[1] |
BÉNAZÉRAF B, POURQUIÉ O.Formation and segmentation of the vertebrate body axis[J].Annu Rev Cell Dev Biol, 2013, 29:1-26.
|
[2] |
MALLO M.Reassessing the role of Hox genes during vertebrate development and evolution[J].Trends Genet, 2018, 34(3):209-217.
|
[3] |
KEYNES R J, STERN C D.Mechanisms of vertebrate segmentation[J].Development, 1988, 103(3):413-429.
|
[4] |
CHRIST B, HUANG R J, SCAAL M.Amniote somite derivatives[J].Dev Dyn, 2007, 236(9):2382-2396.
|
[5] |
OATES A C, MORELLI L G, ARES S.Patterning embryos with oscillations:structure, function and dynamics of the vertebrate segmentation clock[J].Development, 2012, 139(4):625-639.
|
[6] |
CHAPMAN D L, PAPAIOANNOU V E.Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6[J].Nature, 1998, 391(6668):695-697.
|
[7] |
HUBAUD A, POURQUIÉ O.Signalling dynamics in vertebrate segmentation[J].Nat Rev Mol Cell Biol, 2014, 15(11):709-721.
|
[8] |
MARTIN B L, KIMELMAN D.Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation[J].Dev Cell, 2008, 15(1):121-133.
|
[9] |
HUBAUD A, REGEV I, MAHADEVAN L, et al.Excitable dynamics and yap-dependent mechanical cues drive the segmentation clock[J].Cell, 2017, 171(3):668-682.e11.
|
[10] |
BRAND-SABERI B, CHRIST B.Evolution and development of distinct cell lineages derived from somites[J].Curr Top Dev Biol, 2000, 48:1-42.
|
[11] |
SCAAL M.Early development of the vertebral column[J].Semin Cell Dev Biol, 2016, 49:83-91.
|
[12] |
WELDON S A, MVNSTERBERG A E.Somite development and regionalisation of the vertebral axial skeleton[J].Semin Cell Dev Biol, 2022, 127:10-16.
|
[13] |
IIMURA T, DENANS N, POURQUIÉ O.Establishment of Hox vertebral identities in the embryonic spine precursors[J].Curr Top Dev Biol, 2009, 88:201-234.
|
[14] |
NARITA Y, KURATANI S.Evolution of the vertebral formulae in mammals:a perspective on developmental constraints[J].J Exp Zool Part B Mol Dev Evol, 2005, 304(2):91-106.
|
[15] |
KING J W B, ROBERTS R C.Carcass length in the bacon pig;its association with vertebrae numbers and prediction from radiographs of the young pig[J].Anim Prod, 1960, 2(1):59-65.
|
[16] |
BURGOS C, LATORRE P, ALTARRIBA J, et al.Allelic frequencies of NR6A1 and VRTN, two genes that affect vertebrae number in diverse pig breeds:a study of the effects of the VRTN insertion on phenotypic traits of a Duroc×Landrace-Large White cross[J].Meat Sci, 2015, 100:150-155.
|
[17] |
NIU N Q, LIU Q, HOU X H, et al.Genome-wide association study revealed ABCD4 on SSC7 and GREB1L and MIB1 on SSC6 as crucial candidate genes for rib number in Beijing Black pigs[J].Anim Genet, 2022, 53(5):690-695.
|
[18] |
ZHANG L C, WANG L G, LI Y, et al.A substitution within erythropoietin receptor gene D1 domain associated with litter size in Beijing Black pig, Sus scrofa[J].Anim Sci J, 2011, 82(5):627-632.
|
[19] |
王可甜, 柴 捷, 张凤鸣, 等.猪胴体性状测定方法与技巧[J].畜禽业, 2022, 33(12):21-23.WANG K T, CHAI J, ZHANG F M, et al.Methods and techniques for determination of pig carcass traits[J].Livestock and Poultry Industry, 2022, 33(12):21-23.(in Chinese)
|
[20] |
李玉莲, 吴买生, 谭 红, 等.湘岭猪肥育性能、胴体性能及肌肉品质研究[J].中国畜牧杂志, 2022, 58(4):141-145, 149.LI Y L, WU M S, TAN H, et al.Study on fattening performance, carcass performance and muscle quality of Xiangling pigs[J].Chinese Journal of Animal Science, 2022, 58(4):141-145, 149.(in Chinese)
|
[21] |
刘 莹, 龙 欢, 牛丽珠, 等.杜陆与杜隆陆猪生长、胴体及肉质性状的比较分析[J].畜牧兽医学报, 2018, 49(12):2576-2583.LIU Y, LONG H, NIU L Z, et al.Comparison of growth, carcass and meat quality traits between Dulu and Dulonglu pigs[J].Acta Veterinaria et Zootechnica Sinica, 2018, 49(12):2576-2583.(in Chinese)
|
[22] |
FREDEEN H T, NEWMAN J A.Rib and vertebral numbers in swine:II.Genetic aspects[J].Can J Anim Sci, 1962, 42(2):240-251.
|
[23] |
SATO S, OYAMADA Y, ATSUJI K, et al.Quantitative trait loci analysis for growth and carcass traits in a Meishan×Duroc F2 resource population[J].J Anim Sci, 2003, 81(12):2938-2949.
|
[24] |
WADA Y, AKITA T, AWATA T, et al.Quantitative trait loci (QTL) analysis in a Meishan×Göttingen cross population[J].Anim Genet, 2000, 31(6):376-384.
|
[25] |
DUAN Y Y, ZHANG H, ZHANG Z, et al.VRTN is required for the development of thoracic vertebrae in mammals[J].Int J Biol Sci, 2018, 14(6):667-681.
|
[26] |
MIKAWA S, HAYASHI T, NII M, et al.Two quantitative trait loci on Sus scrofa chromosomes 1 and 7 affecting the number of vertebrae[J].J Anim Sci, 2005, 83(10):2247-2254.
|
[27] |
ZHANG L C, YUE J W, PU L, et al.Genome-wide study refines the quantitative trait locus for number of ribs in a Large White×Minzhu intercross pig population and reveals a new candidate gene[J].Mol Genet Genomics, 2016, 291(5):1885-1890.
|
[28] |
NIU N, WANG H, SHI G, et al.Genome scanning reveals novel candidate genes for vertebral and teat number in the Beijing Black Pig[J].Anim Genet, 2021, 52(5):734-738.
|
[29] |
BOISSEL S, FALLET-BIANCO C, CHITAYAT D, et al.Genomic study of severe fetal anomalies and discovery of GREB1L mutations in renal agenesis[J].Genet Med, 2018, 20(7):745-753.
|
[30] |
DE TOMASI L, DAVID P, HUMBERT C, et al.Mutations in GREB1L cause bilateral kidney agenesis in humans and mice[J].Am J Hum Genet, 2017, 101(5):803-814.
|
[31] |
SCHRAUWEN I, KARI E, MATTOX J, et al.De novo variants in GREB1L are associated with non-syndromic inner ear malformations and deafness[J].Hum Genet, 2018, 137(6-7):459-470.
|
[32] |
YU Y L, WANG Z P, ZHENG Q H, et al.GREB1L overexpression correlates with prognosis and immune cell infiltration in lung adenocarcinoma[J].Sci Rep, 2021, 11(1):13281.
|
[33] |
AULEHLA A, WIEGRAEBE W, BAUBET V, et al.A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation[J].Nat Cell Biol, 2008, 10(2):186-193.
|
[34] |
GUO B Q, MCMILLAN B J, BLACKLOW S C.Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction[J].Curr Opin Struct Biol, 2016, 41:38-45.
|
[35] |
HSU C H, LIN J S, PO LAI K, et al.A new mib allele with a chromosomal deletion covering foxc1a exhibits anterior somite specification defect[J].Sci Rep, 2015, 5:10673.
|
[36] |
KOO B K, LIM H S, SONG R, et al.Mind bomb 1 is essential for generating functional Notch ligands to activate Notch[J].Development, 2005, 132(15):3459-3470.
|
[37] |
LAWSON N D, SCHEER N, PHAM V N, et al.Notch signaling is required for arterial-venous differentiation during embryonic vascular development[J].Development, 2001, 128(19):3675-3683.
|
[38] |
BERNDT J D, AOYAGI A, YANG P, et al.Mindbomb 1, an E3 ubiquitin ligase, forms a complex with RYK to activate Wnt/β-catenin signaling[J].J Cell Biol, 2011, 194(5):737-750.
|
[39] |
MERTZ J, TAN H Y, PAGALA V, et al.Sequential elution interactome analysis of the mind bomb 1 ubiquitin ligase reveals a novel role in dendritic spine outgrowth[J].Mol Cell Proteomics, 2015, 14(7):1898-1910.
|
[40] |
WU S X, WANG X, DAI S Y, et al.A novel missense mutation in GREB1L identified in a three-generation family with renal hypodysplasia/aplasia-3[J].Orphanet J Rare Dis, 2022, 17(1):413.
|
[41] |
LUXÁN G, CASANOVA J C, MARTÍNEZ-POVEDA B, et al.Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy[J].Nat Med, 2013, 19(2):193-201.
|
[42] |
BALLA C, DE RAFFELE M, DESERIO M A, et al.Left ventricular myocardial noncompaction with advanced atrioventricular conduction disorder and ventricular arrhythmias in a young patient:role of MIB1 gene[J].J Cardiovasc Dev Dis, 2021, 8(9):109.
|