell.2023.1192789
|
| 20 |
BARLOW D P , BARTOLOMEI M S . Genomic imprinting in mammals[J]. Cold Spring Harb Perspect Biol, 2014, 6 (2): a018382.
doi: 10.1101/cshperspect.a018382
|
| 21 |
MAS-PARES B , CARRERAS-BADOSA G , GOMEZ-VILARRUBLA A , et al. Sex dimorphic associations of Prader-Willi imprinted gene expressions in umbilical cord with prenatal and postnatal growth in healthy infants[J]. World J Pediatr, 2025, 21 (1): 100- 112.
doi: 10.1007/s12519-024-00865-4
|
| 22 |
KANG J , LI Q , LIU J , et al. Exploring the cellular and molecular basis of murine cardiac development through spatiotemporal transcriptome sequencing[J]. Gigascience, 2025, 14, giaf012.
doi: 10.1093/gigascience/giaf012
|
| 23 |
WEINBERG-SHUKRON A , YOUNGSON N A , FERGUSON-SMITH A C , et al. Epigenetic control and genomic imprinting dynamics of the Dlk1-Dio3 domain[J]. Front Cell Dev Biol, 2023, 11, 1328806.
doi: 10.3389/fcell.2023.1328806
|
| 24 |
CROCCO P , DE RANGO F , BRUNO F , et al. Genetic variability of FOXP2 and its targets CNTNAP2 and PRNP in frontotemporal dementia: A pilot study in a southern Italian population[J]. Heliyon, 2024, 10 (11): e31624.
doi: 10.1016/j.heliyon.2024.e31624
|
| 25 |
YIN M , YU W , LI W , et al. DNA methylation and gene expression changes in mouse pre- and post-implantation embryos generated by intracytoplasmic sperm injection with artificial oocyte activation[J]. Reprod Biol Endocrinol, 2021, 19 (1): 163.
doi: 10.1186/s12958-021-00845-7
|
| 26 |
ZHANG Y , ZHANG C , CHEN W , et al. The landscape of allelic expression and DNA methylation at the bovine SGCE/PEG10 locus[J]. Anim Genet, 2024, 55 (3): 452- 456.
doi: 10.1111/age.13429
|
| 27 |
SCHUFF M , STRONG A D , WELBORN L K , et al. Imprinting as basis for complex evolutionary novelties in Eutherians[J]. Biology (Basel), 2024, 13 (9): 682.
|
| 28 |
ISLES A R . The contribution of imprinted genes to neurodevelopmental and neuropsychiatric disorders[J]. Transl Psychiatry, 2022, 12 (1): 210.
doi: 10.1038/s41398-022-01972-4
|
| 29 |
CINDROVA-DAVIES T , SFERRUZZI-PERRI A N . Human placental development and function[J]. Semin Cell Dev Biol, 2022, 131, 66- 77.
doi: 10.1016/j.semcdb.2022.03.039
|
| 30 |
HARA S , MATSUHISA F , KITAJIMA S , et al. Identification of responsible sequences which mutations cause maternal H19-ICR hypermethylation with Beckwith-Wiedemann syndrome-like overgrowth[J]. Commun Biol, 2024, 7 (1): 1605.
doi: 10.1038/s42003-024-07323-x
|
| 31 |
DASKEVICIUTE D , CHAPPELL-MAOR L , SAINTY B , et al. Non-canonical imprinting, manifesting as post-fertilization placenta-specific parent-of-origin dependent methylation, is not conserved in humans[J]. Hum Mol Genet, 2025, 17, ddaf009.
|
| 32 |
RICHARD ALBER J , KOBAYASHI T , INOUE A , et al. Conservation and divergence of canonical and non-canonical imprinting in murids[J]. Genome Biol, 2023, 24 (1): 48.
doi: 10.1186/s13059-023-02869-1
|
| 33 |
KANEKO-ISHINO T , ISHINO F . The evolutionary advantage in mammals of the complementary monoallelic expression mechanism of genomic imprinting and its emergence from a defense against the insertion into the host genome[J]. Front Genet, 2022, 13, 832983.
doi: 10.3389/fgene.2022.832983
|
| 34 |
DENG Q , DU Y , WANG Z , et al. Identification and validation of a DNA methylation driven gene based prognostic model for clear cell renal cell carcinoma[J]. BMC Genomics, 2023, 24 (1): 307.
doi: 10.1186/s12864-023-09416-z
|
| 35 |
BRENET F , MOH M , FUNK P , et al. DNA methylation of the first exon is tightly linked to transcriptional silencing[J]. PLoS One, 2011, 6 (1): e14524.
doi: 10.1371/journal.pone.0014524
|
| 36 |
刘晓倩, 靳兰杰, 董艳秋, 等. DNA甲基化调控牛AQP1基因的胎盘特异性印记[J]. 畜牧兽医学报, 2021, 52 (8): 2181- 2189.
doi: 10.11843/j.issn.0366-6964.2021.08.011
|
|
LIU X Q , JIN L J , DONG Y Q , et al. DNA methylation regulate the genomic imprinting of AQP1 gene specific in bovine placenta[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (8): 2181- 2189.
doi: 10.11843/j.issn.0366-6964.2021.08.011
|
| 37 |
CHEN Z , ZHANG Y . Maternal H3K27me3-dependent autosomal and X chromosome imprinting[J]. Nat Rev Genet, 2020, 21 (9): 555- 571.
doi: 10.1038/s41576-020-0245-9
|
| 38 |
HANNA C W , KELSEY G . Features and mechanisms of canonical and noncanonical genomic imprinting[J]. Genes Dev, 2021, 35 (11-12): 821- 834.
doi: 10.1101/gad.348422.121
|