畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 534-547.doi: 10.11843/j.issn.0366-6964.2025.02.006
陈更旭(), 徐金凤, 张宏玲, 王奔, 尹柏双, 朱言柱*(
)
收稿日期:
2024-03-18
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
朱言柱
E-mail:2932791560@qq.com;zyzzu@126.com
作者简介:
陈更旭(2002-),男,汉族,吉林省吉林市人,本科生,主要从事铝的毒理学研究,E-mail: 2932791560@qq.com
基金资助:
CHEN Gengxu(), XU Jinfeng, ZHANG Hongling, WANG Ben, YIN Baishuang, ZHU Yanzhu*(
)
Received:
2024-03-18
Online:
2025-02-23
Published:
2025-02-26
Contact:
ZHU Yanzhu
E-mail:2932791560@qq.com;zyzzu@126.com
摘要:
铝是地球上蕴藏量最多的金属元素之一,由于其优良特性被广泛应用于生产和生活。环境中铝蓄积逐渐增加,铝污染已经成为人类社会面临的重大问题之一。长期慢性的铝摄入所致的体内铝蓄积可损伤心、肝、脾、肾、脑等多个器官。其中免疫毒性是铝暴露最敏感的健康效应之一,已引起广泛关注。本文综述了铝暴露引起脾脏、法氏囊、骨髓、肠黏膜、淋巴和胸腺毒性作用,并总结了铝引起免疫毒性的机制。蓄积在动物体内的铝可损伤免疫器官,引起免疫细胞凋亡,诱发氧化应激,诱导炎性因子的表达,扰乱微量元素代谢,抑制免疫功能。铝暴露引起的病理损伤和氧化应激是铝诱导免疫抑制的重要病理机制,但其免疫毒性的分子机制仍不系统,需进一步探索。
中图分类号:
陈更旭, 徐金凤, 张宏玲, 王奔, 尹柏双, 朱言柱. 铝的免疫毒性研究进展[J]. 畜牧兽医学报, 2025, 56(2): 534-547.
CHEN Gengxu, XU Jinfeng, ZHANG Hongling, WANG Ben, YIN Baishuang, ZHU Yanzhu. Research Progress on Aluminum-induced Immunotoxicity[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 534-547.
表 2
铝对脾脏病理损伤的影响"
时间 Time | 作者 Author | 试验周期/d Trial period | 动物种属 Animal species | 剂量 Dosage | 指标 Indicators |
2020年 | De Arpita | 5 | 小鼠 | 15、30或60 mg·kg-1 Al2O3 NPs | 脾脏没有发现显著的病理损伤 |
2020年 | Gad EL-Hak Heba N. | 14 | 大鼠 | 23、67、200、600、1 800、5 400、16 200、48 600 mg·kg-1Al2(SO4)3 | 脾脏的白髓和红髓结构正常 |
2017年 | Mohammed Hadaf-Hashem | 60 | 大鼠 | 7 mg·kg-1 AlCl3 | 脾脏白髓减少,红髓充血,炎性细胞聚集在红髓和血管周围 |
2021年 | 祝星意 | 30 | 小鼠 | 0.1、10 mg·kg-1 AlCl3 | 局部淋巴细胞减少,伴有大量红细胞浸润,中性粒细胞增多 |
2019年 | Yu Hongyan | 90 | 大鼠 | 128 mg·(kg·d)-1 AlCl3 | 白髓和红髓界限不清,脾脏中央动脉肿胀 |
表 3
铝对脾淋巴细胞的影响"
时间 Time | 作者 Author | 试验周期/d Trial period | 动物种属 Animal species | 剂量 Dosage | 指标 Indicators |
2019年 | Yu Hongyan | 90 | 大鼠 | 128 mg· (kg·d)-1AlCl3 | 显著抑制脾脏T淋巴细胞CD3+、CD4+、CD4+/CD8+的比值 |
2018年 | Zhuang Cuicui | 30 | 大鼠 | 0、0.6 mmol·L-1 (AlCl3·6H2O) | 降低T和B淋巴细胞增殖率、CD3+和CD4+T淋巴细胞亚群、CD4+/CD8+比值,提高CD8+T淋巴细胞亚群、细胞凋亡指数 |
2016年 | Li Miao | 1 | 大鼠 | 0.3、0.6、1.2 mmol·L-1, AlCl3 | Bcl-2、Bax、Caspase-3和Caspase-9 mRNA表达,Bcl-2和Bax比值,淋巴细胞凋亡指数升高 |
2013年 | Zhang Jihong | 大鼠 | 0、0.1、1、10 nmol·L-1, AlCl3 | 降低T淋巴细胞增殖和T淋巴细胞亚群的含量,增加脾淋巴细胞的IgG | |
2008年 | 王众 | 1 | 鸡 | 0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0 mg·mL-1 AlCl3。 | 铝抑制鸡淋巴细胞 |
2012年 | 朱言柱 | 120 | 大鼠 | 0、64.18、128.36、256.72 mg·kg-1 AlCl3 | CD3+、CD4+T淋巴细胞、CD4+/CD8+比值显著降低,CD8+T淋巴细胞升高 |
2012年 | She Yue | 1 | 大鼠 | 0、0.035、0.07和0.14 mg·mL-1 Al3+ | T淋巴细胞增殖降低,CD3+和CD4+T淋巴细胞,CD4+/CD8+T淋巴细胞的比值,增加CD8+T淋巴细胞的比例 |
2012年 | 朱言柱 | 120 | 大鼠 | 0、64.18、128.36、256.72 mg·kg-1 AlCl3 | IgM降低,IgG、IgA和IgE升高,IgE升高 |
2016年 | Yang Xu | 1 | 大鼠 | 0.55 mmol·L-1 AlCl3 | 提高AlCl3处理淋巴细胞的T和B淋巴细胞增殖率、CD4+T淋巴细胞亚群比例 |
表 4
铝对脾细胞因子的影响"
时间 Time | 作者 Author | 试验周期/d Trial period | 动物种属 Animal species | 剂量 Dosage | 指标 Indicators |
2019年 | Omran Ghada-A | 48 | 大鼠 | 50、100、200 mg·kg-1 | TNF-α明显升高,而IFN-γ则没有明显降低 |
2019年 | Yu Hongyan | 90 | 大鼠 | 12 8mg·(kg·d)-1AlCl3 | 显著抑制脾脏IL-2和TNF-α的mRNA表达 |
2021年 | 祝星意 | 30 | 小鼠 | 0.1、10 mg·kg-1 AlCl3 | IFN-γ、IL-1β和IL-6 mRNA表达升高,IL-4 mRNA表达降低 |
2018年 | Zhuang Cuicui | 30 | 大鼠 | 0、0.6 mmol·L-1 AlCl3·6H2O | IL-2、IL-6、TNF-α含量降低 |
2001年 | 韦小敏 | 1 | 人 | 0.01、0.05、0.10 mol·L-1 AlCl3 | IL-2和TNF-α降低 |
2010年 | Brown Kirsty | 1 | 人 | 0、5、10、25、100、250、500 μg·mL-1 Al和Al2O3 | IL-6、IL-8、IL-10、IL-1β和TNF-α降低 |
2009年 | 胡崇伟 | 60 | 鸡 | 0、18.31、27.47、36.62 mg·(kg·d)-1(Al3+) | TNF-α含量增加,IL-2含量下降 |
表 5
铝对脾氧化应激的影响"
时间 Time | 作者 Author | 试验周期/d Trial period | 动物种属 Animal species | 剂量 Dosage | 指标 Indicators |
2019年 | Yu Hongyan | 90 | 大鼠 | 128 mg·(kg·d)-1 AlCl3 | 显著抑制脾脏IL-2和TNF-α的mRNA表达 |
2018年 | Zhuang Cuicui | 30 | 大鼠 | 0、0.6 mmol·L-1 (AlCl3·6H2O) | MDA水平提高,SOD和CAT活力减弱 |
2014年 | Luo Xue | 60 | 小鼠 | 100 mg·kg-1 AlCl3 | SOD和GSH-Px活性降低,MDA含量增加 |
2020年 | Li Huan | 1 | 小鼠 | 50 mg·kg-1的氧化铝纳米颗粒 | SOD和GSH-Px水平降低,而MDA水平增加 |
2010年 | 李艳飞 | 1 | 鸡 | 0、0.2、0.4、0.6、0.8 mg·mL-1AlCl3 | MDA含量增加,SOD和GSH-Px活性下降 |
2009年 | 刘福堂 | 60 | 鸡 | 18.31、27.47、36.62 mg·(kg·d)-1 AlCl3 | SOD和GSH-Px的活力下降,MDA含量增加 |
2020年 | De Arpita | 5 | 小鼠 | 15、30、60 mg·kg-1 Al2O3 NP | 脾脏脂质过氧化水平增加,谷胱甘肽含量降低,CAT和SOD活性也显著下降 |
表 9
铝对肠黏膜免疫病理损伤的影响"
时间 Time | 作者 Author | 试验周期/d Trial period | 动物种属 Animal species | 剂量 Dosage | 指标 Indicators |
2018年 | Esquerre Nicolas | 30 | 大鼠 | 0.5、1.5、3 mg·(kg·d)-1 AlCl3 | 肥大细胞脱颗粒并释放胰蛋白酶 |
2013年 | Al-Qayim Majida | 60 | 小鼠 | 0、50 mg·(kg·d)-1 AlCl3 | 肠黏膜上皮细胞凋亡、损伤肠绒毛、炎症细胞浸润等 |
2019年 | Yu Leilei | 1 | 小鼠 | 0、2、4、6、8、10 mmol·L-1 AlCl3 | 肠上皮细胞其胆碱、磷脂胆碱等细胞膜成分表达水平降低 |
2020年 | Jeong Chang-Hee | 1 | 小鼠 | 5~50 mg·kg-1AlCl3 | 隐窝脓肿和增生、绒毛变细和炎性细胞浸润 |
表 10
铝对肠黏膜免疫细胞因子的影响"
时间 Time | 作者 Author | 试验周期/d Trial period | 动物种属 Animal species | 剂量 Dosage | 指标 Indicators |
2017年 | Wang Feng | 90 | 大鼠 | 0、25 mg·(kg·d)-1 AlCl3 | 释放炎症细胞因子 |
2014年 | Pineton De-Chambrun | 31 | 小鼠 | 0、1.5、15 mg·(kg·d)-1 Al3+ | 增加炎性细胞因子表达 |
2020年 | Jeong Chang-Hee | 1 | 小鼠 | 5~50 mg·kg-1AlCl3 | 诱发炎症细胞因子的产生 |
2018年 | Xu Feibo | 1 | 小鼠 | 0、0.27、0.54、1.08 mg·mL-1 AlCl3 | IL-1β成熟减少 |
1 |
WANG C , LI S , GUO Y C , et al. Comprehensive treatments of aluminum dross in China: a critical review[J]. J Environ Manage, 2023, 345, 118575.
doi: 10.1016/j.jenvman.2023.118575 |
2 |
GARCÍA-AVALOS E M , GÓMEZ-OLIVÁN L M , HERNÁNDEZ-NAVARRO M D , et al. Dietary solutions for aluminum embryotoxicity: a study in Danio rerio using spirulina and okra-spirulina diets[J]. Sci Total Environ, 2024, 910, 168510.
doi: 10.1016/j.scitotenv.2023.168510 |
3 | BERLANA D , PAU-PARRA A , ALBERTOS R , et al. Aluminum blood concentration in adult patients: effect of multichamber-bag versus hospital-compounded parenteral nutrition[J]. Nutr Hosp, 2023, 40 (3): 469- 475. |
4 |
ALJOHAR H I , NAWAWI R A , ALBANYAN N S , et al. An assessment of aluminum contamination in neonatal parenteral nutrition solutions based on measured versus labeled content[J]. Saudi Pharm J, 2024, 32 (2): 101941.
doi: 10.1016/j.jsps.2023.101941 |
5 | 王玺凯, 唐蓉, 王艳丽. 铝职业接触所致健康危害研究进展[J]. 工业卫生与职业病, 2023, 49 (2): 175-178, 190. |
WANG X K , TANG R , WANG Y L . Research progress on occupational health hazards of aluminum exposure[J]. Industrial Health and Occupational Diseases, 2023, 49 (2): 175-178, 190. | |
6 |
DE A , GHOSH S , CHAKRABARTI M , et al. Effect of low-dose exposure of aluminium oxide nanoparticles in Swiss albino mice: histopathological changes and oxidative damage[J]. Toxicol Ind Health, 2020, 36 (8): 567- 579.
doi: 10.1177/0748233720936828 |
7 |
ZUO Y , LU X , WANG X C , et al. High-dose aluminum exposure further alerts immune phenotype in aplastic anemia patients[J]. Biol Trace Elem Res, 2021, 199 (5): 1743- 1753.
doi: 10.1007/s12011-020-02313-6 |
8 | GÖKMEN S , GÜL B . Aluminum and toxicity[J]. Vet J Kastamonu Univ, 2023, 2 (1): 52- 64. |
9 |
ZHANG X W , SHEN M L , WANG C , et al. Impact of aluminum exposure on oxidative stress, intestinal changes and immune responses in red swamp crayfish (Procambarus clarkii)[J]. Sci Total Environ, 2023, 855, 158902.
doi: 10.1016/j.scitotenv.2022.158902 |
10 |
ZHUANG C C , SHE Y , ZHANG H Y , et al. Cytoprotective effect of deferiprone against aluminum chloride-induced oxidative stress and apoptosis in lymphocytes[J]. Toxicol Lett, 2018, 285, 132- 138.
doi: 10.1016/j.toxlet.2018.01.007 |
11 |
LUO X , JIA S J , MA Q L , et al. Suppressive effects of subchronic aluminum overload on the splenic immune function may be related to oxidative stress in mice[J]. Biol Trace Elem Res, 2014, 157 (3): 249- 255.
doi: 10.1007/s12011-014-9888-8 |
12 | 祝星意, 林芳卉, 徐京楠, 等. 硒对铝诱导小鼠脾脏氧化应激和炎症反应的颉颃作用[J]. 中国畜牧兽医, 2021, 48 (5): 1868- 1875. |
ZHU X Y , LIN F H , XU J N , et al. Antagonistic effect of selenium on aluminum-induced oxidative stress and inflammation in the spleen of mice[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (5): 1868- 1875. | |
13 |
LI H , HUANG T , WANG Y H , et al. Toxicity of alumina nanoparticles in the immune system of mice[J]. Nanomedicine, 2020, 15 (9): 927- 946.
doi: 10.2217/nnm-2020-0009 |
14 |
KAMALY H F , SHARKAWY A A . Health risk assessment of metals in chicken meat and liver in Egypt[J]. Environ Monit Assess, 2023, 195 (7): 802.
doi: 10.1007/s10661-023-11365-9 |
15 |
CAO C Y , LIU Y Z , YANG Z Q , et al. The mechanisms of aluminum-induced immunotoxicity in chicks[J]. Poult Sci, 2023, 102 (1): 102251.
doi: 10.1016/j.psj.2022.102251 |
16 |
CHEN B , CHEN L N , YANG Z Q , et al. Acute aluminum sulfate triggers inflammation and oxidative stress, inducing tissue damage in the kidney of the chick[J]. Biol Trace Elem Res, 2023, 201 (3): 1442- 1450.
doi: 10.1007/s12011-022-03260-0 |
17 | AL-SALEM A H. Pathophysiology and functions of the spleen[M]//AL-SALEM A H. The Spleen: Anatomy, Physiology and diseases. Singapore: Springer, 2023: 33-49. |
18 |
GALINDO-VILLEGAS J , GARCÍA-ALCAZAR A , MESEGUER J , et al. Aluminum adjuvant potentiates gilthead seabream immune responses but induces toxicity in splenic melanomacrophage centers[J]. Fish Shellfish Immunol, 2019, 85, 31- 43.
doi: 10.1016/j.fsi.2018.02.047 |
19 | RAHIMZADEH M R , RAHIMZADEH M R , KAZEMI S , et al. Aluminum poisoning with emphasis on its mechanism and treatment of intoxication[J]. Emerg Med Int, 2022, 2022, 1480553. |
20 |
OMRAN G A . Hematological and immunological impairment following in-utero and postnatal exposure to aluminum sulfate in female offspring of albino rats[J]. Immunopharmacol Immunotoxicol, 2019, 41 (1): 40- 47.
doi: 10.1080/08923973.2018.1533967 |
21 |
KIM Y S , CHUNG Y H , SEO D S , et al. Twenty-eight-day repeated inhalation toxicity study of aluminum oxide nanoparticles in male sprague-dawley rats[J]. Toxicol Res, 2018, 34 (4): 343- 354.
doi: 10.5487/TR.2018.34.3.343 |
22 | GAD EL-HAK H N , ELADAWY S A , RASHWAN H M , et al. Histological study on the acute injection of aluminum sulfate on different organs of rats[J]. Front Sci Res Technol, 2020, 1, 17- 29. |
23 |
MOHAMMED H H , ABD ALI I K , RESHAG A F . Histological changes in the liver, kidney and spleen of white albino rat after aluminum chloride administration[J]. Iraqi J Vet Med, 2017, 41 (2): 1- 6.
doi: 10.30539/iraqijvm.v41i2.40 |
24 |
YU H Y , ZHANG J , JI Q , et al. Melatonin alleviates aluminium chloride-induced immunotoxicity by inhibiting oxidative stress and apoptosis associated with the activation of Nrf2 signaling pathway[J]. Ecotoxicol Environ Saf, 2019, 173, 131- 141.
doi: 10.1016/j.ecoenv.2019.01.095 |
25 | 王静. 铝致大鼠淋巴细胞凋亡的cAMP/PKA信号传导机制[D]. 哈尔滨: 东北农业大学, 2014. |
WANG J. cAMP/PKA signaling pathway in-duces apoptosis in AI-treated lymphocytesin vitro[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese) | |
26 |
LI M , SONG M , REN L M , et al. AlCl3 induces lymphocyte apoptosis in rats through the mitochondria-caspase dependent pathway[J]. Environ Toxicol, 2016, 31 (4): 385- 394.
doi: 10.1002/tox.22051 |
27 | 刘福堂, 黄景凤, 顾庆云, 等. 亚慢性铝中毒对雏鸡脾脏、法氏囊生长发育和形态结构的影响[J]. 畜牧兽医学报, 2009, 40 (2): 261- 265. |
LIU F T , HUANG J F , GU Q Y , et al. Effects of aluminium intoxication on growth and morphological structure of spleen and bursa of Fabricius in chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2009, 40 (2): 261- 265. | |
28 |
ZHANG J H , HU C W , ZHU Y Z , et al. Effects of norepinephrine on immune functions of cultured splenic lymphocytes exposed to aluminum trichloride[J]. Biol Trace Elem Res, 2013, 154 (2): 275- 280.
doi: 10.1007/s12011-013-9729-1 |
29 | 王众, 李艳飞. 铝对体外培养鸡脾淋巴细胞IC50的测定[J]. 中国家禽, 2008, 30 (14): 52- 53. |
WANG Z , LI Y F . Determination of IC50 of chicken spleen lymphocytes cultured in vitro by aluminum[J]. China Poultry, 2008, 30 (14): 52- 53. | |
30 | 王清海, 韦小敏, 莫立凤, 等. 铝厂不同作业环境对工人免疫功能及微量元素的影响[J]. 中国工业医学杂志, 2000, 13 (3): 141- 143. |
WANG Q H , WEI X M , MO L F , et al. Effects of different working environment on immune function and trace elements of employees in an aluminum refinery[J]. Chinese Journal of Industrial Medicine, 2000, 13 (3): 141- 143. | |
31 |
ZHU Y Z , HU C W , LI X W , et al. Suppressive effects of aluminum trichloride on the T lymphocyte immune function of rats[J]. Food Chem Toxicol, 2012, 50 (3-4): 532- 535.
doi: 10.1016/j.fct.2011.12.007 |
32 |
SHE Y , WANG N , CHEN C X , et al. Effects of aluminum on immune functions of cultured splenic T and B lymphocytes in rats[J]. Biol Trace Elem Res, 2012, 147 (1-3): 246- 250.
doi: 10.1007/s12011-011-9307-3 |
33 | ZHU Y Z , XU J F , SUN H , et al. Effects of aluminum exposure on the allergic responses and humoral immune function in rats[J]. Biometals, 2011, 24 (5): 973- 977. |
34 |
郭紫晶, 陈飞, 张志雄, 等. 白细胞介素-10对口蹄疫病毒感染小鼠T细胞增殖及其表达TNF-α、IFN-γ和IL-2的影响[J]. 畜牧兽医学报, 2023, 54 (2): 694- 705.
doi: 10.11843/j.issn.0366-6964.2023.02.026 |
GUO Z J , CHEN F , ZHANG Z X , et al. Effects of interleukin-10 on T cell proliferation and its expression of TNF-α, IFN-γ and IL-2 in mice infected with foot-and-mouth disease virus[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 694- 705.
doi: 10.11843/j.issn.0366-6964.2023.02.026 |
|
35 | 陆翔, 唐乾利, 王小超, 等. 高铝暴露再生障碍性贫血患者临床特征与免疫功能改变特点[J]. 免疫学杂志, 2014, 30 (11): 987-991, 1002. |
LU X , TANG Q L , WANG X C , et al. The clinical characteristics and immune function change of aplastic anemia patients with high aluminum exposure[J]. Immunological Journal, 2014, 30 (11): 987-991, 1002. | |
36 | YANG X , XU F B , ZHUANG C C , et al. Effects of corticosterone on immune functions of cultured rat splenic lymphocytes exposed to aluminum trichloride[J]. Biol Trace Elem Res, 2016, 173 (2): 399- 404. |
37 | 韦小敏, 陆继培, 王清海, 等. 三氯化铝对体外培养的人T淋巴细胞的免疫毒性[J]. 中华预防医学杂志, 2001, 35 (3): 213- 214. |
WEI X M , LU J P , WANG Q H , et al. Immunotoxicity of aluminum trichloride to human T lymphocytes cultured in vitro[J]. Chinese Journal of Preventive Medicine, 2001, 35 (3): 213- 214. | |
38 | BROWN K , DECOFFE D , MOLCAN E , et al. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease[J]. Nutrients, 2012, 4 (8): 1095- 1119. |
39 | HU C W, LIU F T, LI Y F. Effects of aluminum intoxication on immune function in chickens[C]//Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering. Beijing: IEEE, 2009: 1-4. |
40 | KHAN M F , WANG G D . Environmental agents, oxidative stress and autoimmunity[J]. Curr Opin Toxicol, 2018, 7, 22- 27. |
41 | IBRAHIM R M , EL ZAHRAA ALI ABD ELAAL F , ZAKI S . Effect of curcumin and nano-curcumin on reduce aluminum toxicity in rats[J]. Int J Food Sci Biotechnol, 2019, 4 (3): 64- 73. |
42 | OMOOR I N A , YANKEY R , SHEHATA A I , et al. Dietary supplement of fermented grass forage regulates growth performance, antioxidant capacity, and immune response of broiler chickens[J]. Poult Sci, 2024, 103 (2): 103323. |
43 | 李艳飞, 王众, 胡崇伟. 铝对体外培养鸡脾淋巴细胞一氧化氮代谢和脂质过氧化的影响[J]. 中国家禽, 2010, 32 (11): 15- 17. |
LI Y F , WANG Z , HU C W . Effects of Aluminum on metabolism of nitric oxide and lipid peroxidation of chicken splenic lymphocyte cultured in vitro[J]. China Poultry, 2010, 32 (11): 15- 17. | |
44 | 刘福堂, 李艳飞, 刘红强. 铝中毒对蛋鸡抗氧化能力和体液免疫功能的影响[J]. 中国兽医学报, 2009, 29 (1): 89- 91. |
LIU F T , LI Y F , LIU H Q . Effects of aluminium intoxication on antioxidative activity and humoral immune function in chicks[J]. Chinese Journal of Veterinary Science, 2009, 29 (1): 89- 91. | |
45 | 栗珍. 钼对鸡法氏囊形态及免疫功能的影响[J]. 当代畜牧, 2018, (15): 33- 34. |
LI Z . Effect of molybdenum on morphology and immune function of chicken bursa of chicken[J]. Contemporary Animal Husbandry, 2018, (15): 33- 34. | |
46 | 张广智, 张正达. 鸡法氏囊发育形态学研究[J]. 中国畜禽种业, 2019, 15 (5): 184. |
ZHANG G Z , ZHANG Z D . A morphological study of the development of the bursa in chickens[J]. The Chinese Livestock and Poultry Breeding, 2019, 15 (5): 184. | |
47 | 胡崇伟. 亚慢性铝中毒对雏鸡脾脏、法氏囊生长发育和形态结构的影响[C]//中国畜牧兽医学会动物毒物学分会2009年学术研讨会论文集. 湛江: 中国畜牧兽医学会动物毒物学分会, 2009: 2. |
HU C W. The effects of subchronic aluminum poisoning on the growth, development, and morphological structure of the spleen and bursa of chicks[C]//Academic Symposium of the Animal Toxicology Branch of the Chinese Society of Animal Husbandry and Veterinary Medicine. Zhanjiang: Animal Toxicology Branch of the Chinese Society of Animal Husbandry and Veterinary Medicine, 2009: 2. (in Chinese) | |
48 | 刘福堂. 亚慢性铝中毒对雏鸡免疫功能的影响[D]. 哈尔滨: 东北农业大学, 2008. |
LIU F T. The effects of aluminum on the immune function of chicken[D]. Harbin: Northeast Agricultural University, 2008. (in Chinese) | |
49 | BONG I P N , ESA E . Molecular genetic aberrations in the pathogenesis of multiple myeloma[J]. Asian Biomed, 2023, 17 (4): 152- 162. |
50 | 李洁. 斑蝥和斑蝥素对小鼠骨髓细胞的影响及调控机制研究[D]. 开封: 河南大学, 2021. |
LI J. The Effect of cantharides on bone marrow cells in mouse and its regulatory mechanism[D]. Kaifeng: Henan University, 2021. (in Chinese) | |
51 | 张陆, 夏士亮, 李金龙, 等. 促红细胞生成素在铅镉联合胁迫致雏鸡贫血中的作用[J]. 畜牧兽医学报, 2011, 42 (8): 1175- 1180. |
ZHANG L , XIA S L , LI J L , et al. Roles of erythropoietin in chicken anemia induced by lead and cadmium[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42 (8): 1175- 1180. | |
52 | ALABI O A , UNUIGBOJE M A , OLAGOKE D O , et al. Toxicity associated with long term use of aluminum cookware in mice: a systemic, genetic and reproductive perspective[J]. Mutat Res Genet Toxicol Environ Mutagen, 2021, 861-862, 503296. |
53 | ALGHRIANY A A I , OMAR H E L M , MAHMOUD A M , et al. Assessment of the toxicity of aluminum oxide and its nanoparticles in the bone marrow and liver of Male mice: ameliorative efficacy of curcumin nanoparticles[J]. ACS Omega, 2022, 7 (16): 13841- 13852. |
54 | JALILI P , HUET S , LANCELEUR R , et al. Genotoxicity of aluminum and aluminum oxide nanomaterials in rats following oral exposure[J]. Nanomaterials, 2020, 10 (2): 305. |
55 | AL-QAYIM M A J , SAADOON D . Assessment of the ameliorative role of proplis and malic acid in intestinal and liver functions of aluminum exposed male rats[J]. Int J Sci Nat, 2013, 4 (3): 552- 558. |
56 | YU L L , WU J P , ZHAI Q X , et al. Metabolomic analysis reveals the mechanism of aluminum cytotoxicity in HT-29 cells[J]. PeerJ, 2019, 7, e7524. |
57 | JEONG C H , KWON H C , KIM D H , et al. Effects of aluminum on the integrity of the intestinal epithelium: an in vitro and in vivo study[J]. Environ Health Perspect, 2020, 128 (1): 017013. |
58 | ESQUERRE N , BASSO L , DUBUQUOY C , et al. Aluminum ingestion promotes colorectal hypersensitivity in rodents[J]. Cell Mol Gastroenterol Hepatol, 2019, 7 (1): 185- 196. |
59 | BLANTON L V , BARRATT M J , CHARBONNEAU M R , et al. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics[J]. Science, 2016, 352 (6293): 1533. |
60 | PINETON DE CHAMBRUN G , BODY-MALAPEL M , FREY-WAGNER I , et al. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice[J]. Mucosal Immunol, 2014, 7 (3): 589- 601. |
61 | WANG F , GUO R X , LI W X , et al. The role of intestinal endotoxemia in a rat model of aluminum neurotoxicity[J]. Mol Med Rep, 2017, 16 (2): 1878- 1884. |
62 | XU F B , JI Q , ZHANG J , et al. AlCl3 inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production through suppressing NF-κB signaling pathway in murine peritoneal macrophages[J]. Chemosphere, 2018, 209, 972- 980. |
63 | 邹胜南. 牦牛淋巴结生长发育和免疫功能相关因子的筛选与分析[D]. 兰州: 甘肃农业大学, 2023. |
ZOU S N. Screening and analysis of factors related to lymph nodes growth and immune function in yak[D]. Lanzhou: Gansu Agricultural University, 2023. (in Chinese) | |
64 | VAHLENSIECK M , OVERLACK A , MÜLLER K M . Computed tomographic high-attenuation mediastinal lymph nodes after aluminum exposition[J]. Eur Radiol, 2000, 10 (12): 1945- 1946. |
65 | CHEW R , NIGAM S , SIVAKUMARAN P . Alveolar proteinosis associated with aluminium dust inhalation[J]. Occup Med, 2016, 66 (6): 492- 494. |
66 | LI Y R , ZÚÑIGA-PFLÜCKER J C . Thymus aging and immune reconstitution, progresses and challenges[J]. Semin Immunol, 2023, 70, 101837. |
67 | DUAH M , LI L L , SHEN J Y , et al. Thymus degeneration and regeneration[J]. Front Immunol, 2021, 12, 706244. |
68 | GULLA S , REDDY M C , REDDY V C , et al. Role of thymus in health and disease[J]. Int Rev Immunol, 2023, 42 (5): 347- 363. |
69 | KAMALOV J , CARPENTER D O , BIRMAN I . Cytotoxicity of environmentally relevant concentrations of aluminum in murine thymocytes and lymphocytes[J]. J Toxicol, 2011, 2011, 796719. |
70 | LIM J O , JUNG T Y , LEE S J , et al. Evaluation of 28-day repeated oral dose toxicity of aluminum chloride in rats[J]. Drug Chem Toxicol, 2022, 45 (3): 1088- 1097. |
[1] | 张喜闻, 尹月, 李响, 王敏, 王永芳, 靳舒宁, 冯鑫辉, 赵玉蓉. 熊果酸对肉鸡胸肌肉品质和木质化鸡胸肉的影响[J]. 畜牧兽医学报, 2025, 56(2): 711-721. |
[2] | 顾雅怡, 夏苏干, 刘鹏利, 邹辉, 顾建红, 袁燕, 刘学忠, 刘宗平, 卞建春. 聚苯乙烯纳米塑料对公鸭睾丸的损伤作用[J]. 畜牧兽医学报, 2025, 56(2): 925-933. |
[3] | 王艺, 侯露露, 方菲, 高林英, 谢淑敏, 王雨. 氟通过自噬和铁死亡途径诱发肉鸡小肠氧化损伤[J]. 畜牧兽医学报, 2025, 56(1): 442-454. |
[4] | 杨硕, 霍敏, 苏子轩, 石玉祥. 线粒体质量控制对畜禽氧化应激影响的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3769-3776. |
[5] | 袁紫金, 王婉昕, 邢娅, 李家惠, 薛颖, 葛晶, 赵敏孟, 刘龙, 龚道清, 耿拓宇. HDLBP通过调控氧化应激水平和炎性因子表达参与鹅肥肝的形成[J]. 畜牧兽医学报, 2024, 55(9): 3897-3913. |
[6] | 刘馨蔓, 周鸿缘, 桑锐, 葛冰洁, 闫可心, 王巍, 于明弘, 刘晓童, 邱谦, 张雪梅. 蒲公英甾醇对AFB1性肝损伤肉鸡肝组织氧化应激的影响[J]. 畜牧兽医学报, 2024, 55(9): 4141-4152. |
[7] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. |
[8] | 杨坤, 马静文, 周新瑞, 罗烈柱, 刘喆, 胡自强, 武星辰, 梁立滨, 高诗敏. 三株传染性法氏囊病病毒重组毒株的致病性研究[J]. 畜牧兽医学报, 2024, 55(6): 2550-2559. |
[9] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
[10] | 章心婷, 邱文粤, 庞晓玥, 苏依曼, 叶嘉莉, 黄健佳, 周水莲, 唐兆新, 王荣梅, 苏荣胜. 积雪草酸通过抑制氧化应激和铁死亡减轻脂多糖诱导的肉鸡心肌损伤的研究[J]. 畜牧兽医学报, 2024, 55(4): 1787-1799. |
[11] | 姜丽君, 宗云鹤, 李云雷, 陈继兰, 耿照玉, 孙研研, 金四华. 抗氧化剂在家禽精液储存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(3): 913-923. |
[12] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[13] | 孟亚轩, 刘彦, 韦兴茹, 陈国顺, 冯涛. 氧化应激对母畜子宫及妊娠影响的研究进展[J]. 畜牧兽医学报, 2024, 55(12): 5368-5378. |
[14] | 熊志伟, 王云, 曹华斌, 彭成诚, 杨帆, 代雪艳, 幸程鸿, 刘灵莉, 李静妮, 胡爱明. 钼、镉联合暴露介导氧化应激和铁死亡致绵羊肾损伤[J]. 畜牧兽医学报, 2024, 55(12): 5802-5812. |
[15] | 苑庆欣, 刘阔, 包旭华, 高东阳, 李鹤, 宋军, 周志新. 白屈菜红碱抗耐甲氧西林金黄色葡萄球菌作用机制研究[J]. 畜牧兽医学报, 2024, 55(10): 4670-4678. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||