畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (4): 1381-1391.doi: 10.11843/j.issn.0366-6964.2023.04.004
李易聪1,2,3, 蒲飞洋1,2,3, 冯茜莉1,2,3, 汪梦竹1,2,3, 赵泽阳1,2,3, 张德荣1,2, 马忠仁1,2, 周建华1,2,4*
收稿日期:
2022-04-26
出版日期:
2023-04-23
发布日期:
2023-04-27
通讯作者:
周建华,主要从事病毒基因工程研究,E-mail:zhoujianhuazjh@163.com
作者简介:
李易聪(1998-),女,山西霍州人,硕士生,主要从事病毒基因工程研究,E-mail:lyicongcong@163.com
基金资助:
LI Yicong1,2,3, PU Feiyang1,2,3, FENG Xili1,2,3, WANG Mengzhu1,2,3, ZHAO Zeyang1,2,3, ZHANG Derong1,2, MA Zhongren1,2, ZHOU Jianhua1,2,4*
Received:
2022-04-26
Online:
2023-04-23
Published:
2023-04-27
摘要: 牛病毒性腹泻病毒(bovine viral diarrhea virus,BVDV)众多基因亚型毒株的流行及其宿主谱的扩大干扰着BVDV防控工作。欧洲国家采用全面检测和扑杀BVDV阳性牛的方法达到一定防控效果,但结合我国实际生产情况,使用疫苗防控BVDV仍是最优策略。深入了解病毒感染过程中BVDV蛋白与宿主免疫系统之间的“博弈”,将有助于研究人员在疫苗研发过程中有效规避抗原候选蛋白可能对免疫效果造成的干扰。此外,大力开发低成本、高效力的新型疫苗(如表位肽疫苗和病毒样颗粒疫苗)可以在整合病毒免疫优势抗原表位的基础上加强BVDV相关疫苗的生物安全性,满足用疫苗防控BVDV的要求。鉴于此,本文对BVDV蛋白免疫学功能与特性的研究以及BVDV疫苗开发的现状进行综述,以期为BVDV疫苗研发以及BVDV防控提供一些理论指导。
中图分类号:
李易聪, 蒲飞洋, 冯茜莉, 汪梦竹, 赵泽阳, 张德荣, 马忠仁, 周建华. 牛病毒性腹泻病毒蛋白的免疫学特性以及相关疫苗研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1381-1391.
LI Yicong, PU Feiyang, FENG Xili, WANG Mengzhu, ZHAO Zeyang, ZHANG Derong, MA Zhongren, ZHOU Jianhua. Research Progress on Immunological Characteristics of Bovine Viral Diarrhea Virus Protein and Vaccines[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1381-1391.
[1] | BENAVIDES B, CASAL J, DIÉGUEZ J F, et al.Development of a quantitative risk assessment of bovine viral diarrhea virus and bovine herpesvirus-1 introduction in dairy cattle herds to improve biosecurity[J].J Dairy Sci, 2020, 103(7):6454-6472. |
[2] | YŞILBAǦ K, ALPAY G, BECHER P.Variability and global distribution of subgenotypes of bovine viral diarrhea virus[J].Viruses, 2017, 9(6):128. |
[3] | BAUERMANN F V, RIDPATH J F.HoBi-like viruses-the typical ‘atypical bovine pestivirus’[J].Anim Health Res Rev, 2015, 16(1):64-69. |
[4] | KING A M Q, LEFKOWITZ E J, MUSHEGIAN A R, et al.Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2018)[J].Arch Virol, 2018, 163(9):2601-2631. |
[5] | OǦUZOǦLU T Ç, KOÇ B T, COŞKUN N, et al.Endless variety for bovine virus diarrhea viruses:new members of a novel subgroup into Pestivirus A from Turkey[J].Trop Anim Health Prod, 2019, 51(5):1083-1087. |
[6] | AL-KUBATI A A G, HUSSEN J, KANDEEL M, et al.Recent advances on the bovine viral diarrhea virus molecular pathogenesis, immune response, and vaccines development[J].Front Vet Sci, 2021, 8:665128. |
[7] | ZHOU J H, GAO Z L, ZHANG J, et al.Comparative the codon usage between the three main viruses in pestivirus genus and their natural susceptible livestock[J].Virus Genes, 2012, 44(3):475-481. |
[8] | 杞艳萍.西部四省(区)BVDV的流行病学调查及分离鉴定[D].杨凌:西北农林科技大学, 2021.QI Y P.Epidemiological investigation and identification of BVDV in four western provinces (regions)[D].Yangling:Northwest A&F University, 2021.(in Chinese) |
[9] | 薛飞, 朱远茂, 马磊.我国牛病毒性腹泻/黏膜病研究进展及防控策略[J].中国奶牛, 2016(11):25-29.XUE F, ZHU Y M, MA L.Research progress and prevention and control strategies of bovine viral diarrhea/mucosal disease in China[J].China Dairy Cattle, 2016(11):25-29.(in Chinese) |
[10] | MA P, MA X X, CHANG Q Y, et al.The effects of nucleotide usage in key nucleotide positions +4 and -3 flanking start codon on translation levels mediated by IRES of hepatitis C virus[J].Acta Virol, 2018, 62(4):441-446. |
[11] | KOKKONOS K G, FOSSAT N, NIELSEN L, et al.Evolutionary selection of pestivirus variants with altered or no microRNA dependency[J].Nucleic Acids Res, 2020, 48(10):5555-5571. |
[12] | SANGEWAR N, WAGHELA S D, YAO J, et al.Novel potent IFN-γ-inducing CD8+T cell epitopes conserved among diverse bovine viral diarrhea virus strains[J].J Immunol, 2021, 206(8):1709-1718. |
[13] | 常秋燕, 郭富城, 冶昡青, 等.牛病毒性腹泻病毒Npro蛋白的原核表达及裂解效率[J].江苏农业学报, 2019, 35(5):1161-1166.CHANG Q Y, GUO F C, YE X Q, et al.Prokaryotic expression and splitting decomposition rate of Npro protein of bovine viral diarrhea virus[J].Jiangsu Journal of Agricultural Sciences, 2019, 35(5):1161-1166.(in Chinese) |
[14] | DARWEESH M F, RAJPUT M K S, BRAUN L J, et al.BVDV Npro protein mediates the BVDV induced immunosuppression through interaction with cellular S100A9 protein[J].Microb Pathog, 2018, 121:341-349. |
[15] | 陈鑫烨.牛病毒性腹泻病毒抗原表位的筛选及其单克隆抗体的制备[D].扬州:扬州大学, 2020.CHEN X Y.Screening of a BVDV epitope and preparation of monoclonal antibodies[D].Yangzhou:Yangzhou University, 2020.(in Chinese) |
[16] | GONG X W, CHEN Q W, ZHENG F Y.Identification of protein inhibitor of activated STAT 4, a novel host interacting partner that involved in bovine viral diarrhea virus growth[J].Virol J, 2020, 17(1):59. |
[17] | ELAHI S M, SHEN S H, TALBOT B G, et al.Induction of humoral and cellular immune responses against the nucleocapsid of bovine viral diarrhea virus by an adenovirus vector with an inducible promoter[J].Virology, 1999, 261(1):1-7. |
[18] | CHEN X Y, DING X Y, ZHU L Q, et al.The identification of a B-cell epitope in bovine viral diarrhea virus (BVDV) core protein based on a mimotope obtained from a phage-displayed peptide library[J].Int J Biol Macromol, 2021, 183:2376-2386. |
[19] | GIL L H V G, ANSARI I H, VASSILEV V, et al.The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism[J].J Virol, 2006, 80(2):900-911. |
[20] | ZVRCHER C, SAUTER K S, SCHWEIZER M.Pestiviral Erns blocks TLR-3-dependent IFN synthesis by LL37 complexed RNA[J].Vet Microbiol, 2014, 174(3-4):399-408. |
[21] | REN X, ZHANG S, GAO X T, et al.Experimental immunization of mice with a recombinant bovine enterovirus vaccine expressing BVDV E0 protein elicits a long-lasting serologic response[J].Virol J, 2020, 17(1):88. |
[22] | GAO Y G, ZHAO X L, ZANG P, et al.Generation of the bovine viral diarrhea virus e0 protein in transgenic astragalus and its immunogenicity in sika deer[J].Evid Based Complement Alternat Med, 2014, 2014:372503. |
[23] | MU Y, TEWS B A, LUTTERMANN C, et al.Interaction of pestiviral E1 and E2 sequences in dimer formation and intracellular retention[J].Int J Mol Sci, 2021, 22(14):7285. |
[24] | RONECKER S, ZIMMER G, HERRLER G, et al.Formation of bovine viral diarrhea virus E1-E2 heterodimers is essential for virus entry and depends on charged residues in the transmembrane domains[J].J Gen Virol, 2008, 89(Pt 9):2114-2121. |
[25] | EL OMARI K, IOURIN O, HARLOS K, et al.Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry[J].Cell Rep, 2013, 3(1):30-35. |
[26] | LI Y, WANG J M, KANAI R, et al.Crystal structure of glycoprotein E2 from bovine viral diarrhea virus[J].Proc Natl Acad Sci U S A, 2013, 110(17):6805-6810. |
[27] | WANG J M, LI Y, MODIS Y.Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses[J].Virology, 2014, 454-455:93-101. |
[28] | MU Y, RADTKE C, TEWS B A, et al.Characterization of membrane topology and retention signal of pestiviral glycoprotein E1[J].J Virol, 2021, 95(15):e00521-21. |
[29] | WANG Z H, LIU M Y, ZHAO H R, et al.Induction of robust and specific humoral and cellular immune responses by bovine viral diarrhea virus virus-like particles (BVDV-VLPs) engineered with baculovirus expression vector system[J].Vaccines (Basel), 2021, 9(4):350. |
[30] | MA X X, MA P, CHANG Q Y, et al.The analyses of relationships among nucleotide, synonymous codon and amino acid usages for E2 gene of bovine viral diarrhea virus[J].Gene, 2018, 660:62-67. |
[31] | DONOFRIO G, BOTTARELLI E, SANDRO C, et al.Expression of bovine viral diarrhea virus glycoprotein E2 as a soluble secreted form in a Mammalian cell line[J].Clin Vaccine Immunol, 2006, 13(6):698-701. |
[32] | MERWAISS F, PASCUAL M J, POMILIO M T, et al.A β-hairpin motif in the envelope protein E2 mediates receptor binding of bovine viral diarrhea virus[J].Viruses, 2021, 13(6):1157. |
[33] | TAUTZ N, TEWS B A, MEYERS G.The molecular biology of pestiviruses[J].Adv Virus Res, 2015, 93:47-160. |
[34] | 郭妍婷.牛病毒性腹泻病毒离子通道蛋白p7的互作蛋白筛选及功能研究[D].乌鲁木齐:新疆农业大学, 2021.GUO Y T.Screening and functional research of interacting proteins of bovine viral diarrhea virus ion channel protein p7[D].Urumqi:Xinjiang Agricultural University, 2021.(in Chinese) |
[35] | WALTHER T, FELLENBERG J, KLEMENS O, et al.Membrane topology of pestiviral nonstructural protein 2 and determination of the minimal autoprotease domain[J].J Virol, 2021, 95(11):e00154-21. |
[36] | WALTHER T, BRUHN B, ISKEN O, et al.A novel NS3/4A protease dependent cleavage site within pestiviral NS2[J].J Gen Virol, 2021, 102(10).doi:10.1099/jgv.0.001666. |
[37] | DUBRAU D, SCHWINDT S, KLEMENS O, et al.Determination of critical requirements for classical swine fever virus NS2-3-independent virion formation[J].J Virol, 2019, 93(18):e00679-19. |
[38] | RIDPATH J F.Immunology of BVDV vaccines[J].Biologicals, 2013, 41(1):14-19. |
[39] | LI Y, JIA Y, WEN K, et al.Mapping B-cell linear epitopes of NS3 protein of bovine viral diarrhea virus[J].Vet Immunol Immunopathol, 2013, 151(3-4):331-336. |
[40] | YUE S, ZHAO T, MA J Z, et al.Bovine viral diarrhea virus NS4B protein interacts with 2CARD of MDA5 domain and negatively regulates the RLR-mediated IFN-β production[J].Virus Res, 2021, 302:198471. |
[41] | SUDA Y, MURAKAMI S, HORIMOTO T.Bovine viral diarrhea virus non-structural protein NS4B induces autophagosomes in bovine kidney cells[J].Arch Virol, 2019, 164(1):255-260. |
[42] | LI G Y, ADAM A, LUO H L, et al.An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses[J].npj Vaccines, 2019, 4:48. |
[43] | BASHIR S, KOSSAREV A, MARTIN V C, et al.Deciphering the role of bovine viral diarrhea virus non-structural NS4B protein in viral pathogenesis[J].Vet Sci, 2020, 7(4):169. |
[44] | XU J M, XIE X P, YE N, et al.Design, synthesis, and biological evaluation of substituted 4, 6-dihydrospiro[1, 2, 3] triazolo[4, 5-b] pyridine-7, 3'-indoline] -2', 5(3H)-dione analogues as potent NS4B inhibitors for the treatment of dengue virus infection[J].J Med Chem, 2019, 62(17):7941-7960. |
[45] | ROTH C, CANTAERT T, COLAS C, et al.A modified mRNA vaccine targeting immunodominant NS epitopes protects against dengue virus infection in HLA class I transgenic mice[J].Front Immunol, 2019, 10:1424. |
[46] | ZAHOOR M A, YAMANE D, MOHAMED Y M, et al.Bovine viral diarrhea virus non-structural protein 5A interacts with NIK- and IKKβ-binding protein[J].J Gen Virol, 2010, 91(Pt 8):1939-1948. |
[47] | CURTI E, JAEGER J.Residues Arg283, Arg285, and Ile287 in the nucleotide binding pocket of bovine viral diarrhea virus NS5B RNA polymerase affect catalysis and fidelity[J].J Virol, 2013, 87(1):199-207. |
[48] | DUAN H, MA Z Q, XU L L, et al.A novel intracellularly expressed NS5B-specific nanobody suppresses bovine viral diarrhea virus replication[J].Vet Microbiol, 2020, 240:108449. |
[49] | SCHWEIZER M, STALDER H, HASLEBACHER A, et al.Eradication of bovine viral diarrhoea (BVD) in cattle in switzerland:lessons taught by the complex biology of the virus[J].Front Vet Sci, 2021, 8:702730. |
[50] | HE Y Q, RACZ R, SAYERS S, et al.Updates on the web-based VIOLIN vaccine database and analysis system[J].Nucleic Acids Res, 2014, 42(D1):D1124-D1132. |
[51] | MOENNIG V, BECHER P.Pestivirus control programs:how far have we come and where are we going[J].Anim Health Res Rev, 2015, 16(1):83-87. |
[52] | THOMAS C, YOUNG N J, HEANEY J, et al.Evaluation of efficacy of mammalian and baculovirus expressed E2 subunit vaccine candidates to bovine viral diarrhoea virus[J].Vaccine, 2009, 27(17):2387-2393. |
[53] | MODY K T, MAHONY D, ZHANG J, et al.Silica vesicles as nanocarriers and adjuvants for generating both antibody and T-cell mediated immune resposes to bovine viral diarrhoea virus E2 protein[J].Biomaterials, 2014, 35(37):9972-9983. |
[54] | SADAT S M A, SNIDER M, GARG R, et al.Local innate responses and protective immunity after intradermal immunization with bovine viral diarrhea virus E2 protein formulated with a combination adjuvant in cattle[J].Vaccine, 2017, 35(27):3466-3473. |
[55] | DONOFRIO G, SARTORI C, FRANCESCHI V, et al.Double immunization strategy with a BoHV-4-vectorialized secreted chimeric peptide BVDV-E2/BoHV-1-gD[J].Vaccine, 2008, 26(48):6031-6042. |
[56] | DONOFRIO G, FRANCESCHI V, CAPOCEFALO A, et al.Cellular targeting of engineered heterologous antigens is a determinant factor for bovine herpesvirus 4-based vaccine vector development[J].Clin Vaccine Immunol, 2009, 16(11):1675-1686. |
[57] | CHOWDHURY S I, PANNHORST K, SANGEWAR N, et al.BoHV-1-vectored BVDV-2 subunit vaccine induces BVDV cross-reactive cellular immune responses and protects against BVDV-2 challenge[J].Vaccines (Basel), 2021, 9(1):46. |
[58] | BHUYAN A A, MEMON A M, BHUIYAN A A, et al.The construction of recombinant Lactobacillus casei expressing BVDV E2 protein and its immune response in mice[J].J Biotechnol, 2018, 270:51-60. |
[59] | JIA S, HUANG X N, LI H, et al.Immunogenicity evaluation of recombinant Lactobacillus casei W56 expressing bovine viral diarrhea virus E2 protein in conjunction with cholera toxin B subunit as an adjuvant[J].Microb Cell Fact, 2020, 19(1):186. |
[60] | CAI D J, SONG Q J, DUAN C, et al.Enhanced immune responses to E2 protein and DNA formulated with ISA 61 VG administered as a DNA prime-protein boost regimen against bovine viral diarrhea virus[J].Vaccine, 2018, 36(37):5591-5599. |
[61] | BELLIDO D, BAZTARRICA J, ROCHA L, et al.A novel MHC-II targeted BVDV subunit vaccine induces a neutralizing immunological response in guinea pigs and cattle[J].Transbound Emerg Dis, 2021, 68(6):3474-3481. |
[62] | WANG S H, YANG G H, NIE J W, et al.Immunization with recombinant Erns-LTB fusion protein elicits protective immune responses against bovine viral diarrhea virus[J].Vet Microbiol, 2021, 259:109084. |
[63] | WANG Y X, YANG G H, ZHANG L L, et al.Melatonin as immune potentiator for enhancing subunit vaccine efficacy against bovine viral diarrhea virus[J].Vaccines (Basel), 2021, 9(9):1039. |
[64] | WANG S H, YANG G H, NIE J W, et al.Recombinant Erns-E2 protein vaccine formulated with MF59 and CPG-ODN promotes T cell immunity against bovine viral diarrhea virus infection[J].Vaccine, 2020, 38(22):3881-3891. |
[65] | SANGEWAR N, HASSAN W, LOKHANDWALA S, et al.Mosaic bovine viral diarrhea virus antigens elicit cross-protective immunity in calves[J].Front Immunol, 2020, 11:589537. |
[66] | WETZEL D, BARBIAN A, JENZELEWSKI V, et al.Bioprocess optimization for purification of chimeric VLP displaying BVDV E2 antigens produced in yeast Hansenula polymorpha[J].J Biotechnol, 2019, 306:203-212. |
[67] | RIITHO V, WALTERS A A, SOMAVARAPU S, et al.Design and evaluation of the immunogenicity and efficacy of a biomimetic particulate formulation of viral antigens[J].Sci Rep, 2017, 7(1):13743. |
[1] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[2] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[3] | 马茹梦, 赵玉梁, 马明爽, 国桂海, 刘芯孜, 李佳璇, 崔文, 姜艳平, 单智夫, 周晗, 王丽, 乔薪瑗, 唐丽杰, 王晓娜, 李一经. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55(5): 2090-2099. |
[4] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[5] | 徐朕宇, 邓肖玉, 王月丽, 孙灿, 吴澳迪, 曹剑, 易继海, 王勇, 王震, 陈创夫. 牛种布鲁氏菌A19ΔBtpA缺失株生物学特性及其免疫原性研究[J]. 畜牧兽医学报, 2024, 55(5): 2135-2145. |
[6] | 赵灿奇, 冯宇, 吕浪, 李彦军, 魏玉磊, 丁家波, 陈祥, 蒋卉. 竞争ELISA和间接ELISA方法应用于牛布鲁氏菌病净化的研究[J]. 畜牧兽医学报, 2024, 55(5): 2146-2153. |
[7] | 高洁, 李晓成, 穆杨, 张慧, 魏荣, 李劼. 荚膜B型多杀性巴氏杆菌外膜囊泡生物学特性分析与免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2168-2175. |
[8] | 陈虹宇, 魏雅婷, 李若玺, 高留涛, 刘深贺. 动物性别控制技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1370-1380. |
[9] | 刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431. |
[10] | 郭雪莲, 李永琴, 李瑞乾, 李昊, 靳双媛, 王雪妍, 杜家伟, 许立华. 牛呼吸道合胞体病毒G和F蛋白的生物学功能[J]. 畜牧兽医学报, 2024, 55(4): 1478-1487. |
[11] | 张少华, 王帅, 邹扬, 刘仲藜, 才学鹏. 羊捻转血矛线虫病检测方法研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1499-1510. |
[12] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
[13] | 王康, 刘格言, 王宇, 杨振, 唐欣巍, 曹三杰, 黄小波, 颜其贵, 伍锐, 赵勤, 杜森焱, 文心田, 文翼平. 副猪革拉瑟菌影递送猪圆环病毒2型DNA二联疫苗的制备及小鼠免疫效果评价[J]. 畜牧兽医学报, 2024, 55(3): 1179-1191. |
[14] | 李春晓, 安尉, 高博泉, 王振龙, 韩冰, 陶慧, 王金全, 王秀敏. 猫犬主要过敏原蛋白的最新研究进展[J]. 畜牧兽医学报, 2024, 55(2): 471-480. |
[15] | 高欣, 孙怡朋. A型流感病毒诱导细胞炎症反应的研究进展[J]. 畜牧兽医学报, 2024, 55(2): 481-490. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||