畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2368-2378.doi: 10.11843/j.issn.0366-6964.2024.06.009
何松(), 汤德元*(
), 曾智勇, 王彬, 黄涛, 毛茵茗, 周飘, 廖正波, 陈旭, 袁盛林, 胡雯雯, 周敏
收稿日期:
2023-09-11
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
汤德元
E-mail:1740068560@qq.com;tdyuan@163.com
作者简介:
何松(1999-),男,贵州铜仁人,硕士生,主要从事动物传染病病原分子生物学研究,E-mail:1740068560@qq.com
基金资助:
Song HE(), Deyuan TANG*(
), Zhiyong ZENG, Bin WANG, Tao HUANG, Yinming MAO, Piao ZHOU, Zhengbo LIAO, Xu CHEN, Shenglin YUAN, Wenwen HU, Min ZHOU
Received:
2023-09-11
Online:
2024-06-23
Published:
2024-06-28
Contact:
Deyuan TANG
E-mail:1740068560@qq.com;tdyuan@163.com
摘要:
日本脑炎(Japanese encephalitis,JE)是由日本脑炎病毒(Japanese encephalitis virus,JEV)引起的一种蚊媒性人兽共患传染病,虽然已有商品化疫苗,但疫苗的预防具有一定的局限性且至今尚无有效药物治疗,一旦暴发将威胁人们的生命健康和公共安全,造成重大经济损失。JEV含有数量众多具有免疫逃逸功能的编码蛋白,这些蛋白逃逸宿主免疫功能的机制多样且复杂,但其机制仍不完全清楚。同时,JEV复杂的免疫逃逸机制可能是阻碍疫苗免疫保护效果的关键因素。因此,本文主要对JEV通过抑制干扰素反应,调节细胞凋亡、焦亡、自噬及宿主miRNA等多种途径逃逸机体先天免疫和适应性免疫机制进行概述,以期为JEV致病机理的研究和疫苗研发提供思路与理论基础。
中图分类号:
何松, 汤德元, 曾智勇, 王彬, 黄涛, 毛茵茗, 周飘, 廖正波, 陈旭, 袁盛林, 胡雯雯, 周敏. 日本脑炎病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2368-2378.
Song HE, Deyuan TANG, Zhiyong ZENG, Bin WANG, Tao HUANG, Yinming MAO, Piao ZHOU, Zhengbo LIAO, Xu CHEN, Shenglin YUAN, Wenwen HU, Min ZHOU. Research Progress on the Molecular Mechanisms of Immune Escape of Japanese Encephalitis Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2368-2378.
表 1
JEV免疫逃逸机制"
JEV免疫逃逸途径 Immune escape pathway of JEV | 作用方式 Mode of action | 功能 Function | 参考文献 References |
细胞凋亡 Apoptosis | 上调CHOP | 诱导细胞凋亡,促进自身扩散 | [ |
与GRP78、PHB、hnRNPC 3种蛋白结合 | 引起ERS相应蛋白的表达失调, 诱导细胞凋亡 | [ | |
NS4B蛋白与PERK结合 | 触发PERK/eIF2-α/ATF4/CHOP凋亡途径,在体内外诱导神经元凋亡 | [ | |
下调STAT3,降低Foxo表达 | 下调抗凋亡蛋白表达 | [ | |
坏死性凋亡和细胞焦亡 Necrotic apoptosis and pyroptosis | 上调炎症因子TNF-α表达 | 介导MLKL诱导细胞坏死性凋亡 | [ |
NS2B-3蛋白与AXL结合 | 抑制PI3K/Akt信号通路,增加细胞坏死性凋亡和焦亡 | [ | |
细胞自噬 Autophagy | 上调LC3 | 诱导细胞自噬 | [ |
上调PARP1 | 负向调节Akt,促进细胞自噬 | [ | |
ERS途径 | 促进细胞自噬 | [ | |
miRNA | 上调miR-29b、miR-19b-3p、miR-15b和miR-155表达 | 增强NF-κB活性,促进炎症因子的产生 | [ |
上调miR-301a表达 | 抑制IRF1和SOCS5的表达,阻断Ⅰ型IFN反应 | [ | |
抑制IFN反应 Inhibition of interferon response | NS5阻断JAK/STAT、抑制IRF3和NF-κB核转位 | 抑制Ⅰ型IFN | [ |
NS1′蛋白增强CDK1磷酸化 | 抑制MAVS介导的IFN-β表达 | [ | |
NS4B靶向TLR3和TRIF | 抑制IRF3磷酸化和IFN-β的产生 | [ |
1 | SEWGOBIND S , JOHNSON N , MANSFIELD K L . JMM Profile: Japanese encephalitis virus: an emerging threat[J]. J Med Microbiol, 2022, 71 (12): 001620. |
2 | 袁盛林, 汤德元, 陈阊峥, 等. 日本乙型脑炎病毒蛋白与宿主蛋白相互作用的研究进展[J]. 中国兽医学报, 2023, 43 (8): 1765- 1770. |
YUAN S L , TANG D Y , CHEN C Z , et al. Progress in study of interaction between Japanese encephalitis virus proteins and host proteins[J]. Chinese Journal of Veterinary Science, 2023, 43 (8): 1765- 1770. | |
3 | 钮俊俊, 魏宁, 朱硕, 等. 乙型脑炎病毒NS1蛋白亚单位疫苗制备及其免疫效果评价[J]. 中国兽医学报, 2023, 43 (3): 512-518, 525. |
NIU J J , WEI N , ZHU S , et al. Manufacture of Japanese encephalitis virus NS1 protein subunitvaccine and evaluation of its immune effect[J]. Chinese Journal of Veterinary Science, 2023, 43 (3): 512-518, 525. | |
4 |
KARNA A K , BOWEN R A . Experimental evaluation of the role of ecologically-relevant hosts and vectors in Japanese encephalitis virus genotype displacement[J]. Viruses, 2019, 11 (1): 32.
doi: 10.3390/v11010032 |
5 |
MOHSIN F , SULEMAN S , ANZAR N , et al. A review on Japanese encephalitis virus emergence, pathogenesis and detection: from conventional diagnostics to emerging rapid detection techniques[J]. Int J Biol Macromol, 2022, 217, 435- 448.
doi: 10.1016/j.ijbiomac.2022.07.027 |
6 |
YUN S I , LEE Y M . Early events in Japanese encephalitis virus infection: viral entry[J]. Pathogens, 2018, 7 (3): 68.
doi: 10.3390/pathogens7030068 |
7 |
GUO J , MI Y , GUO Y , et al. Current advances in Japanese encephalitis virus drug development[J]. Viruses, 2024, 16 (2): 202.
doi: 10.3390/v16020202 |
8 |
KUMAR A , SHARMA P , SHUKLA K K , et al. Japanese encephalitis virus: associated immune response and recent progress in vaccine development[J]. Microb Pathog, 2019, 136, 103678.
doi: 10.1016/j.micpath.2019.103678 |
9 |
SRIVASTAVA K S , JESWANI V , PAL N , et al. Japanese encephalitis virus: an update on the potential antivirals and vaccines[J]. Vaccines (Basel), 2023, 11 (4): 742.
doi: 10.3390/vaccines11040742 |
10 |
EILTS F , BAUER S , FRASER K , et al. The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics[J]. Carbohydr Polym, 2023, 299, 120167.
doi: 10.1016/j.carbpol.2022.120167 |
11 |
ZHAO C Z , LIU H L , XIAO T H , et al. CRISPR screening of porcine sgRNA library identifies host factors associated with Japanese encephalitis virus replication[J]. Nat Commun, 2020, 11 (1): 5178.
doi: 10.1038/s41467-020-18936-1 |
12 | RAHIMI N . C-type lectin CD209L/L-SIGN and CD209/DC-SIGN: cell adhesion molecules turned to pathogen recognition receptors[J]. Biology (Basel), 2020, 10 (1): 1. |
13 |
LUBKOWSKA A , PLUTA W , STRO? SKA A , et al. Role of heat shock proteins (HSP70 and HSP90) in viral infection[J]. Int J Mol Sci, 2021, 22 (17): 9366.
doi: 10.3390/ijms22179366 |
14 |
FAN W C , QIAN P , WANG D D , et al. Integrin αvβ3 promotes infection by Japanese encephalitis virus[J]. Res Vet Sci, 2017, 111, 67- 74.
doi: 10.1016/j.rvsc.2016.12.007 |
15 | 王晗, 刘靖, 钟杰, 等. SEC62/SEC63复合物对乙型脑炎病毒在HEK-293细胞中复制影响的研究[J]. 中国预防兽医学报, 2020, 42 (9): 872- 878. |
WANG H , LIU J , ZHONG J , et al. Effection of knocking out SEC62, SEC63 gene of HEK-293 cells on replication of Japanese encephalitis virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42 (9): 872- 878. | |
16 |
YUN S I , LEE Y M . Japanese encephalitis: the virus and vaccines[J]. Hum Vaccin Immunother, 2014, 10 (2): 263- 279.
doi: 10.4161/hv.26902 |
17 |
LI F , WANG Y Y , YU L , et al. Viral infection of the central nervous system and neuroinflammation precede blood-brain barrier disruption during Japanese encephalitis virus infection[J]. J Virol, 2015, 89 (10): 5602- 5614.
doi: 10.1128/JVI.00143-15 |
18 | 赵冠宇. 基于蛋白质组的Toll样受体2介导日本脑炎病毒引起炎症反应的机制研究[D]. 长春: 吉林大学, 2023. |
ZHAO G Y. Proteome-based Toll-like receptor 2 mediates the inflammatory response induced by Japanese encephalitis virus[D]. Changchun: Jilin University, 2023. (in Chinese) | |
19 | 王珂. 日本乙型脑炎病毒感染介导血脑屏障通透性改变的机制研究[D]. 武汉: 华中农业大学, 2019. |
WANG K. The mechanism of blood-brain barrier breakdown during Japanese encephalitis virus infection[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese) | |
20 | 邹松松. HMGB1在日本乙型脑炎病毒入侵中枢神经系统及血脑屏障破坏中的机制研究[D]. 武汉: 华中农业大学, 2022. |
ZOU S S. The mechanism of HMGB1 involved in central nervous system invasion and blood-brain barrier disruption during Japanese encephalitis virus infection[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese) | |
21 |
HU H , TIAN M X , DING C , et al. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection[J]. Front Immunol, 2019, 9, 3083.
doi: 10.3389/fimmu.2018.03083 |
22 |
SU H L , LIAO C L , LIN Y L . Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response[J]. J Virol, 2002, 76 (9): 4162- 4171.
doi: 10.1128/JVI.76.9.4162-4171.2002 |
23 | MUKHERJEE S , SINGH N , SENGUPTA N , et al. Japanese encephalitis virus induces human neural stem/progenitor cell death by elevating GRP78, PHB and hnRNPC through ER stress[J]. Cell Death Dis, 2017, 8 (1): e2556. |
24 | WANG Q R , XIN X , WANG T , et al. Japanese encephalitis virus induces apoptosis and encephalitis by activating the PERK pathway[J]. J Virol, 2019, 93 (17): e00887- 19. |
25 |
GUO F L , YU X L , XU A H , et al. Japanese encephalitis virus induces apoptosis by inhibiting Foxo signaling pathway[J]. Vet Microbiol, 2018, 220, 73- 82.
doi: 10.1016/j.vetmic.2018.05.008 |
26 |
AL-OBAIDI M M J , BAHADORAN A , HAR L S , et al. Japanese encephalitis virus disrupts blood-brain barrier and modulates apoptosis proteins in THBMEC cells[J]. Virus Res, 2017, 233, 17- 28.
doi: 10.1016/j.virusres.2017.02.012 |
27 |
SWARUP V , DAS S , GHOSH S , et al. Tumor necrosis factor receptor-1-induced neuronal death by TRADD contributes to the pathogenesis of Japanese encephalitis[J]. J Neurochem, 2007, 103 (2): 771- 783.
doi: 10.1111/j.1471-4159.2007.04790.x |
28 |
YANG T C , SHIU S L , CHUANG P H , et al. Japanese encephalitis virus NS2B-NS3 protease induces caspase 3 activation and mitochondria-mediated apoptosis in human medulloblastoma cells[J]. Virus Res, 2009, 143 (1): 77- 85.
doi: 10.1016/j.virusres.2009.03.007 |
29 |
WONGCHITRAT P , SAMUTPONG A , LERDSAMRAN H , et al. Elevation of cleaved p18 Bax levels associated with the kinetics of neuronal cell death during Japanese encephalitis virus infection[J]. Int J Mol Sci, 2019, 20 (20): 5016.
doi: 10.3390/ijms20205016 |
30 | YANG T C , LAI C C , SHIU S L , et al. Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells[J]. Microbes Infect, 2010, 12 (8/9): 643- 651. |
31 |
DHURIYA Y K , SHARMA D . Necroptosis: a regulated inflammatory mode of cell death[J]. J Neuroinflammation, 2018, 15 (1): 199.
doi: 10.1186/s12974-018-1235-0 |
32 |
WEINLICH R , OBERST A , BEERE H M , et al. Necroptosis in development, inflammation and disease[J]. Nat Rev Mol Cell Biol, 2017, 18 (2): 127- 136.
doi: 10.1038/nrm.2016.149 |
33 |
MAN S M , KARKI R , KANNEGANTI T D . Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev, 2017, 277 (1): 61- 75.
doi: 10.1111/imr.12534 |
34 | BIAN P Y , ZHENG X Y , WEI L , et al. MLKL mediated necroptosis accelerates JEV-induced neuroinflammation in mice[J]. Front Microbiol, 2017, 8, 303. |
35 | SHAN B , PAN H L , NAJAFOV A , et al. Necroptosis in development and diseases[J]. Genes Dev, 2018, 32 (5/6): 327- 340. |
36 |
YUAN J Y , AMIN P , OFENGEIM D . Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases[J]. Nat Rev Neurosci, 2019, 20 (1): 19- 33.
doi: 10.1038/s41583-018-0093-1 |
37 |
XIE S D , LIANG Z J , YANG X M , et al. Japanese encephalitis virus NS2B-3 protein complex promotes cell apoptosis and viral particle release by down-regulating the expression of AXL[J]. Virol Sin, 2021, 36 (6): 1503- 1519.
doi: 10.1007/s12250-021-00442-3 |
38 | WANG Z Y , ZHEN Z D , FAN D Y , et al. Axl deficiency promotes the neuroinvasion of Japanese encephalitis virus by enhancing IL-1α production from pyroptotic macrophages[J]. J Virol, 2020, 94 (17): e00602- 20. |
39 | BLÁZQUEZ A B , ESCRIBANO-ROMERO E , MERINO-RAMOS T , et al. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy[J]. Front Microbiol, 2014, 5, 266. |
40 |
SHARMA K B , VRATI S , KALIA M . Pathobiology of Japanese encephalitis virus infection[J]. Mol Aspects Med, 2021, 81, 100994.
doi: 10.1016/j.mam.2021.100994 |
41 |
JIN R , ZHU W D , CAO S B , et al. Japanese encephalitis virus activates autophagy as a viral immune evasion strategy[J]. PLoS One, 2013, 8 (1): e52909.
doi: 10.1371/journal.pone.0052909 |
42 |
DESINGU P A , MISHRA S , DINDI L , et al. PARP1 inhibition protects mice against Japanese encephalitis virus infection[J]. Cell Rep, 2023, 42 (9): 113103.
doi: 10.1016/j.celrep.2023.113103 |
43 |
SHARMA M , BHATTACHARYYA S , SHARMA K B , et al. Japanese encephalitis virus activates autophagy through XBP1 and ATF6 ER stress sensors in neuronal cells[J]. J Gen Virol, 2017, 98 (5): 1027- 1039.
doi: 10.1099/jgv.0.000792 |
44 |
SHARMA M , BHATTACHARYYA S , NAIN M , et al. Japanese encephalitis virus replication is negatively regulated by autophagy and occurs on LC3-Ⅰ- and EDEM1-containing membranes[J]. Autophagy, 2014, 10 (9): 1637- 1651.
doi: 10.4161/auto.29455 |
45 |
SOOD V , SHARMA K B , GUPTA V , et al. ATF3 negatively regulates cellular antiviral signaling and autophagy in the absence of type Ⅰ interferons[J]. Sci Rep, 2017, 7 (1): 8789.
doi: 10.1038/s41598-017-08584-9 |
46 |
XU Q Q , ZHU N W , CHEN S L , et al. E3 ubiquitin ligase Nedd4 promotes Japanese encephalitis virus replication by suppressing autophagy in human neuroblastoma cells[J]. Sci Rep, 2017, 7, 45375.
doi: 10.1038/srep45375 |
47 |
ASHRAF U , DING Z , DENG S Z , et al. Pathogenicity and virulence of Japanese encephalitis virus: neuroinflammation and neuronal cell damage[J]. Virulence, 2021, 12 (1): 968- 980.
doi: 10.1080/21505594.2021.1899674 |
48 |
THOUNAOJAM M C , KAUSHIK D K , KUNDU K , et al. MicroRNA-29b modulates Japanese encephalitis virus-induced microglia activation by targeting tumor necrosis factor alpha-induced protein 3[J]. J Neurochem, 2014, 129 (1): 143- 154.
doi: 10.1111/jnc.12609 |
49 |
ASHRAF U , ZHU B B , YE J , et al. MicroRNA-19b-3p modulates Japanese encephalitis virus-mediated inflammation via targeting RNF11[J]. J Virol, 2016, 90 (9): 4780- 4795.
doi: 10.1128/JVI.02586-15 |
50 |
ZHU B B , YE J , NIE Y R , et al. MicroRNA-15b modulates Japanese encephalitis virus-mediated inflammation via targeting RNF125[J]. J Immunol, 2015, 195 (5): 2251- 2262.
doi: 10.4049/jimmunol.1500370 |
51 |
HAZRA B , CHAKRABORTY S , BHASKAR M , et al. MiR-301a regulates inflammatory response to Japanese encephalitis virus infection via suppression of NKRF activity[J]. J Immunol, 2019, 203 (8): 2222- 2238.
doi: 10.4049/jimmunol.1900003 |
52 |
THOUNAOJAM M C , KUNDU K , KAUSHIK D K , et al. MicroRNA 155 regulates Japanese encephalitis virus-induced inflammatory response by targeting Src homology 2-containing inositol phosphatase 1[J]. J Virol, 2014, 88 (9): 4798- 4810.
doi: 10.1128/JVI.02979-13 |
53 |
SHARMA N , VERMA R , KUMAWAT K L , et al. MiR-146a suppresses cellular immune response during Japanese encephalitis virus JaOArS982 strain infection in human microglial cells[J]. J Neuroinflammation, 2015, 12 (1): 30.
doi: 10.1186/s12974-015-0249-0 |
54 | HAZRA B , KUMAWAT K L , BASU A . The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection[J]. Sci Signal, 2017, 10 (466): eaaf5185. |
55 |
LESTER S N , LI K . Toll-like receptors in antiviral innate immunity[J]. J Mol Biol, 2014, 426 (6): 1246- 1264.
doi: 10.1016/j.jmb.2013.11.024 |
56 |
PATEL J R , GARCÍA-SASTRE A . Activation and regulation of pathogen sensor RIG-Ⅰ[J]. Cytokine Growth Factor Rev, 2014, 25 (5): 513- 523.
doi: 10.1016/j.cytogfr.2014.08.005 |
57 |
KATO H , TAKEUCHI O , SATO S , et al. Differential roles of MDA5 and RIG-Ⅰ helicases in the recognition of RNA viruses[J]. Nature, 2006, 441 (7089): 101- 105.
doi: 10.1038/nature04734 |
58 | PAUN A , PITHA P M . The innate antiviral response: new insights into a continuing story[J]. Adv Virus Res, 2007, 69, 1- 66. |
59 |
LI C X , DI D , HUANG H , et al. NS5-V372A and NS5-H386Y variations are responsible for differences in interferon α/β induction and co-contribute to the replication advantage of Japanese encephalitis virus genotype Ⅰ over genotype Ⅲ in ducklings[J]. PLoS Pathog, 2020, 16 (9): e1008773.
doi: 10.1371/journal.ppat.1008773 |
60 | YE J , CHEN Z , LI Y C , et al. Japanese encephalitis virus NS5 inhibits type Ⅰ interferon (IFN) production by blocking the nuclear translocation of IFN regulatory factor 3 and NF-κB[J]. J Virol, 2017, 91 (8): e00039- 17. |
61 |
YE J , CHEN Z , ZHANG B , et al. Heat shock protein 70 is associated with replicase complex of Japanese encephalitis virus and positively regulates viral genome replication[J]. PLoS One, 2013, 8 (9): e75188.
doi: 10.1371/journal.pone.0075188 |
62 |
ROBY J A , ESSER-NOBIS K , DEWEY-VERSTELLE E C , et al. Flavivirus nonstructural protein NS5 dysregulates HSP90 to broadly inhibit JAK/STAT signaling[J]. Cells, 2020, 9 (4): 899.
doi: 10.3390/cells9040899 |
63 |
LI Q Y , ZHOU D Y , JIA F , et al. Japanese encephalitis virus NS1' protein interacts with host CDK1 protein to regulate antiviral response[J]. Microbiol Spectr, 2021, 9 (3): e0166121.
doi: 10.1128/Spectrum.01661-21 |
64 |
ZHOU D Y , LI Q Y , JIA F , et al. The Japanese encephalitis virus NS1' protein inhibits type Ⅰ IFN production by targeting MAVS[J]. J Immunol, 2020, 204 (5): 1287- 1298.
doi: 10.4049/jimmunol.1900946 |
65 |
SUI L , ZHAO Y H , WANG W F , et al. Flavivirus prM interacts with MDA5 and MAVS to inhibit RLR antiviral signaling[J]. Cell Biosci, 2023, 13 (1): 9.
doi: 10.1186/s13578-023-00957-0 |
66 |
CHHABRA S , SHARMA K B , KALIA M . Human guanylate-binding protein 1 positively regulates Japanese encephalitis virus replication in an interferon gamma primed environment[J]. Front Cell Infect Microbiol, 2022, 12, 832057.
doi: 10.3389/fcimb.2022.832057 |
67 |
ZENG Q , LIU J Q , LI Z Y , et al. Japanese encephalitis virus NS4B inhibits interferon beta production by targeting TLR3 and TRIF[J]. Vet Microbiol, 2023, 284, 109849.
doi: 10.1016/j.vetmic.2023.109849 |
68 |
GUPTA N , HEGDE P , LECERF M , et al. Japanese encephalitis virus expands regulatory T cells by increasing the expression of PD-L1 on dendritic cells[J]. Eur J Immunol, 2014, 44 (5): 1363- 1374.
doi: 10.1002/eji.201343701 |
69 |
ALEYAS A G , HAN Y W , PATIL A M , et al. Impaired cross-presentation of CD8α+ CD11c+ dendritic cells by Japanese encephalitis virus in a TLR2/MyD88 signal pathway-dependent manner[J]. Eur J Immunol, 2012, 42 (10): 2655- 2666.
doi: 10.1002/eji.201142052 |
70 |
KIM J H , PATIL A M , CHOI J Y , et al. CCR5 ameliorates Japanese encephalitis via dictating the equilibrium of regulatory CD4+Foxp3+ T and IL-17+CD4+ Th17 cells[J]. J Neuroinflammation, 2016, 13 (1): 223.
doi: 10.1186/s12974-016-0656-x |
71 |
TURTLE L , BALI T , BUXTON G , et al. Human T cell responses to Japanese encephalitis virus in health and disease[J]. J Exp Med, 2016, 213 (7): 1331- 1352.
doi: 10.1084/jem.20151517 |
72 |
WANG C , ZHANG N , QI L T , et al. Myeloid-derived suppressor cells inhibit T follicular helper cell immune response in Japanese encephalitis virus infection[J]. J Immunol, 2017, 199 (9): 3094- 3105.
doi: 10.4049/jimmunol.1700671 |
73 |
SATCHIDANANDAM V . Japanese encephalitis vaccines[J]. Curr Treat Options Infect Dis, 2020, 12 (4): 375- 386.
doi: 10.1007/s40506-020-00242-5 |
74 | 肖长广, 刘珂, 魏建超, 等. 日本脑炎病毒的流行病学及疫苗研究进展[J]. 中国预防兽医学报, 2018, 40 (1): 82- 86. |
XIAO C G , LIU K , WEI J C , et al. Epidemiology and vaccine research progress of Japanese encephalitis virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2018, 40 (1): 82- 86. |
[1] | 龙琴琴, 魏敏, 王雨婷, 文明, 庞峰. 羊口疮病毒与宿主的博弈:免疫应答与病毒免疫逃逸机制[J]. 畜牧兽医学报, 2023, 54(5): 1845-1853. |
[2] | 刘泽霖, 郭晓艳, 李佳欢, 高明星, 程国富, 胡薛英, 张万坡, 谷长勤. Nrf2通路对日本脑炎病毒感染小鼠神经瘤细胞引起氧化应激反应的影响[J]. 畜牧兽医学报, 2023, 54(1): 317-327. |
[3] | 王洋, 崔帅, 鑫婷, 王西西, 于海男, 陈世钰, 蒋亚君, 高新桃, 庞忠宝, 姜一曈, 郭晓宇, 贾红, 朱鸿飞. 非洲猪瘟病毒MGF360-14L靶向MAVS抑制Ⅰ型干扰素的产生[J]. 畜牧兽医学报, 2022, 53(9): 3272-3278. |
[4] | 赵旭阳, 靳家鑫, 路闻龙, 张帅, 黄丽, 张改平, 孙爱军, 庄国庆. 非洲猪瘟病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2022, 53(7): 2074-2082. |
[5] | 张帆帆, 曾艳兵, 方绍培, 李海琴, 康昭风, 谭美芳, 谭佳, 杨群, 韦启鹏. 鸭坦布苏病毒病的研究进展[J]. 畜牧兽医学报, 2021, 52(6): 1489-1497. |
[6] | 张金花, 高明星, 刘泽霖, 谷长勤. 自噬调节剂对感染日本脑炎病毒小鼠脑部细胞凋亡的影响[J]. 畜牧兽医学报, 2021, 52(2): 506-514. |
[7] | 赵学亮, 刘海金, 萧飒, 王兴龙, 杨增岐. 长链非编码RNA——病毒与宿主相互作用中的新型调控因子[J]. 畜牧兽医学报, 2020, 51(9): 2059-2067. |
[8] | 李露露, 张敬, 李丹, 郑海学. 口蹄疫病毒3D蛋白促进TLR3介导的Ⅰ型干扰素产生[J]. 畜牧兽医学报, 2020, 51(8): 1923-1931. |
[9] | 李显, 张富东, 张中旺, 张永光, 潘丽. 口蹄疫病毒利用自身蛋白逃逸宿主天然免疫应答的研究进展[J]. 畜牧兽医学报, 2020, 51(11): 2622-2632. |
[10] | 付绍祖, 李露露, 张敬, 李丹, 郑海学. 猪源DDX56对口蹄疫病毒的复制及其对病毒诱导的RLR通路调节的研究[J]. 畜牧兽医学报, 2019, 50(9): 1849-1856. |
[11] | 周玉成, 郭梦楠, 程世鹏, 张海威, 周曼莉, 乔连江, 杨艳玲. 布鲁菌16M感染后宿主免疫相关蛋白质泛素化修饰的差异分析[J]. 畜牧兽医学报, 2019, 50(11): 2290-2301. |
[12] | 江雅, 牛季琛, 倪慧, 韦冬妹, 周国栋, 曹瑞兵. 一种检测乙型脑炎病毒抗体阻断ELISA的建立及其初步应用[J]. 畜牧兽医学报, 2018, 49(9): 1961-1968. |
[13] | 何艳春, 杨文萍, 付绍祖, 郑海学, 杨孝朴. PCBP2促进口蹄疫病毒增殖的机制研究[J]. 畜牧兽医学报, 2018, 49(7): 1451-1459. |
[14] | 魏南南, 徐守兴, 史喜娟, 卢炳州, 张克山, 郑海学, 刘湘涛. TPL2促进口蹄疫病毒在BHK-21细胞复制[J]. 畜牧兽医学报, 2018, 49(6): 1204-1211. |
[15] | 李华玮, 陈鑫鑫, 赵孟孟, 周恩民, 乔松林, 张改平. 猪繁殖与呼吸综合征病毒感染猪肺泡巨噬细胞天然免疫信号通路相关分子变化分析[J]. 畜牧兽医学报, 2017, 48(7): 1288-1299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||