畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (3): 924-933.doi: 10.11843/j.issn.0366-6964.2023.03.007
林梦娟1, 高沙沙1, 赵星辰1, 仲宇欣1, 吴俊2, 张军忍1, 郭大伟1*
收稿日期:
2022-08-23
出版日期:
2023-03-23
发布日期:
2023-03-21
通讯作者:
郭大伟,主要从事兽医药理和药剂学研究,E-mail:gdawei0123@njau.edu.cn
作者简介:
林梦娟(1997-),女,河南周口人,硕士生,主要从事抗球虫药物研究,E-mail: lmj19980112@163.com
基金资助:
LIN Mengjuan1, GAO Shasha1, ZHAO Xingchen1, ZHONG Yuxin1, WU Jun2, ZHANG Junren1, GUO Dawei1*
Received:
2022-08-23
Online:
2023-03-23
Published:
2023-03-21
摘要: 寄生虫病是世界上最具破坏性和普遍性的传染病之一,造成每年数万人死亡的同时也导致巨大经济损失。常山酮(halofuginone)是从植物常山中分离提取的活性成分常山碱的卤代衍生物,具有强大的抗原虫活性。与常山碱相比,常山酮毒副作用更小的特点使其在疾病治疗上更有优势。近年来,常山酮在癌症、纤维化和自身免疫性疾病等方面的生物活性引起广泛关注。在人医临床上,常山酮针对杜兴氏肌肉营养不良症、实体瘤等的作用研究已进入临床试验阶段。在兽医临床上,常山酮氢溴酸盐和常山酮乳酸盐已分别被FDA和欧盟授权用于预防和治疗家禽球虫病和反刍动物隐孢子虫病。据报道,常山酮对疟原虫、弓形虫、泰勒虫、利什曼原虫等原虫的感染也有高效的治疗作用。氨酰-tRNA合成酶是寄生虫病治疗的新兴靶点,本文归纳总结了常山酮对多种原虫的作用以及抑制脯氨酰-tRNA合成酶的相关机制,以期为后续常山酮抗原虫的理论研究和临床应用提供参考依据。
中图分类号:
林梦娟, 高沙沙, 赵星辰, 仲宇欣, 吴俊, 张军忍, 郭大伟. 常山酮抗原虫作用研究进展[J]. 畜牧兽医学报, 2023, 54(3): 924-933.
LIN Mengjuan, GAO Shasha, ZHAO Xingchen, ZHONG Yuxin, WU Jun, ZHANG Junren, GUO Dawei. Research Progress on Antiprotozoal Activity of Halofuginone[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 924-933.
[1] | ALUM A, RUBINO J R, IJAZ M K. The global war against intestinal parasites-should we use a holistic approach?[J]. Int J Infect Dis, 2010, 14(9):e732-e738. |
[2] | CHOI B, KIM B. Prevalence and risk factors of intestinal parasite infection among schoolchildren in the Peripheral Highland Regions of Huanuco, Peru[J]. Osong Public Health Res Perspect, 2017, 8(5):302-307. |
[3] | KOTLOFF K L, NATARO J P, BLACKWELDER W C, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS):a prospective, case-control study[J]. Lancet, 2013, 382(9888):209-222. |
[4] | KORPE P S, HAQUE R, GILCHRIST C, et al. Natural history of cryptosporidiosis in a longitudinal study of slum-dwelling bangladeshi children:association with severe malnutrition[J]. PLoS Negl Trop Dis, 2016, 10(5):e0004564. |
[5] | PIPERAKI E T, TASSIOS P T. Parasitic infections:their position and impact in the postindustrial world[J]. Clin Microbiol Infect, 2016, 22(6):469-470. |
[6] | ZHU S R, WANG J, CHANDRASHEKAR G, et al. Synthesis and evaluation of 4-quinazolinone compounds as potential antimalarial agents[J]. Eur J Med Chem, 2010, 45(9):3864-3869. |
[7] | MCLAUGHLIN N P, EVANS P. Dihydroxylation of vinyl sulfones:stereoselective synthesis of (+)-and (-)-febrifugine and halofuginone[J]. J Org Chem, 2010, 75(2):518-521. |
[8] | 陈玲,朱焕星,李桂华,等.抗球虫药常山酮的研究与应用[J].黑龙江畜牧兽医, 2012(19):34-36.CHEN L, ZHU H X, LI G H, et al. The study and application of the anticoccidial halofuginone[J]. Heilongjiang Animal Science and Veterinary Medicine, 2012(19):34-36.(in Chinese) |
[9] | 中华人民共和国农业农村部公告第350号.新兽药注册证书[S].北京:中华人民共和国农业农村部, 2020.Announcement No. 350 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China. New veterinary drug registration certificate[S]. Beijing:Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2020.(in Chinese) |
[10] | HUEBNER K D, JASSAL D S, HALEVY O, et al. Functional resolution of fibrosis in mdx mouse dystrophic heart and skeletal muscle by halofuginone[J]. Am J Physiol Heart Circ Physiol, 2008, 294(4):H1550-H1561. |
[11] | HALEVY O, NAGLER A, LEVI-SCHAFFER F, et al. Inhibition of collagen type I synthesis by skin fibroblasts of graft versus host disease and scleroderma patients:effect of halofuginone[J]. Biochem Pharmacol, 1996, 52(7):1057-1063. |
[12] | MARTY P, CHATELAIN B, LIHOREAU T, et al. Halofuginone regulates keloid fibroblast fibrotic response to TGF-β induction[J]. Biomed Pharmacother, 2021, 135:111182. |
[13] | DE JONGE M J A, DUMEZ H, VERWEIJ J, et al. Phase I and pharmacokinetic study of halofuginone, an oral quinazolinone derivative in patients with advanced solid tumours[J]. Eur J Cancer, 2006, 42(12):1768-1774. |
[14] | KOON H B, FINGLETON B, LEE J Y, et al. Phase II AIDS malignancy consortium trial of topical halofuginone in AIDS-related Kaposi sarcoma[J]. J Acquir Immune Defic Syndr, 2011, 56(1):64-68. |
[15] | SANDOVAL D R, CLAUSEN T M, NORA C, et al. The prolyl-tRNA synthetase inhibitor halofuginone inhibits SARS-CoV-2 infection[J/OL]. bioRxiv, 2021.[2023-01-01] https://www.biorxiv.org/content/10.1101/2021.03.22.436522v3.full.pdf. |
[16] | MILNER JR D J. Malaria pathogenesis[J]. Cold Spring Harb Perspect Med, 2018, 8(1):a025569. |
[17] | DERBYSHIRE E R, MAZITSCHEK R, CLARDY J. Characterization of Plasmodium liver stage inhibition by halofuginone[J]. ChemMedChem, 2012, 7(5):844-849. |
[18] | JAIN V, KIKUCHI H, OSHIMA Y, et al. Structural and functional analysis of the anti-malarial drug target prolyl-tRNA synthetase[J]. J Struct Funct Genomics, 2014, 15(4):181-190. |
[19] | GEARY T G, DIVO A A, JENSEN J B. Stage specific actions of antimalarial drugs on Plasmodium falciparum in culture[J]. Am J Trop Med Hyg, 1989, 40(3):240-244. |
[20] | KOEPFLI J B, MEAD J F, BROCKMAN JR J A. An alkaloid with high antimalarial activity from Dichroa febrifuga[J]. J Am Chem Soc, 1947, 69(7):1837. |
[21] | DÓRÁNÉ H K, CLAUDER O. Alkaloides deriving from indolo (2, 3-c) quinazoline (3, 2-a) pyridine. II. Synthesis and analysis of rutecarpine carbonic acid[J]. Acta Pharm Hung, 1974, 80-82. |
[22] | HERMAN J D, PEPPER L R, CORTESE J F, et al. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs[J]. Sci Transl Med, 2015, 7(288):288ra77. |
[23] | SNOW R W, GUERRA C A, NOOR A M, et al. The global distribution of clinical episodes of Plasmodium falciparum malaria[J]. Nature, 2005, 434(7030):214-217. |
[24] | HERMAN J D, RICE D P, RIBACKE U, et al. A genomic and evolutionary approach reveals non-genetic drug resistance in malaria[J]. Genome Biol, 2014, 15(11):511. |
[25] | KADYKALO S, ROBERTS T, THOMPSON M, et al. The value of anticoccidials for sustainable global poultry production[J]. Int J Antimicrob Agents, 2018, 51(3):304-310. |
[26] | 张德福.氢溴酸常山酮抗柔嫩艾美耳球虫作用研究[D].杭州:浙江大学, 2012.ZHANG D F. The study on the action of halofuginone hydrobromide against Eimeria tenella[D]. Hangzhou:Zhejiang University, 2012.(in Chinese) |
[27] | MCQUISTION T E, MCDOUGALD L R. Anticoccidial activity of arprinocid and halofuginone[J]. Vet Parasitol, 1981, 9(1):27-33. |
[28] | ZHANG D F, SUN B B, YUE Y Y, et al. Anticoccidial effect of halofuginone hydrobromide against Eimeria tenella with associated histology[J]. Parasitol Res, 2012, 111(2):695-701. |
[29] | RAMADAN A, EL-SOOUD K A, EL-BAHY M M. Anticoccidial efficacy of toltrazuril and halofuginone against Eimeria tenella infection in broiler chickens in Egypt[J]. Res Vet Sci, 1997, 62(2):175-178. |
[30] | GIBSON A R, STRIEPEN B. Cryptosporidium[J]. Curr Biol, 2018, 28(5):R193-R194. |
[31] | BRAINARD J, HAMMER C C, HUNTER P R, et al. Efficacy of halofuginone products to prevent or treat cryptosporidiosis in bovine calves:a systematic review and meta-analyses[J]. Parasitology, 2021, 148(4):408-419. |
[32] | JAIN V, YOGAVEL M, KIKUCHI H, et al. Targeting Prolyl-tRNA synthetase to accelerate drug discovery against malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis, and coccidiosis[J]. Structure, 2017, 25(10):1495-1505. |
[33] | BARAGAÑA B, FORTE B, CHOI R, et al. Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis[J]. Proc Natl Acad Sci U S A, 2019, 116(14):7015-7020. |
[34] | VINAYAK S, JUMANI R S, MILLER P, et al. Bicyclic azetidines kill the diarrheal pathogen Cryptosporidium in mice by inhibiting parasite phenylalanyl-tRNA synthetase[J]. Sci Transl Med, 2020, 12(563):eaba8412. |
[35] | LINDER M R, HECKEROTH A R, NAJDROWSKI M, et al.(2R, 3S)-(+)-and (2S, 3R)-(-)-Halofuginone lactate:synthesis, absolute configuration, and activity against Cryptosporidium parvum[J]. Bioorg Med Chem Lett, 2007, 17(15):4140-4143. |
[36] | TROTZ-WILLIAMS L A, JARVIE B D, PEREGRINE A S, et al. Efficacy of halofuginone lactate in the prevention of cryptosporidiosis in dairy calves[J]. Vet Rec, 2011, 168(19):509. |
[37] | SHAHIDUZZAMAN M, DYACHENKO V, OBWALLER A, et al. Combination of cell culture and quantitative PCR for screening of drugs against Cryptosporidium parvum[J]. Vet Parasitol, 2009, 162(3-4):271-277. |
[38] | TROTZ-WILLIAMS L A, JARVIE B D, MARTIN S W, et al. Prevalence of Cryptosporidium parvum infection in southwestern Ontario and its association with diarrhea in neonatal dairy calves[J]. Can Vet J, 2005, 46(4):349-351. |
[39] | PETERMANN J, PARAUD C, PORS I, et al. Efficacy of halofuginone lactate against experimental cryptosporidiosis in goat neonates[J]. Vet Parasitol, 2014, 202(3-4):326-329. |
[40] | GAȽECKI R, SOKÓȽ R. Treatment of cryptosporidiosis in captive green iguanas (Iguana iguana)[J]. Vet Parasitol, 2018, 252:17-21. |
[41] | VÁLEZ J, LANGE M K, ZIEGER P, et al. Long-term use of yeast fermentation products in comparison to halofuginone for the control of cryptosporidiosis in neonatal calves[J]. Vet Parasitol, 2019, 269:57-64. |
[42] | ALMAWLY J, PRATTLEY D, FRENCH N P, et al. Utility of halofuginone lactate for the prevention of natural cryptosporidiosis of calves, in the presence of co-infection with rotavirus and Salmonella Typhimurium[J]. Vet Parasitol, 2013, 197(1-2):59-67. |
[43] | ROBERT-GANGNEUX F, DARDÉ M L. Epidemiology of and diagnostic strategies for toxoplasmosis[J]. Clin Microbiol Rev, 2012, 25(2):264-296. |
[44] | MANICKAM Y, MALHOTRA N, MISHRA S, et al. Double drugging of prolyl-tRNA synthetase provides a new paradigm for anti-infective drug development[J]. PLoS Pathog, 2022, 18(3):e1010363. |
[45] | YOUNG K M, CORRIN T, WILHELM B, et al. Zoonotic Babesia:a scoping review of the global evidence[J]. PLoS One, 2019, 14(12):e0226781. |
[46] | ZWEYGARTH E, AHMED J S, REHBEIN G. The effect of halofuginone, Wellcome 993 C, oxytetracycline, and diminazene diaceturate on Babesia equi-infected lymphoblastoid cell cultures[J]. J Parasitol, 1984, 70(4):542-544. |
[47] | WATTS J G, PLAYFORD M C, HICKEY K L. Theileria orientalis:a review[J]. N Z Vet J, 2016, 64(1):3-9. |
[48] | DE VOS A J, ROOS J A, BIGALKE R D. Chemotherapy of Theileria parva lawrencei infections in cattle with halofuginone[J]. Onderstepoort J Vet Res, 1983, 50(1):33-35. |
[49] | KILTZ H H, HUMKE R. Bovine theileriosis in Burundi:chemotherapy with halofuginone lactate[J]. Trop Anim Health Prod, 1986, 18(3):139-145. |
[50] | DOLAN T T. Chemotherapy of East Coast fever. Treatment of infections induced by isolates of Theileria parva with halofuginone[J]. Acta Trop, 1986, 43(2):165-173. |
[51] | MEHLHORN H, MOLTMANN U, SCHEIN E, et al. Electron microscopical study on the effect of halofuginone on Theileria parva[J]. Tropenmed Parasitol, 1981, 32(4):231-233. |
[52] | POSTIGO J A R. Leishmaniasis in the world health organization eastern Mediterranean region[J]. Int J Antimicrob Agents, 2010, 36(S1):S62-S65. |
[53] | DATTA A, PODDER I, DAS A, et al. Therapeutic modalities in post Kala-azar dermal leishmaniasis:a systematic review of the effectiveness and safety of the treatment options[J]. Indian J Dermatol, 2021, 66(1):34-43. |
[54] | PRINSLOO I F, ZUMA N H, AUCAMP J, et al. Synthesis and in vitro antileishmanial efficacy of novel quinazolinone derivatives[J]. Chem Biol Drug Des, 2021, 97(2):383-398. |
[55] | KELLER T L, ZOCCO D, SUNDRUD M S, et al. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase[J]. Nat Chem Biol, 2012, 8(3):311-317. |
[56] | MISHRA S, MALHOTRA N, KUMARI S, et al. Conformational heterogeneity in apo and drug-bound structures of Toxoplasma gondii prolyl-tRNA synthetase[J]. Acta Crystallogr F Struct Biol Commun, 2019, 75(Pt 11):714-724. |
[57] | 葛俊驿,邱晓挺,金海晓.氨酰tRNA合成酶作用机制及其应用[J].中国生物化学与分子生物学报, 2017, 33(1):22-29.GE J Y, QIU X T, JIN H X. Aminoacyl-tRNA synthetase acting mechanism and its applications[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(1):22-29.(in Chinese) |
[58] | HURDLE J G, O'NEILL A J, INGHAM E, et al. Analysis of mupirocin resistance and fitness in Staphylococcus aureus by molecular genetic and structural modeling techniques[J]. Antimicrob Agents Chemother, 2004, 48(11):4366-4376. |
[59] | BAKER S J, ZHANG Y K, AKAMA T, et al. Discovery of a new boron-containing antifungal agent, 5-fluoro-1, 3-dihydro-1-hydroxy-2, 1-benzoxaborole (AN2690), for the potential treatment of onychomycosis[J]. J Med Chem, 2006, 49(15):4447-4450. |
[60] | BHATT T K, KAPIL C, KHAN S, et al. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum[J]. BMC Genomics, 2009, 10(1):644. |
[61] | ZHOU H H, SUN L T, YANG X L, et al. ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase[J]. Nature, 2013, 494(7435):121-124. |
[62] | SUNDRUD M S, KORALOV S B, FEUERER M, et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response[J]. Science, 2009, 324(5932):1334-1338. |
[63] | GUO J S, CHEN B Y, YU Y, et al. Discovery of novel tRNA-amino acid dual-site inhibitors against threonyl-tRNA synthetase by fragment-based target hopping[J]. Eur J Med Chem, 2020, 187:111941. |
[64] | HEWITT S N, DRANOW D M, HORST B G, et al. Biochemical and structural characterization of selective allosteric inhibitors of the Plasmodium falciparum drug target, Prolyl-tRNA-synthetase[J]. ACS Infect Dis, 2017, 3(1):34-44. |
[1] | 杨富升, 古小彬. 近十年PCR技术在寄生虫病诊断中的应用[J]. 畜牧兽医学报, 2023, 54(8): 3183-3194. |
[2] | 邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79. |
[3] | 郑雨昕, 张义伟, 姜宁. 恶性疟原虫ApiAP2蛋白质家族研究进展[J]. 畜牧兽医学报, 2022, 53(5): 1354-1363. |
[4] | 张义伟, 苏紫薇, 李其龙, 陈冉, 姜宁. 伯氏疟原虫ANKA株感染小鼠的T细胞、NK细胞及细胞因子变化[J]. 畜牧兽医学报, 2022, 53(11): 4008-4018. |
[5] | 刘林科, 王朋林, 菅忆晨, 李世杰, 王占铭, 王荣军, 张龙现, 宁长申, 菅复春. 我国部分地区羊芽囊原虫流行病学调查[J]. 畜牧兽医学报, 2021, 52(4): 1061-1068. |
[6] | 吴怡然, 杨光友. 犬科与猫科动物肝簇虫病[J]. 畜牧兽医学报, 2017, 48(10): 1807-1814. |
[7] | 吴彩艳,王祯,李娟,林栩慧,廖申权,戚南山,吕敏娜,孙铭飞. 宿主细胞F-actin聚集在顶复门原虫入侵过程中的作用研究[J]. 畜牧兽医学报, 2016, 47(3): 423-428. |
[8] | 张念章,陈佳,王萌,朱兴全, 黄思扬. 顶复门原虫钙依赖蛋白激酶的研究进展[J]. 畜牧兽医学报, 2013, 44(1): 1-6. |
[9] | 戚南山;孙铭飞;廖申权;吴彩艳;吕敏娜;袁建丰;余劲术;李祥瑞;蔡建平. 顶复门原虫入侵相关因子的研究进展[J]. 畜牧兽医学报, 2012, 43(2): 167-174. |
[10] | 廖申权;蔡建平;戚南山;吴彩艳;吕敏娜;袁建丰;余劲术;孙铭飞. 顶复门原虫电子转移链代谢及Ⅱ型NADH脱氢酶研究进展[J]. 畜牧兽医学报, 2012, 43(1): 1-6. |
[11] | 吴宁鹏;杜向党; 沈建忠. 鸡肝脏和肌肉组织中常山酮残留的ELISA检测[J]. 畜牧兽医学报, 2006, 37(6): 597-602. |
[12] | 张柳平;潘耀谦;段 艳 . 自然感染兔脑炎原虫獭兔肾上皮细胞凋亡的研究[J]. 畜牧兽医学报, 2005, 36(4): 365-369. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||