畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (10): 3296-3304.doi: 10.11843/j.issn.0366-6964.2022.10.003
赵旭1,2, 凌玉钊1, 王建华3, 魏凌云1*, 焦金真2, 贺志雄2*
收稿日期:
2021-12-16
出版日期:
2022-10-23
发布日期:
2022-10-26
通讯作者:
魏凌云,主要从事食品微生物学研究,E-mail:weilingyun@foxmail.com;贺志雄,主要从事反刍动物营养研究,E-mail:zxhe@isa.ac.cn
作者简介:
赵旭(1997-),女,湖南益阳人,硕士,主要从事幼龄反刍动物肠道微生物研究,E-mail:zxgw123@163.com
基金资助:
ZHAO Xu1,2, LING Yuzhao1, WANG Jianhua3, WEI Lingyun1*, JIAO Jinzhen2, HE Zhixiong2*
Received:
2021-12-16
Online:
2022-10-23
Published:
2022-10-26
摘要: 生命早期消化道中的微生物定植可影响动物机体,且具有长期健康效应,详细了解早期瘤胃微生物的定植状况对动物健康及生长发育有重要意义。反刍动物自出生后开始与外界微生物接触,其瘤胃微生物菌群结构发生剧烈变化,且易受动物日龄、品种以及饮食结构的影响。反刍动物瘤胃含有复杂的微生物菌群,主要由厌氧细菌、古生菌、真菌和原虫构成。本文综述了反刍动物幼龄阶段瘤胃细菌、古生菌、真菌和原虫的定植组成及其变化,同时阐述了饲粮组成和饲料添加剂对幼龄反刍动物瘤胃微生物菌群的影响,旨在为幼龄反刍动物实现分阶段的营养调控提供理论基础。
中图分类号:
赵旭, 凌玉钊, 王建华, 魏凌云, 焦金真, 贺志雄. 幼龄反刍动物瘤胃微生物定植及其营养调控研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3296-3304.
ZHAO Xu, LING Yuzhao, WANG Jianhua, WEI Lingyun, JIAO Jinzhen, HE Zhixiong. Research Progress on Rumen Microbial Colonization and Nutritional Regulation of Young Ruminants[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3296-3304.
[1] | CONROY M E, SHI H N, WALKER W A.The long-term health effects of neonatal microbial flora[J].Curr Opin Allergy Clin Immunol, 2009, 9(3):197-201. |
[2] | FOUHY F, GUINANE C M, HUSSEY S, et al.High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin[J].Antimicrob Agents Chemother, 2012, 56(11):5811-5820. |
[3] | HANSEN C H F, NIELSEN D S, KVERKA M, et al.Patterns of early gut colonization shape future immune responses of the host[J].PLoS One, 2012, 7(3):e34043. |
[4] | NAGARAJA T G.Microbiology of the rumen[M]//MILLEN D D, DE BENI ARRIGONI M, PACHECO R D L.Rumenology.Cham:Springer, 2016. |
[5] | JEWELL K A, MCCORMICK C A, ODT C L, et al.Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency[J].Appl Environ Microbiol, 2015, 81(14):4697-4710. |
[6] | SHABAT S K B, SASSON G, DORON-FAIGENBOIM A, et al.Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J].ISME J, 2016, 10(12):2958-2972. |
[7] | ZIOLECKI A, BRIGGS C A E.The microflora of the rumen of the young calf:II.Source, nature and development[J].J Appl Bacteriol, 1961, 24(2):148-163. |
[8] | BALDWIN VI R L, MCLEOD K R, KLOTZ J L, et al.Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant[J].J Dairy Sci, 2004, 87 Suppl 1:E55-E65. |
[9] | MINATO H, OTSUKA M, SHIRASAKA S, et al.Colonization of microorganisms in the rumen of young calves[J].J Gen Appl Microbiol, 1992, 38(5):447-456. |
[10] | FONTY G, GOUET P, JOUANY J P, et al.Establishment of the microflora and anaerobic fungi in the rumen of lambs[J].Microbiology, 1987, 133(7):1835-1843. |
[11] | SKILLMAN L C, EVANS P N, NAYLOR G E, et al.16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs[J].Anaerobe, 2004, 10(5):277-285. |
[12] | RUSSELL J B, RYCHLIK J L.Factors that alter rumen microbial ecology[J].Science, 2001, 292(5519):1119-1122. |
[13] | 杨 艳, 瞿明仁, 欧阳克蕙, 等.反刍动物瘤胃微生物区系研究进展[J].江西农业学报, 2020, 32(10):110-115.YANG Y, QU M R, OUYANG K H, et al.Research progress in rumen microflora of ruminants[J].Acta Agriculturae Jiangxi, 2020, 32(10):110-115.(in Chinese) |
[14] | JAMI E, ISRAEL A, KOTSER A, et al.Exploring the bovine rumen bacterial community from birth to adulthood[J].ISME J, 2013, 7(6):1069-1079. |
[15] | GUZMAN C E, BEREZA-MALCOLM L T, DE GROEF B, et al.Presence of selected methanogens, fibrolytic bacteria, and proteobacteria in the gastrointestinal tract of neonatal dairy calves from birth to 72 hours[J].PLoS One, 2015, 10(7):e0133048. |
[16] | YEOMAN C J, ISHAQ S L, BICHI E, et al.Biogeographical differences in the influence of maternal microbial sources on the early successional development of the bovine neonatal gastrointestinal tract[J].Sci Rep, 2018, 8(1):3197. |
[17] | HAN X F, YANG Y X, YAN H L, et al.Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing[J].PLoS One, 2015, 10(2):e0117811. |
[18] | LI R W, CONNOR E E, LI C J, et al.Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools[J].Environ Microbiol, 2012, 14(1):129-139. |
[19] | ZHANG K, LI B B, GUO M M, et al.Maturation of the goat rumen microbiota involves three stages of microbial colonization[J].Animals, 2019, 9(12):1028. |
[20] | O'SULLIVAN A, FARVER M, SMILOWITZ J T.The influence of early infant-feeding practices on the intestinal microbiome and body composition in infants[J].Nutr Metab Insights, 2015, 8(Suppl 1):1-9. |
[21] | DE BARBIERI I, HEGARTY R S, SILVEIRA C, et al.Programming rumen bacterial communities in newborn Merino lambs[J].Small Ruminant Res, 2015, 129:48-59. |
[22] | 冯肖然, 缪佳辰, 葛佳雯, 等.羊瘤胃优势菌组成的Meta分析[J].中国畜牧杂志, 2022, 58(1):202-205.FENG X R, MIAO J C, GE J W, et al.Meta analysis of dominant bacteria composition in sheep rumen[J].Chinese Journal of Animal Science, 2022, 58(1):202-205.(in Chinese) |
[23] | HENDERSON G, COX F, GANESH S, et al.Erratum:Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[J].Sci Rep, 2016, 6:19175. |
[24] | 金舒文, 王佳堃.瘤胃产甲烷菌与其他微生物间的氢传递及其调控研究进展[J].中国畜牧杂志, 2019, 55(2):1-6.JIN S W, WANG J K.Interspecific hydrogen transfer between methanogens and other microorganisms in rumen and its regulation strategies:A review[J].Chinese Journal of Animal Science, 2019, 55(2):1-6.(in Chinese) |
[25] | WRIGHT A D G, KLIEVE A V.Does the complexity of the rumen microbial ecology preclude methane mitigation?[J].Anim Feed Sci Technol, 2011, 166-167:248-253. |
[26] | ZHOU M, MCALLISTER T A, GUAN L L.Molecular identification of rumen methanogens:technologies, advances and prospects[J].Anim Feed Sci Technol, 2011, 166-167:76-86. |
[27] | 王保玉, 刘建民, 韩作颖, 等.产甲烷菌的分类及研究进展[J].基因组学与应用生物学, 2014, 33(2):418-425.WANG B Y, LIU J M, HAN Z Y, et al.Recent progress and classification of methanogens[J].Genomics and Applied Biology, 2014, 33(2):418-425.(in Chinese) |
[28] | JANSSEN P H, KIRS M.Structure of the archaeal community of the rumen[J].Appl Environ Microbiol, 2008, 74(12):3619-3625. |
[29] | JEYANATHAN J, MARTIN C, MORGAVI D P.The use of direct-fed microbials for mitigation of ruminant methane emissions:a review[J].Animal, 2014, 8(2):250-261. |
[30] | WHITFORD M F, TEATHER R M, FORSTER R J.Phylogenetic analysis of methanogens from the bovine rumen[J].BMC Microbiol, 2001, 1:5. |
[31] | MORVAN B, DORE J, RIEU-LESME F, et al.Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb[J].FEMS Microbiol Lett, 1994, 117(3):249-256. |
[32] | WANG Z, ELEKWACHI C O, JIAO J Z, et al.Investigation and manipulation of metabolically active methanogen community composition during rumen development in black goats[J].Sci Rep, 2017, 7(1):422. |
[33] | ABECIA L, WADDAMS K E, MARTÍNEZ-FERNANDEZ G, et al.An antimethanogenic nutritional intervention in early life of ruminants modifies ruminal colonization by archaea[J].Archaea, 2014, 2014:841463. |
[34] | WRIGHT A D G, WILLIAMS A J, WINDER B, et al.Molecular diversity of rumen methanogens from sheep in western australia[J].Appl Environ Microbiol, 2004, 70(3):1263-1270. |
[35] | NEWBOLD C J, DE LA FUENTE G, BELANCHE A, et al.The role of ciliate protozoa in the rumen[J].Front Microbiol, 2015, 6:1313. |
[36] | MAKKAR H P S, MCSWEENEY C S.Methods in gut microbial ecology for ruminants[M].Dordrecht:Springer, 2005. |
[37] | SYLVESTER J T, KARNATI S K R, YU Z T, et al.Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR[J].J Nutr, 2004, 134(12):3378-3384. |
[38] | JI S K, ZHANG H T, YAN H, et al.Comparison of rumen bacteria distribution in original rumen digesta, rumen liquid and solid fractions in lactating Holstein cows[J].J Anim Sci Biotechnol, 2017, 8:16. |
[39] | ISHAQ S L, BICHI E, OLIVO S K, et al.1522 Influence of colostrum on the microbiological diversity of the developing bovine intestinal tract[J].J Anim Sci, 2016, 94(Suppl 5):739. |
[40] | IMAI S, MATSUMOTO M, WATANABE A, et al.Establishment of a spinated type of Diplodinium rangiferi by transfaunation of the rumen ciliates of japanese sika deer (Cervus nippon centralist to the rumen of two Japanese shorthorn calves (Bos taurus taurus)[J].J Eukaryot Microbiol, 2002, 49(1):38-41. |
[41] | EADIE J M.The development of rumen microbial populations in lambs and calves under various conditions of management[J].J General Microbiol, 1962, 29(4):563-578. |
[42] | NAGA M A, AKKADA A R A, EL-SHAZLY K.Establishment of rumen ciliate protozoa in cow and water buffalo (Bos bubalus L.) calves under late and early weaning systems[J].J Dairy Sci, 1969, 52(1):110-112. |
[43] | 邓由飞.液体日粮对犊牛生长发育及胃肠道微生物菌群结构影响研究[D].北京:中国农业大学, 2017.DENG Y F.Study on the influence of liquid diet on growth and the microbiomes of different gastrointestinal tract components in pre-weaned dairy calves[D].Beijing:China Agricultural University, 2017.(in Chinese) |
[44] | KITTELMANN S, SEEDORF H, WALTERS W A, et al.Simultaneous amplicon sequencing to explore Co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities[J].PLoS One, 2013, 8(2):e47879. |
[45] | ORPIN C G.Invasion of plant tissue in the rumen by the flagellate Neocallimastix frontalis[J].J Gen Microbiol, 1977, 98(2):423-430. |
[46] | HUWS S A, CREEVEY C J, OYAMA L B, et al.Addressing global ruminant agricultural challenges through understanding the rumen microbiome:Past, present, and future[J].Front Microbiol, 2018, 9:2161. |
[47] | 李亚丹, 杨 辉, 卢向阳, 等.不同饲料饲养黄牛瘤胃厌氧真菌的多样性对比研究[J].西南农业学报, 2017, 30(10):2371-2375.LI Y D, YANG H, LU X Y, et al.Evaluation of fungal diversity in rumen of yellow cattle (Bos taurus) fed Miscanthus sinensis or common mixed feedstuff[J].Southwest China Journal of Agricultura Sciences, 2017, 30(10):2371-2375.(in Chinese) |
[48] | 胡 静, 郭春艳, 王 鑫, 等.瘤胃微生物的多样性及定量方法的研究进展[J].饲料研究, 2014(11):47-51.HU J, GUO C Y, WANG X, et al.Research progress of rumen microbial diversity and quantitative methods[J].Feed Research, 2014(11):47-51.(in Chinese) |
[49] | FONTY G, SENAUD J, JOUANY J P, et al.Establishment of ciliate protozoa in the rumen of conventional and conventionalized lambs:Influence of diet and management conditions[J].Can J Microbiol, 1988, 34(3):235-241. |
[50] | JIAO J Z, HUANG J Y, ZHOU C S, et al.Taxonomic identification of ruminal epithelial bacterial diversity during rumen development in goats[J].Appl Environ Microbiol, 2015, 81(10):3502-3509. |
[51] | 李海琴, 贾建磊, 侯生珍.不同断奶时间对羔羊瘤胃组织形态和真菌群落结构的影响[J].中国兽医学报, 2021, 41(12):2431-2437.LI H Q, JIA J L, HOU S Z.Effects of different weaning time on rumen tissue morphology and fungal community structure of small tail Han sheep lambs[J].Chinese Journal of Veterinary Science, 2021, 41(12):2431-2437.(in Chinese) |
[52] | 陈 林.犊牛断奶后瘤胃发酵参数与菌群多样性变化研究[D].银川:宁夏大学, 2020.CHEN L.Study on changes of rumen fermentation parameters and microbial diversity in weaning calves[D].Yinchuan:Ningxia University, 2020.(in Chinese) |
[53] | LANGDA S, ZHANG C G, ZHANG K, et al.Diversity and composition of rumen bacteria, fungi, and protozoa in goats and sheep living in the same high-altitude pasture[J].Animals, 2020, 10(2):186. |
[54] | KITTELMANN S, NAYLOR G E, KOOLAARD J P, et al.A proposed taxonomy of anaerobic fungi (Class Neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis[J].PLoS One, 2012, 7(5):e36866. |
[55] | MOON C D, CARVALHO L, KIRK M R, et al.Effects of long-acting, broad spectra anthelmintic treatments on the rumen microbial community compositions of grazing sheep[J].Sci Rep, 2021, 11(1):3836. |
[56] | MAO S Y, ZHANG M L, LIU J H, et al.Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle:Membership and potential function[J].Sci Rep, 2016, 5:16116. |
[57] | ANDERSON K L, NAGARAJA T G, MORRILL J L.Ruminal metabolic development in calves weaned conventionally or early[J].J Dairy Sci, 1987, 70(5):1000-1005. |
[58] | 李腾飞, 刘崇义, 靳旭妹, 等.果园生混合干草对羔羊胃肠道细菌多样性的影响[J].草业科学, 2021, 38(9):1821-1830.LI T F, LIU C Y, JIN X M, et al.Effects of mixed orchard hay on bacterial diversity in the gastrointestinal tract of lambs[J].Pratacultural Science, 2021, 38(9):1821-1830.(in Chinese) |
[59] | 李 希, 毛杨毅, 罗惠娣, 等.饲粮纤维水平对育肥羔羊瘤胃微生物组成及多样性的影响[J].中国畜牧兽医, 2021, 48(4):1251-1263.LI X, MAO Y Y, LUO H D, et al.Effects of dietary crude fiber level on rumen microbial composition and diversity of fattening lambs[J].China Animal Husbandry & Veterinary Medicine, 2021, 48(4):1251-1263.(in Chinese) |
[60] | 董亚文.多种灭活益生菌静脉注射对小鼠免疫功能影响研究[D].泰安:山东农业大学, 2018.DONG Y W.Effects of different inactive probiotic injections on immune functions in mice[D].Tai'an:Shandong Agricultural University, 2018.(in Chinese) |
[61] | KAWAKAMI S I, YAMADA T, NAKANISHI N, et al.Effect of probiotics on bacterial flora of various gastrointestinal regions in Holstein calves[J].J Anim Vet Adv, 2010, 9(11):1556-1559. |
[62] | 符运勤.地衣芽孢杆菌及其复合菌对后备牛生长性能和瘤胃内环境的影响[D].北京:中国农业科学院, 2012.FU Y Q.Effects of bacillus licheniformis and its combinations on growth performance and ruminal environment in replacement cattle[D].Beijing:Chinese Academy of Agricultural Sciences, 2012.(in Chinese) |
[63] | ORTIZ-RUBIO M A, GALINA M A, PINEDA L J.Effect of slow nitrogen intake supplementation with or without a lactic probiotic on Pelibuey lamb growth[J].Opt Méditerranéennes, 2009(85):309-314. |
[64] | 李稳稳.益生菌对断奶羔羊生长性能、消化吸收能力、免疫功能和肠道微生态的影响[D].合肥:安徽农业大学, 2020.LI W W.Effects of probiotics on growth performance, digestion and absorption ability, immune function and intestinal microecology of weaned lambs[D].Hefei:Anhui Agricultural University, 2020.(in Chinese) |
[65] | KOIKE S, UENO M, ASHIDA N, et al.Effect of Bacillus subtilis C-3102 supplementation in milk replacer on growth and rumen microbiota in preweaned calves[J].Anim Sci J, 2021, 92(1):e13580. |
[66] | 王秀琴, 张俊丽, 康晓冬, 等.添加枸杞多糖免疫增效剂对滩寒杂代羔羊生长性能、屠宰性能和免疫功能的影响[J].黑龙江畜牧兽医, 2021(21):102-107.WANG X Q, ZHANG J L, KANG X D, et al.Effects of adding Lycium barbarum polysaccharide immunopotentiator on growth performance, slaughter performance and immune function of Tan-Han hybrid lamb[J].Heilongjiang Animal Science and Veterinary Medicine, 2021(21):102-107.(in Chinese) |
[67] | 王旭东, 李秉诚, 田秀娥, 等.微生物发酵中草药提取残渣饲料添加剂对小尾寒羊饲喂效果评价[J].中国草食动物科学, 2019, 39(5):75-77.WANG X D, LI B C, TIAN X E, et al.Evaluation on feeding effect of feed additives extracted from Chinese herbal medicine residues by microbial fermentation on Small Tailed Han Sheep[J].China Herbivore Science, 2019, 39(5):75-77.(in Chinese) |
[68] | 姜翠霞.西北主要中药材对泌乳牦牛和犊牛营养及生理代谢的影响[D].兰州:兰州大学, 2021.JIANG C X.Effect of main Chinese herbs in northwest China on nutrition and metabolism of lactating yak and calves[D].Lanzhou:Lanzhou University, 2021.(in Chinese) |
[69] | MA T, WU W, TU Y, et al.Resveratrol affects in vitro rumen fermentation, methane production and prokaryotic community composition in a time-and diet-specific manner[J].Microb Biotechnol, 2020, 13(4):1118-1131. |
[70] | WANG T, JIAO J X, WANG H C, et al.The effects of supplementing sweet sorghum with grapeseeds on dry matter intake, average daily gain, feed digestibility and rumen parameters and microbiota in lambs[J].Anim Feed Sci Technol, 2021, 272:114750. |
[71] | LYONS T, BOLAND T, STOREY S, et al.Linseed oil supplementation of lambs' diet in early life leads to persistent changes in rumen microbiome structure[J].Front Microbiol, 2017, 8:1656. |
[72] | ABECIA L, MARTÍN-GARCÍA A I, MARTÍNEZ G, et al.Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning[J].J Anim Sci, 2013, 91(10):4832-4840. |
[73] | LI Z P, MU C L, XU Y X, et al.Changes in the solid-, liquid-, and epithelium-associated bacterial communities in the rumen of Hu lambs in response to dietary urea supplementation[J].Front Microbiol, 2020, 11:244. |
[74] | O'HARA E, NEVES A L A, SONG Y, et al.The role of the gut microbiome in cattle production and health:driver or passenger?[J].Annu Rev Anim Biosci, 2020, 8:199-220. |
[1] | 尚恺圆, 江明锋, 官久强, 安添午, 赵洪文, 柏琴, 吴伟生, 李华德, 谢荣清, 沙泉, 罗晓林, 张翔飞. 围产期母体营养调控对犊牦牛生长发育、血清生化及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(4): 1638-1648. |
[2] | 郭妍婷, 周建民, 王晶, 齐广海. 产蛋鸡子宫部钙离子转运及调控的研究进展[J]. 畜牧兽医学报, 2024, 55(1): 39-50. |
[3] | 陈莹, 钟儒清, 陈亮, 张宏福. 猪饲粮纤维的利用及其对养分消化的影响[J]. 畜牧兽医学报, 2023, 54(9): 3745-3757. |
[4] | 吴志立, 姚军虎, 雷新建. 过瘤胃葡萄糖对围产期奶畜营养调控的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3173-3182. |
[5] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[6] | 杨子辉, 董朕, 伍蕙岚, 谭斌, 曾建国. 基于网络药理学分析蒲公英抗氧化功能的物质基础与作用机制[J]. 畜牧兽医学报, 2023, 54(5): 2170-2185. |
[7] | 常心雨, 王继光, 王晶, 张海军, 齐广海, 邱凯, 武书庚. 商品蛋鸡精准饲养技术研究进展[J]. 畜牧兽医学报, 2023, 54(5): 1815-1823. |
[8] | 张春桃, 马涛, 屠焰, 刁其玉. 生物节律对动物生理营养及物质消化利用调控的研究进展[J]. 畜牧兽医学报, 2021, 52(4): 872-880. |
[9] | 储蓄, 张军霞, 王晶. 动物氧化应激及其营养调控措施研究进展[J]. 畜牧兽医学报, 2021, 52(12): 3346-3356. |
[10] | 庄一民, 刁其玉, 张乃锋. 幼龄反刍动物瘤胃上皮细胞β-羟基丁酸代谢与调控机制[J]. 畜牧兽医学报, 2020, 51(4): 660-669. |
[11] | 董志岩, 刘亚轩, 方桂友, 缪伏荣, 刘景, 叶鼎承, 李忠荣, 林长光. 不同氨基酸水平的低蛋白质饲粮对后备母猪初情日龄、血清代谢产物和激素浓度的影响[J]. 畜牧兽医学报, 2018, 49(1): 131-138. |
[12] | 刘正群,刘静波,陈亮,朱丽媛,孟庆石,张宏福. 基础饲粮类型对生长猪豆粕回肠氨基酸消化率评定的影响[J]. 畜牧兽医学报, 2017, 48(2): 280-288. |
[13] | 丁亚南, 赵月香, 王玲霞, 韩金凤, 宋泽和, 胡贵丽, 李冠亚, 范志勇. 白藜芦醇对高脂诱导大鼠生长、血脂代谢及抗氧化力的影响[J]. 畜牧兽医学报, 2017, 48(11): 2216-2224. |
[14] | 章杰, 刘一辉, 何航, 罗宗刚. 饲粮蛋白水平对荣昌猪脂肪细胞和肌纤维发育及相关基因表达的影响[J]. 畜牧兽医学报, 2017, 48(11): 2115-2124. |
[15] | 武书庚,王晓翠,宋丹,张海军,岳洪源,王晶,齐广海. 0~4周龄京红1号蛋鸡饲粮赖氨酸需要量研究[J]. 畜牧兽医学报, 2016, 47(7): 1396-1404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||