畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (8): 3383-3394.doi: 10.11843/j.issn.0366-6964.2024.08.012
收稿日期:
2023-09-06
出版日期:
2024-08-23
发布日期:
2024-08-28
通讯作者:
崔燕
E-mail:zhouting@nwsua.edu.cn;cuiyan@gsau.edu.cn
作者简介:
周婷(1979-),女,四川眉山人,博士生,主要从事病原学研究,E-mail:zhouting@nwsua.edu.cn
基金资助:
Ting ZHOU1,2(), Mengkun SUN2, Sijiu YU1, Yan CUI1,*(
)
Received:
2023-09-06
Online:
2024-08-23
Published:
2024-08-28
Contact:
Yan CUI
E-mail:zhouting@nwsua.edu.cn;cuiyan@gsau.edu.cn
摘要:
病原体灭活是生产灭活疫苗最关键和最基本的技术。理想的灭活方式是彻底灭活病原体并保持抗原的免疫原性,且无化学残留。与传统灭活方式相比,辐照技术在疫苗研发中的主要优势是它能够穿透病原体,但对病原体表面抗原蛋白造成的损伤较小,且灭活后不需要去除任何化学残留物,因此更适合用于研发安全有效的灭活疫苗。本文简要回顾和总结了辐照技术应用于疫苗研发的历史和进展,讨论了辐照技术在疫苗研发中的应用的潜在策略。
中图分类号:
周婷, 孙梦坤, 余四九, 崔燕. 辐照技术在疫苗研发中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3383-3394.
Ting ZHOU, Mengkun SUN, Sijiu YU, Yan CUI. Application of Irradiation Technology in Vaccine Development[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3383-3394.
表 1
γ射线、X射线和电子束辐照技术的特点比较"
项目类别 Items | γ射线 Gamma-ray | X射线 X-ray | 电子束 Electron beam radiation |
辐射源 Radiant source | 放射性同位素 | 电子加速器 | 电子加速器 |
高能粒子 High energy particles | 光子 | 光子 | 电子 |
穿透能力 Penetration | 穿透力强 | 穿透力强 | 穿透力较弱 |
生产效率 Production efficiency | 生产效率低 | 生产效率高 | 生产效率高 |
控制情况 Switch | 不能关闭 | 可控开关 | 可控开关 |
成本费用 Costs | 相对较高 | 相对较高 | 相对较低 |
安全情况 Security | 存在安全问题 | 相对安全 | 相对安全 |
表 2
辐照灭活病毒疫苗表"
病毒 Virus | 灭活方式 Inactivation Method | 灭活剂量/kGy Inactivation Dose | 动物模型 Model | 免疫效果 Immune effect | 发表年份 Issue time |
SARS-CoV-2 | γ射线 | 50 | 鼠 | 佐剂疫苗诱导T细胞和B细胞反应 | 2021[ |
SARS-CoV-2 | γ射线 | 25 | 鼠 | 体液和细胞免疫反应、诱导中和抗体 | 2021[ |
禽流感病毒 AIV | γ射线 | 30 | 鸡 | 抗体效价显著增加 | 2022[ |
流感病毒 IV | γ射线 | 50 | 鼠 | 鼻腔内接种疫苗可提供完全保护 | 2017[ |
流感病毒 IV | eBeam | 30 | 鼠 | 激发保护性免疫反应 | 2016[ |
流感病毒 IV | eBeam | 25~40 | 灵长类动物 | 诱导血清转化 | 2014[ |
流感病毒 IV | γ射线 | 10~40 | 鼠 | 诱导交叉反应和细胞毒性T细胞反应 | 2011[ |
流感病毒 IV | γ射线 | 10 | 鼠 | 攻毒保护 | 2010[ |
流感病毒 IV | γ射线 | 10 | 鼠 | 攻毒保护 | 2009[ |
脊髓灰质炎病毒 PV | γ射线 | 45 | 鼠 | 攻毒保护 | 2020[ |
蜱传脑炎病毒 TBEV | eBeam | 25 | 鼠 | 攻毒保护 | 2022[ |
白斑综合征病毒 WSSV | eBeam | 0~15 | 虾 | 攻毒保护 | 2017[ |
中东呼吸综合征病毒 MERS | γ射线 | 50 | 鼠 | 接种疫苗的小鼠在攻毒后肺部病毒减少 | 2016[ |
呼吸道合胞病毒 RSV | eBeam | 20 | 鼠 | 降低攻毒后病毒载量 | 2018[ |
轮状病毒 Rotavirus | γ射线 | 50 | 鼠 | 诱导特异性中和抗体反应 | 2018[ |
埃博拉病毒 EBOV | γ射线 | 100 | 灵长类动物 | 攻毒后不能免疫保护 | 2015[ |
委内瑞拉马脑炎病毒 VEE | γ射线 | 0~15 | 豚鼠 | 攻毒保护 | 2010[ |
牛痘病毒 VACV | γ射线 | 0~15 | 兔 | 灭活病毒具有免疫原性 | 1960[ |
表 3
辐照灭活细菌疫苗表"
细菌 Bacteria | 灭活方式 Inactivation Method | 灭活剂量 Inactivation Dose | 动物模型 Model | 疫苗效果 Immune effect | 发表年份 Issue time |
痢疾志贺菌 Shigella dysenteriae | X射线 | N | 兔 | 攻毒保护 | 1936[ |
大肠杆菌 Escherichia coli | γ射线 | 1.2 kGy | 鸡 | 在幼鸡显示广泛的保护作用 | 2023[ |
溶血性曼氏杆菌 Mannheimia haemolytica | γ射线 | 20 kGy | 兔 | 具有广泛的体液和细胞免疫功能 | 2022[ |
产气荚膜梭菌 Clostridium perfringens | eBeam | 10 kGy | 鸡 | 显著降低菌株在攻毒后期的定植 | 2021[ |
铜绿假单胞菌 Pseudomonas aeruginosa | X射线 | 7 Gy·min-1 | 鼠 | 诱导Thl和Th2细胞应答,具有保护作用 | 2021[ |
多杀性巴氏杆菌 Pasteurella multocida | γ射线 | 1 kGy | 鸡 | IgG和IgA滴度显著升高,具有保护作用 | 2021[ |
布氏杆菌 Brucella abortus | γ射线 | 3.5 kGy | 鼠 | 细胞毒性T细胞反应和保护 | 2009[ |
布氏杆菌 Brucella abortus | γ射线 | 4 kGy | 鼠 | 辐照菌株诱导的免疫反应较少 | 2010[ |
布氏杆菌 Brucella abortus | γ射线 | 3.5 kGy | 鼠 | 攻毒保护 | 2014[ |
布氏杆菌 Brucella abortus | γ射线 | 3.5 kGy | 鼠 | 攻毒保护 | 2011[ |
产单核细胞李氏杆菌 Listeria monocytogenes | γ射线 | 6 kGy | 鼠 | 诱导保护性T细胞反应 | 2006[ |
溶血性曼氏杆菌 Mannheimia haemolytica | γ射线 | 2~20 kGy | 兔 | 攻毒保护 | 2016[ |
马红球菌 Rhodococcus equi | eBeam | 4~5 kGy | 马 | 产生细胞介导和上呼吸道黏膜免疫反应 | 2014[ |
马红球菌 Rhodococcus equi | eBeam | 5 kGy | 马 | 对攻毒不予保护 | 2016[ |
肺炎巴斯德菌 Rodentibacterc pneumotropicus | eBeam | 20 kGy | 鼠 | 攻毒保护和减少定植 | 2020[ |
鼠伤寒沙门菌 Salmonella Typhimurium | γ射线 | 10~80 kGy | 鸡 | 提高保护率 | 2011[ |
鼠伤寒沙门菌 Salmonella Typhimurium | eBeam | 2.5 kGy | 鸡 | 异嗜粒细胞介导的先天免疫反应 | 2012[ |
肠炎沙门菌 Salmonella Enteriditis | eBeam | 2.5 kGy | 鸡 | 攻毒保护和减少定植 | 2015[ |
金黄色葡萄球菌 Staphylococcus aureus | γ射线 | 6 kGy | 鼠 | 降低了小鼠菌血症攻击模型中的存活率 | 2017[ |
肺炎链球菌 Streptococcus pneumoniae | γ射线 | 12 kGy | 鼠 | 依赖于B细胞和IL-17A应答的免疫保护 | 2016[ |
肺炎链球菌 Streptococcus pneumoniae | γ射线 | 10 kGy | 鼠 | 有效保护小鼠免受肺炎链球菌感染 | 2018[ |
肺炎链球菌 Streptococcus pneumoniae | γ射线 | 10 kGy | 鼠 | 增强特异性抗体产生和辅助T细胞的激活 | 2021[ |
表 4
辐照灭活寄生虫的疫苗"
寄生虫 Protozoa | 灭活方式 Inactivation Method | 灭活剂量/kGy Inactivation Dose | 动物模型 Model | 疫苗效果 Immune effect | 发表年份 Issue time |
弓形虫Toxoplasma | eBeam | 0.01~0.5 | 鼠 | 产生高水平抗体 | 2023[ |
柔嫩艾美耳球虫Eimeria tenella | eBeam | 0.1~0.5 | 鸡 | 对攻毒具有部分保护作用 | 2019[ |
恶性疟原虫Plasmodium falciparum | γ射线 | 0.12~0.15 | 人 | 持久的保护性免疫 | 2002[ |
恶性疟原虫Plasmodium falciparum | γ射线 | 未提供 | 人 | 预防恶性疟原虫感染的保护 | 2021[ |
弓形虫Toxoplasma | γ射线 | 0.225 | 鼠 | 诱导与自然感染相同的免疫力 | 2011[ |
弓形虫Toxoplasma | γ射线 | 0.2 | 鼠 | 攻毒保护 | 2002[ |
柔嫩艾美耳球虫Eimeria tenella | X射线 | 0.2 | 鸡 | 攻毒保护 | 1991[ |
表 5
放射性疫苗专利表"
专利号 Patent number | 国家或组织 Country or organization | 年份 Year | 专利名称 Patent name |
CN2022112307852 | 中国 | 2023 | 一种可辐照灭菌的病毒保存液 |
WO2022199317A1 | 中国 | 2022 | 一种金黄色葡萄球菌疫苗的工业化生产方法 |
CN114364787A | 中国 | 2022 | 铜绿假单胞菌疫苗在呼吸系统疾病中的应用 |
CN113395980A | 中国 | 2021 | 利用放射线制备减毒活疫苗的方法及通过其制备的减毒活疫苗组合物 |
US2021369829A1 | 美国 | 2021 | 用辐照法制备减毒活疫苗的方法及其制备的减毒活疫苗组合物 |
KR20210022577A | 韩国 | 2021 | 用于控制肿瘤或抗肿瘤免疫力的巨噬细胞和辐照白细胞共同培养的上清液 |
CN112312925A | 中国 | 2021 | 辐照灭活的脊髓灰质炎病毒、包含其的组合物及制备方法 |
CN112410240A | 中国 | 2021 | 铜绿假单胞菌膜囊泡及其制备方法与应用 |
US2020179447A1 | 美国 | 2020 | 慢病毒表达CD80、IL-15和IL-15alpha受体的辐照全细胞肿瘤疫苗 |
WO2020069942A1 | WIPO | 2020 | 灭活液体中生物活性成分的方法 |
WO2019210888A2 | 中国 | 2019 | 抗结核病疫苗及其制备方法和用途 |
CN110621344A | 中国 | 2019 | 利用电子射线和/或X射线辐照哺乳动物细胞群的方法 |
WO2019191586A2 | 加拿大 | 2019 | 辐射灭活的脊髓灰质炎病毒以及制备方法 |
CN108743931A | 中国 | 2018 | 抗结核病疫苗及其制备方法和用途 |
WO2018167149A1 | WIPO | 2018 | 用电子束或X射线照射哺乳动物细胞的方法 |
KR20180036987A | 韩国 | 2018 | 疫苗成分 |
ES2647584T3 | 西班牙 | 2017 | 一种辐照包含氨基酸和正磷酸锰混合物的微生物,用于生产疫苗的方法 |
CN105431171A | 中国 | 2016 | 用于使用电子射线来病毒灭活的方法 |
DE102016216573A1 | 德国 | 2016 | 生物培养基中病原体的灭活 |
US20150209424A1 | 美国 | 2015 | 痘带状疱疹病毒灭活疫苗、生产方法及其用途 |
JP2014520117A | 日本 | 2014 | 包含灭活基孔肯雅病毒株的疫苗组合物 |
CN104189898A | 中国 | 2014 | 铜绿假单胞菌疫苗及其制备方法 |
KR20080107546A | 韩国 | 2008 | 一种用于预防和治疗过敏性疾病的辐照卵清蛋白的疫苗组合物 |
US5637483A | 美国 | 1997 | 表达GM-CSF的辐照肿瘤细胞疫苗 |
US5290551A | 美国 | 1994 | 用一种与合酶结合的辐照黑色素瘤肿瘤细胞疫苗治疗黑色素瘤 |
CA2825403A1 | 加拿大 | 2012 | 由伽马辐照流感病毒和另一种免疫原组合而成的疫苗 |
CN101642566A | 中国 | 2010 | 一种经紫外线和γ射线照射并经早熟选育获得的鸡球虫病疫苗的制备方法 |
CN101264322A | 中国 | 2008 | 一种产单核细胞李氏杆菌灭活疫苗及其制备方法 |
WO2014165916A1 | WIPO | 2014 | 诱导免疫反应的方法和组合物 |
US10080795B2 | 美国 | 2013 | 一种用电子束灭活病毒的方法 |
US20130122045A1 | 美国 | 2013 | 流感疫苗交叉保护性 |
AU2012211043B2 | 澳大利亚 | 2012 | 混合疫苗 |
1 |
GRAHAMB S,MASCOLAJ R,FAUCIA S.Novel vaccine technologies: essential components of an adequate response to emerging viral diseases[J].JAMA,2018,319(14):1431-1432.
doi: 10.1001/jama.2018.0345 |
2 |
RAUCHS,JASNYE,SCHMIDTK E,et al.New vaccine technologies to combat outbreak situations[J].Front Immunol,2018,9,1963.
doi: 10.3389/fimmu.2018.01963 |
3 | 张广庆.兽用疫苗研究进展[J].山东畜牧兽医,2022,43(9):78-81. |
ZHANGG Q.Progress in veterinary vaccine research[J].Shandong Journal of Animal Science and Veterinary Medicine,2022,43(9):78-81. | |
4 |
BHATIAS S,PILLAIS D.Ionizing radiation technologies for vaccine development-a mini review[J].Front Immunol,2022,13,845514.
doi: 10.3389/fimmu.2022.845514 |
5 |
SEOH S.Application of radiation technology in vaccines development[J].Clin Exp Vaccine Res,2015,4(2):145-158.
doi: 10.7774/cevr.2015.4.2.145 |
6 | 史戎坚.电子加速器工业应用导论[M].北京:中国质检出版社,2012. |
SHIR J.Introduction to electron accelerators and industrial application[M].Beijing:China Zhijian Publishing House,2012. | |
7 | 王梁燕,洪奇华,孙志明,等.电子束辐照技术在生命科学中的应用[J].核农学报,2018,32(2):283-290. |
WANGL Y,HONGQ H,SUNZ M,et al.Application of electron beam irradiation in life sciences[J].Journal of Nuclear Agricultural Sciences,2018,32(2):283-290. | |
8 |
PILLAIS D,SHAYANFARS.Electron beam technology and other irradiation technology applications in the food industry[J].Top Curr Chem,2017,375(1):6.
doi: 10.1007/s41061-016-0093-4 |
9 |
TAHERGORABIR,MATAKK E,JACZYNSKIJ.Application of electron beam to inactivate Salmonella in food: recent developments[J].Food Res Int,2012,45(2):685-694.
doi: 10.1016/j.foodres.2011.02.003 |
10 |
MAVRAGANII V,NIKITAKIZ,KALOSPYROSS A,et al.Ionizing radiation and complex DNA damage: from prediction to detection challenges and biological significance[J].Cancers (Basel),2019,11(11):1789.
doi: 10.3390/cancers11111789 |
11 |
REISZJ A,BANSALN,QIANJ,et al.Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection[J].Antioxid Redox Signal,2014,21(2):260-292.
doi: 10.1089/ars.2013.5489 |
12 |
KEYERK,IMLAYJ A.Superoxide accelerates DNA damage by elevating free-iron levels[J].Proc Natl Acad Sci U S A,1996,93(24):13635-13640.
doi: 10.1073/pnas.93.24.13635 |
13 |
DALYM J.A new perspective on radiation resistance based on Deinococcus radiodurans[J].Nat Rev Microbiol,2009,7(3):237-245.
doi: 10.1038/nrmicro2073 |
14 |
JESUDHASANP R,MCREYNOLDSJ L,BYRDA J,et al.Electron-beam-inactivated vaccine against Salmonella enteritidis colonization in molting hens[J].Avian Dis,2015,59(1):165-170.
doi: 10.1637/10917-081014-ResNoteR |
15 |
MAGNANID M,HARMSJ S,DURWARDM A,et al.Nondividing but metabolically active gamma-irradiated Brucella melitensis is protective against virulent B. melitensis challenge in mice[J].Infect Immun,2009,77(11):5181-5189.
doi: 10.1128/IAI.00231-09 |
16 |
JESUDHASANP R,BHATIAS S,SIVAKUMARK K,et al.Controlling the colonization of Clostridium perfringens in broiler chickens by an electron-beam-killed vaccine[J].Animals,2021,11(3):671.
doi: 10.3390/ani11030671 |
17 |
SABBAGHIA,MIRIS M,KESHAVARZM,et al.Inactivation methods for whole influenza vaccine production[J].Rev Med Virol,2019,29(6):e2074.
doi: 10.1002/rmv.2074 |
18 |
BORTOLAMIA,MAZZETTOE,KANGETHER T,et al.Protective efficacy of H9N2 avian influenza vaccines inactivated by ionizing radiation methods administered by the parenteral or mucosal routes[J].Front Vet Sci,2022,9,916108.
doi: 10.3389/fvets.2022.916108 |
19 |
MVLLBACHERA,ADAG L,HLAR T.Gamma-irradiated influenza A virus can prime for a cross-reactive and cross-protective immune response against influenza A viruses[J].Immunol Cell Biol,1988,66(2):153-157.
doi: 10.1038/icb.1988.19 |
20 |
ALSHARIFIM,MVLLBACHERA.The γ-irradiated influenza vaccine and the prospect of producing safe vaccines in general[J].Immunol Cell Biol,2010,88(2):103-104.
doi: 10.1038/icb.2009.81 |
21 | MULLBACHERA,PARDOJ,FURUYAY.SARS-CoV-2 vaccines: inactivation by gamma irradiation for T and B cell immunity[J].Pathogens,2020,9(11):928. |
22 | SIR KARAKUSG,TASTANC,DILEK KANCAGID,et al.Preclinical efficacy and safety analysis of gamma-irradiated inactivated SARS-CoV-2 vaccine candidates[J].Sci Rep,2021,11(1):5804. |
23 | BAYERL,FERTEYJ,ULBERTS,et al.Immunization with an adjuvanted low-energy electron irradiation inactivated respiratory syncytial virus vaccine shows immunoprotective activity in mice[J].Vaccine,2018,36(12):1561-1569. |
24 |
TURANR D,TASTANC,DILEK KANCAGID,et al.Gamma-irradiated SARS-CoV-2 vaccine candidate, OZG-38. 61. 3, confers protection from SARS-CoV-2 challenge in human ACEⅡ-transgenic mice[J].Sci Rep,2021,11(1):15799.
doi: 10.1038/s41598-021-95086-4 |
25 |
MOTAMEDI SEDEHF,KHALILII,WIJEWARDANAV,et al.Improved whole gamma irradiated avian influenza subtype H9N2 virus vaccine using trehalose and optimization of vaccination regime on broiler chicken[J].Front Vet Sci,2022,9,907369.
doi: 10.3389/fvets.2022.907369 |
26 |
DAVIDS C,LAUJ,SINGLETONE V,et al.The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated influenza A virus vaccine[J].Vaccine,2017,35(7):1071-1079.
doi: 10.1016/j.vaccine.2016.12.044 |
27 |
FERTEYJ,BAYERL,GRUNWALDT,et al.Pathogens inactivated by low-energy-electron irradiation maintain antigenic properties and induce protective immune responses[J].Viruses,2016,8(11):319.
doi: 10.3390/v8110319 |
28 |
SCHERLIESSR,AJMERAA,DENNISM,et al.Induction of protective immunity against H1N1 influenza A(H1N1)pdm09 with spray-dried and electron-beam sterilised vaccines in non-human primates[J].Vaccine,2014,32(19):2231-2240.
doi: 10.1016/j.vaccine.2014.01.077 |
29 |
FURUYAY,CHANJ,WANE C,et al.Gamma-irradiated influenza virus uniquely induces IFN-I mediated lymphocyte activation independent of the TLR7/MyD88 pathway[J].PLoS One,2011,6(10):e25765.
doi: 10.1371/journal.pone.0025765 |
30 |
FURUYAY,CHANJ,REGNERM,et al.Cytotoxic T cells are the predominant players providing cross-protective immunity induced by γ-irradiated influenza A viruses[J].J Virol,2010,84(9):4212-4221.
doi: 10.1128/JVI.02508-09 |
31 |
ALSHARIFIM,FURUYAY,BOWDENT R,et al.Intranasal Flu vaccine protective against seasonal and H5N1 avian influenza infections[J].PLoS One,2009,4(4):e5336.
doi: 10.1371/journal.pone.0005336 |
32 |
TOBING J,TOBINJ K,GAIDAMAKOVAE K,et al.A novel gamma radiation-inactivated sabin-based polio vaccine[J].PLoS One,2020,15(1):e0228006.
doi: 10.1371/journal.pone.0228006 |
33 |
FINKENSIEPERJ,ISSMAILL,FERTEYJ,et al.Low-energy electron irradiation of tick-borne encephalitis virus provides a protective inactivated vaccine[J].Front Immunol,2022,13,825702.
doi: 10.3389/fimmu.2022.825702 |
34 |
MOTAMEDI-SEDEHF,AFSHARNASABM,HEIDARIEHM,et al.Protection of Litopenaeus vannamei against white spot syndrome virus by electron-irradiated inactivated vaccine and prebiotic immunogen[J].Radiat Phys Chem,2017,130,421-425.
doi: 10.1016/j.radphyschem.2016.09.020 |
35 |
AGRAWALA S,TAOX R,ALGAISSIA,et al.Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus[J].Hum Vaccin Immunother,2016,12(9):2351-2356.
doi: 10.1080/21645515.2016.1177688 |
36 |
SHAHRUDINS,CHENC,DAVIDS C,et al.Gamma-irradiated rotavirus: a possible whole virus inactivated vaccine[J].PLoS One,2018,13(6):e0198182.
doi: 10.1371/journal.pone.0198182 |
37 |
MARZIA,HALFMANNP,HILL-BATORSKIL,et al.An Ebola whole-virus vaccine is protective in nonhuman primates[J].Science,2015,348(6233):439-442.
doi: 10.1126/science.aaa4919 |
38 |
MARTINS S,BAKKENR R,LINDC M,et al.Comparison of the immunological responses and efficacy of gamma-irradiated V3526 vaccine formulations against subcutaneous and aerosol challenge with Venezuelan equine encephalitis virus subtype IAB[J].Vaccine,2010,28(4):1031-1040.
doi: 10.1016/j.vaccine.2009.10.126 |
39 | KAPLANC.The antigenicity of γ-irradiated vaccinia virus[J].J Hyg (Lond),1960,58(4):391-398. |
40 |
OLSONB J,HABELK,PIGGOTTW R.A comparative study of live and killed vaccines in experimental tuberculosis[J].Public Health Rep (1896),1947,62(9):293-296.
doi: 10.2307/4586032 |
41 |
BLUMJ S,WEARSCHP A,CRESSWELLP.Pathways of antigen processing[J].Annu Rev Immunol,2013,31,443-473.
doi: 10.1146/annurev-immunol-032712-095910 |
42 |
DATTAS K,OKAMOTOS,HAYASHIT,et al.Vaccination with irradiated Listeria induces protective T cell immunity[J].Immunity,2006,25(1):143-152.
doi: 10.1016/j.immuni.2006.05.013 |
43 |
KOE,JEONGS,JWAM Y,et al.Immune responses to irradiated pneumococcal whole cell vaccine[J].Vaccines (Basel),2021,9(4):405.
doi: 10.3390/vaccines9040405 |
44 |
THABETA,SCHMÄSCHKER,FERTEYJ,et al.Eimeria tenella oocysts attenuated by low energy electron irradiation (LEEI) induce protection against challenge infection in chickens[J].Vet Parasitol,2019,266,18-26.
doi: 10.1016/j.vetpar.2019.01.001 |
45 |
MOOREH N,KERSTENH.Preliminary note on the preparation of non-toxic shiga dysentery vaccines by irradiation with soft X-rays[J].J Bacteriol,1936,31(6):581-584.
doi: 10.1128/jb.31.6.581-584.1936 |
46 |
PAUDELS,HESSC,KAMAL ABDELHAMIDM,et al.Aerosol delivered irradiated Escherichia coli confers serotype-independent protection and prevents colibacillosis in young chickens[J].Vaccine,2023,41(7):1342-1353.
doi: 10.1016/j.vaccine.2022.12.002 |
47 | AHMEDS,NEMRW A,MOHAMEDW A A,et al.Evaluation of room temperature (30 ℃ to 35 ℃) lyophilized vaccine with radio inactivated Mannheimia haemolytica whole cells isolated from infected sheep[J].Vet World,2022,15(5):1261-1268. |
48 | MAC C,MAX,JIANGB G,et al.A novel inactivated whole-cell Pseudomonas aeruginosa vaccine that acts through the cGAS-STING pathway[J].Signal Transduct Target Ther,2021,6(1):353. |
49 | DESSALEGNB,BITEWM,ASFAWD,et al.Gamma-irradiated fowl cholera mucosal vaccine: potential vaccine candidate for safe and effective immunization of chicken against fowl cholera[J].Front Immunol,2021,12,768820. |
50 | SURENDRANN,HILTBOLDE M,HEIDB,et al.Heat-killed and γ-irradiated Brucella strain RB51 stimulates enhanced dendritic cell activation, but not function compared with the virulent smooth strain 2308[J].FEMS Immunol Med Microbiol,2010,60(2):147-155. |
51 | DABRALN,MARTHA-MORENO-LAFONT,SRIRANGANATHANN,et al.Oral Immunization of mice with gamma-irradiated Brucella neotomae induces protection against intraperitoneal and intranasal challenge with virulent B. abortus 2308[J].PLoS One,2014,9(9):e107180. |
52 | MOUSTAFAD,GARGV K,JAINN,et al.Immunization of mice with gamma-irradiated Brucella neotomae and its recombinant strains induces protection against virulent B. abortus, B. melitensis, and B. suis challenge[J].Vaccine,2011,29(4):784-794. |
53 | AHMEDS,AHMEDB,MAHMOUDG,et al.Comparative study between formalin-killed vaccine and developed gammairradiation vaccine against Mannheimia haemolytica in rabbits[J].Turk J Vet Anim Sci,2016,40,219-224. |
54 | BORDINA I,PILLAIS D,BRAKEC,et al.Immunogenicity of an electron beam inactivated Rhodococcus equi vaccine in neonatal foals[J].PLoS One,2014,9(8):e105367. |
55 | ROCHAJ N,COHENN D,BORDINA I,et al.Oral Administration of electron-beam inactivated Rhodococcus equi failed to protect foals against intrabronchial infection with live, virulent R. equi[J].PLoS One,2016,11(2):e0148111. |
56 | FERTEYJ,BAYERL,KÄHLS,et al.Low-energy electron irradiation efficiently inactivates the gram-negative pathogen Rodentibacter pneumotropicus-a new method for the generation of bacterial vaccines with increased efficacy[J].Vaccines (Basel),2020,8(1):113. |
57 | BEGUMR H,RAHMANH,AHMEDG.Development and evaluation of gamma irradiated toxoid vaccine of Salmonella enterica var Typhimurium[J].Vet Microbiol,2011,153(1-2):191-197. |
58 | KOGUTM H,MCREYNOLDSJ L,HEH,et al.Electron-beam irradiation inactivation of Salmonella: effects on innate immunity and induction of protection against Salmonella enterica serovar Typhimurium challenge of chickens[J].Procedia Vaccinol,2012,6,47-63. |
59 | KARAUZUMH,HAUDENSCHILDC C,MOOREI N,et al.Lethal CD4 T cell responses induced by vaccination against Staphylococcus aureus bacteremia[J].J Infect Dis,2017,215(8):1231-1239. |
60 | BABBR,CHENA,HIRSTT R,et al.Intranasal vaccination with γ-irradiated Streptococcus pneumoniae whole-cell vaccine provides serotype-independent protection mediated by B-cells and innate IL-17 responses[J].Clin Sci (Lond),2016,130(9):697-710. |
61 | JWAM Y,JEONGS,KOE B,et al.Gamma-irradiation of Streptococcus pneumoniae for the use as an immunogenic whole cell vaccine[J].J Microbiol,2018,56(8):579-585. |
62 | NUSSENZWEIGR,VANDERBERGJ,MOSTH.Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei. IV. Dose response, specificity and humoral immunity[J].Mil Med,1969,134(9):1176-1182. |
63 | CLYDED F,MCCARTHYV C,MILLERR M,et al.Specificity of protection of man immunized against sporozoite-induced falciparum malaria[J].Am J Med Sci,1973,266(6):398-403. |
64 | FERNANDEZ-ARIASC,ARIASC F,ZHANGM,et al.Modeling the effect of boost timing in murine irradiated sporozoite prime-boost vaccines[J].PLoS One,2018,13(1):e0190940. |
65 | FINKENSIEPERJ,MAYERLEF,RENTERÍA-SOLÍSZ,et al.Apicomplexan parasites are attenuated by low-energy electron irradiation in an automated microfluidic system and protect against infection with Toxoplasma gondii[J].Parasitol Res,2023,122(8):1819-1832. |
66 | HOFFMANS L,GOHL M L,LUKET C,et al.Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites[J].J Infect Dis,2002,185(8):1155-1164. |
67 | ONEKOM,STEINHARDTL C,YEGOR,et al.Safety, immunogenicity and efficacy of PfSPZ vaccine against malaria in infants in western Kenya: a double-blind, randomized, placebo-controlled phase 2 trial[J].Nat Med,2021,27(9):1636-1645. |
68 | ZORGIN E,COSTAA,GALISTEOA J,et al.Humoral responses and immune protection in mice immunized with irradiated T. gondii tachyzoites and challenged with three genetically distinct strains of T. gondii[J].Immunol Lett,2011,138(2):187-196. |
69 | HIRAMOTOR M,GALISTEOA J,DO NASCIMENTON,et al.200 Gy sterilised Toxoplasma gondii tachyzoites maintain metabolic functions and mammalian cell invasion, eliciting cellular immunity and cytokine response similar to natural infection in mice[J].Vaccine,2002,20(16):2072-2081. |
70 | JENKINSM C,AUGUSTINEP C,DANFORTHH D,et al.X-irradiation of Eimeria tenella oocysts provides direct evidence that sporozoite invasion and early schizont development induce a protective immune response(s)[J].Infect Immun,1991,59(11):4042-4048. |
71 | 徐圣杰,王亚男,王士玉,等.肿瘤免疫治疗研究现状及发展趋势[J].现代生物医学进展,2018,18(15):2982-2986. |
XUS J,WANGY N,WANGS Y,et al.The current situation and trends of cancer immunotherapy[J].Progress in Modern Biomedicine,2018,18(15):2982-2986. | |
72 | FANGC J,MOF,LIUL,et al.Oxidized mitochondrial DNA sensing by STING signaling promotes the antitumor effect of an irradiated immunogenic cancer cell vaccine[J].Cell Mol Immunol,2021,18(9):2211-2223. |
73 | 于亚婷,段斯亮,马新博,等.辐照剂量对肿瘤细胞活性及肿瘤融合细胞疫苗效果的影响[J].实用医学杂志,2018,34(4):527-530. |
YUY T,DUANS L,MAX B,et al.Impact of irradiation dose on tumor cells "proliferation and tumor fusion vaccines" effection[J].The Journal of Practical Medicine,2018,34(4):527-530. | |
74 | GEARYS M,LEMKEC D,LUBAROFFD M,et al.Proposed mechanisms of action for prostate cancer vaccines[J].Nat Rev Urol,2013,10(3):149-160. |
75 | NEMUNAITISJ.Vaccines in cancer: GVAX®, a GM-CSF gene vaccine[J].Expert Rev Vaccines,2005,4(3):259-274. |
76 | BAPTISTAJ A,VIEIRAD P,GALISTEO JÚNIORA J,et al.Structure alteration and immunological properties of 60Co-gamma-rays irradiated bothropstoxin-I[J].J Radioanal Nucl Chem,2010,283(3):691-698. |
77 | SARTORIG P,DA COSTAA,MACARINIF L D S,et al.Characterization and evaluation of the enzymatic activity of tetanus toxin submitted to cobalt-60 gamma radiation[J].J Venom Anim Toxins Incl Trop Dis,2021,27,e20200140. |
78 | UNGERH,KANGETHER T,LIAQATF,et al.Advances in irradiated livestock vaccine research and production addressing the unmet needs for farmers and veterinary services in FAO/IAEA member states[J].Front Immunol,2022,13,853874. |
79 | BOUSSAG-ABIBL,LARABA-DJEBARIF.Long-term antibody response and protective effect induced by attenuated scorpion toxins: involvement of memory plasma cells[J].Immunobiology,2021,226(4):152108. |
[1] | 梁瑞英, 索静霞, 梁琳, 刘贤勇, 丁家波, 索勋, 汤新明. 艾美耳球虫的遗传操作:平台建立、应用与展望[J]. 畜牧兽医学报, 2024, 55(8): 3362-3373. |
[2] | 王梦迪, 王恒, 鲁秀香, 王昱旻, 樊文杰, 姚晨, 刘鹏翔, 马延杰, 杨国宇. 锰纳米佐剂的制备及生物学效应[J]. 畜牧兽医学报, 2024, 55(8): 3374-3382. |
[3] | 沈鹏, 王艺, 任炜杰, 杨永春, 宋厚辉, 王志亮. 牛结节性皮肤病免疫抗体监测的Meta分析[J]. 畜牧兽医学报, 2024, 55(8): 3649-3658. |
[4] | 马茹梦, 赵玉梁, 马明爽, 国桂海, 刘芯孜, 李佳璇, 崔文, 姜艳平, 单智夫, 周晗, 王丽, 乔薪瑗, 唐丽杰, 王晓娜, 李一经. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55(5): 2090-2099. |
[5] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[6] | 高洁, 李晓成, 穆杨, 张慧, 魏荣, 李劼. 荚膜B型多杀性巴氏杆菌外膜囊泡生物学特性分析与免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2168-2175. |
[7] | 郭雪莲, 李永琴, 李瑞乾, 李昊, 靳双媛, 王雪妍, 杜家伟, 许立华. 牛呼吸道合胞体病毒G和F蛋白的生物学功能[J]. 畜牧兽医学报, 2024, 55(4): 1478-1487. |
[8] | 李春晓, 安尉, 高博泉, 王振龙, 韩冰, 陶慧, 王金全, 王秀敏. 猫犬主要过敏原蛋白的最新研究进展[J]. 畜牧兽医学报, 2024, 55(2): 471-480. |
[9] | 王姿月, 张子卉, 吴文学, 彭辰. 猴痘的诊断、预防和治疗[J]. 畜牧兽医学报, 2023, 54(8): 3195-3205. |
[10] | 陈鑫, 秦彤. mRNA疫苗及其在动物传染病中的研究展望[J]. 畜牧兽医学报, 2023, 54(7): 2732-2742. |
[11] | 陈芳芳, 栗中华, 朱志伟, 李锦春, 刘翠艳. 恒定链的多功能研究新进展[J]. 畜牧兽医学报, 2023, 54(5): 1824-1833. |
[12] | 伭婷, 杨凯一, 蔡金双, 耿琰, 李玉峰. 副猪格拉瑟菌6个候选抗原对小鼠的免疫特性分析[J]. 畜牧兽医学报, 2023, 54(5): 2073-2082. |
[13] | 李易聪, 蒲飞洋, 冯茜莉, 汪梦竹, 赵泽阳, 张德荣, 马忠仁, 周建华. 牛病毒性腹泻病毒蛋白的免疫学特性以及相关疫苗研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1381-1391. |
[14] | 李硕, 张韵, 白满元, 赵瑞翀, 宋河涛, 穆素雨, 滕志东, 董虎, 马娥宁, 孙世琪, 郭慧琛, 尹双辉. 生物矿化的口蹄疫病毒样颗粒疫苗的免疫原性评价[J]. 畜牧兽医学报, 2023, 54(4): 1598-1607. |
[15] | 李让, 翁翔, 李泉晓, 吴道澄, 曹辉, 张爱莲. 栽培一枝蒿粗多糖混合口蹄疫疫苗乳化方法及稳定性分析[J]. 畜牧兽医学报, 2023, 54(4): 1608-1615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||