畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (5): 2170-2185.doi: 10.11843/j.issn.0366-6964.2023.05.037
杨子辉1,2, 董朕1,2, 伍蕙岚1,3, 谭斌1,2, 曾建国1,2*
收稿日期:
2022-10-20
出版日期:
2023-05-23
发布日期:
2023-05-20
通讯作者:
曾建国,主要从事中药资源与中兽药创制及植物提取物饲料添加剂开发研究,E-mail:zengjianguo@hunau.edu.cn
作者简介:
杨子辉(1987-),男,江西赣州人,博士后,主要从事植物提取物饲料添加剂开发与兽药残留分析,E-mail:yangzihui_2006@163.com;Tel:15073129827。董朕(1991-),男,辽宁省铁岭人,博士在读,主要从事兽医药理学与毒理学研究,E-mail:13104100291@163.com;Tel:13104100291
基金资助:
YANG Zihui1,2, DONG Zhen1,2, WU Huilan1,3, TAN Bin1,2, ZENG Jianguo1,2*
Received:
2022-10-20
Online:
2023-05-23
Published:
2023-05-20
摘要: 本研究旨在基于网络药理学研究蒲公英抗氧化功能的物质基础和潜在作用机制,并对以蒲公英为原料开发功能性植物提取物饲料添加剂提供指导。通过HERB本草组鉴数据库、TCMSP数据库和SwissTargetPrediction网页工具筛选蒲公英中的活性成分以及潜在作用靶点,使用SwissADME工具计算活性成分的理化性质,从GeneCards数据库中获得与抗氧化相关的目的基因,使用Cytoscape和STRING数据库构建化合物-靶点-功能、化合物-靶点-通路可视化网络和蛋白质-蛋白质相互作用(PPI)网络,通过DAVID数据库进行基因本体论(GO)、京都基因和基因组百科全书(KEGG)途径富集分析,通过ABTS法和FRAP法对蒲公英不同提取组分进行了体外抗氧化活性测定。结果显示:筛选到活性成分28个、化合物预测靶点296个、抗氧化靶点1 371个和交集靶点135个。理化性质计算显示,活性成分中大部分为水溶性。蛋白质互作分析表明,JUN、VEGFA、SRC、HSP90AA1和MMP9等20个关键蛋白可能在抗氧化功能中发挥关键作用。GO和KEGG富集分析表明,抗氧化功能可能与血管内皮生长因子通路、TNF信号通路、MAPK信号通路、IL-17信号通路和雌激素信号通路有关。体外抗氧化测定结果显示,蒲公英水提组分具有更高的抗氧化活性。综上表明,蒲公英中的水溶性活性成分是其抗氧化功能的主要物质基础,为进一步开发抗氧化功能的蒲公英植物提取物饲料添加剂提供理论支持。
中图分类号:
杨子辉, 董朕, 伍蕙岚, 谭斌, 曾建国. 基于网络药理学分析蒲公英抗氧化功能的物质基础与作用机制[J]. 畜牧兽医学报, 2023, 54(5): 2170-2185.
YANG Zihui, DONG Zhen, WU Huilan, TAN Bin, ZENG Jianguo. Analysis of the Material Basis and Mechanism of Action of Antioxidant Function of Taraxacum mongolicum based on Network Pharmacology[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2170-2185.
[1] | TAMER F, ULUG E, AKYOL A, et al. The potential efficacy of dietary fatty acids and fructose induced inflammation and oxidative stress on the insulin signaling and fat accumulation in mice[J]. Food Chem Toxicol, 2020, 135:110914. |
[2] | KELLER U, BRANDSCH C, EDER K. The effect of dietary oxidized fats on the antioxidant status of erythrocytes and their susceptibility to haemolysis in rats and guinea pigs[J]. J Anim Physiol Anim Nutr (Berl), 2004, 88(1-2):59-72. |
[3] | JONES D P. Radical-free biology of oxidative stress[J]. Am J Physiol-Cell Physiol, 2008, 295(4):C849-C868. |
[4] | LYKKESFELDT J, SVENDSEN O. Oxidants and antioxidants in disease:oxidative stress in farm animals[J]. Vet J, 2007, 173(3):502-511. |
[5] | TAN J Z, LIU S S, GUO Y M, et al. Dietary L-arginine supplementation attenuates lipopolysaccharide-induced inflammatory response in broiler chickens[J]. Br J Nutr, 2014, 111(8):1394-1404. |
[6] | YUAN K, FARNEY J K, MAMEDOVA L K, et al. TNFα altered inflammatory responses, impaired health and productivity, but did not affect glucose or lipid metabolism in early-lactation dairy cows[J]. PLoS One, 2013, 8(11):e80316. |
[7] | GESSNER D K, RINGSEIS R, EDER K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals[J]. J Anim Physiol Anim Nutr (Berl), 2017, 101(4):605-628. |
[8] | ZHANG Y J, GAN R Y, LI S, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases[J]. Molecules, 2015, 20(12):21138-21156. |
[9] | ZHANG Y, HU Y F, LI W, et al. Updates and advances on pharmacological properties of Taraxacum mongolicum Hand.-Mazz and its potential applications[J]. Food Chem, 2022, 373:131380. |
[10] | 花梦, 董文秀, 孙丽, 等. 清热解毒消痈生肌方药抗胃溃疡机制研究进展[J]. 中国实验方剂学杂志, 2015, 21(8):210-214.HUA M, DONG W X, SUN L, et al. Progresses in anti-gastric ulcer mechanism of Qingre Jiedu Xiaoyong Shengji prescriptions[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2015, 21(8):210-214. (in Chinese) |
[11] | 肖金禾. 蒲公英颗粒治疗非脓肿期急性乳腺炎的随机对照研究及其黄腻苔患者舌苔菌群分析[D]. 北京:北京中医药大学, 2021.XIAO J H. A randomized controlled study of dandelion granules in the treatment of acute mastitis in the non-abscess stage and analysis of the flora of the tongue of patients with yellow greasy coating[D]. Beijing:Beijing University of Chinese Medicine, 2021. (in Chinese) |
[12] | 许兴全, 张建. 复方蒲公英治疗急性上呼吸道感染60例[J]. 现代医药卫生, 2006, 22(21):3336.XU X Q, ZHANG J. 60 cases of acute upper respiratory tract infection treated with compound dandelion injection[J]. Modern Medicine & Health, 2006, 22(21):3336. (in Chinese) |
[13] | YANG F, YE X J, CHEN M Y, et al. Inhibition of NLRP3 Inflammasome activation and pyroptosis in macrophages by taraxasterol is associated with its regulation on mTOR signaling[J]. Front Immunol, 2021, 12:632606. |
[14] | XU P, XU X B, KHAN A, et al. Antibiofilm activity against Staphylococcus aureus and content analysis of Taraxacum officinale phenolic extract[J]. Pol J Vet Sci, 2021, 24(2):243-251. |
[15] | CAI Z X, YAN T, LI S W, et al. Ameliorative effect of dandelion (Taraxacum officinale) peptides on benzo(a)pyrene-induced oxidative stress and inflammation in human umbilical vein endothelial cells[J]. J Pept Sci, 2023, 29(1):e3447. |
[16] | YANG H J, KIM M J, KWON D Y, et al. Gastroprotective actions of Taraxacum coreanum Nakai water extracts in ethanol-induced rat models of acute and chronic gastritis[J]. J Ethnopharmacol, 2017, 208:84-93. |
[17] | ZANATTA M E D C, MIORANDO D, STEFLLER A M, et al. Gastroprotective effects of the aqueous extract from Taraxacum officinale in rats using ultrasound, histology, and biochemical analysis[J]. Evid-Based Complement Alternat Med, 2021, 2021:8987232. |
[18] | 刘佳人, 徐兴军, 康文锦, 等. 蒲公英黄酮对ICR小鼠体内抗氧化酶活性及相关基因表达的影响[J]. 基因组学与应用生物学, 2022, 41(1):41-48.LIU J R, XU X J, KANG W J, et al. Effects of dandelion flavonoids on antioxidant enzyme activity and related gene expression in ICR mice[J]. Genomics and Applied Biology, 2022, 41(1):41-48. (in Chinese) |
[19] | 苏楠楠. 蒲公英萜类成分及其活性研究[D]. 延吉:延边大学, 2019.SU N N. Study on terpenoids and activity of Taraxacum mongolicum[D]. Yanji:Yanbian University, 2019. (in Chinese) |
[20] | 刘思吉. 蒲公英酚酸提取及其抑制胃癌MGC 803、肝癌HepG 2细胞增殖的研究[D]. 长春:吉林大学, 2022.LIU S J. Study on extraction and inhibit the proliferation of gastric cancer MGC 803 and liver cancer HepG 2 cells of phenolic acid from dandelion[D]. Changchun:Jilin University, 2022. (in Chinese) |
[21] | 李然红, 任占辰, 冯思雨, 等. 蒲公英提取物的生物学功能及其在畜、禽、鱼类生产中的应用[J]. 动物营养学报, 2022, 34(7):4108-4116.LI R H, REN Z C, FENG S Y, et al. Biological function of dandelion extract and its application in livestock, poultry and fish production[J]. Chinese Journal of Animal Nutrition, 2022, 34(7):4108-4116. (in Chinese) |
[22] | HOPKINS A L. Network pharmacology[J]. Nat Biotechnol, 2007, 25(10):1110-1111. |
[23] | GUO X, DONG Z, LI Q E, et al. Flavonoids from Rhododendron nivale Hook. f delay aging via modulation of gut microbiota and glutathione metabolism[J]. Phytomedicine, 2022, 104:154270. |
[24] | 丁浩轩, 赵阳, 冯杰. 基于网络药理学探讨植物提取物在饲料添加剂领域的研究进展[J]. 动物营养学报, 2021, 33(6):3065-3071.DING H X, ZHAO Y, FENG J. Research progress on discussion of plant extracts in field of feed additives based on network pharmacology[J]. Chinese Journal of Animal Nutrition, 2021, 33(6):3065-3071. (in Chinese) |
[25] | 刘魏魏, 张宇欣, 李秀梅, 等. 基于网络药理学分析桑叶增强鸡抗氧化功能的作用机制[J]. 畜牧兽医学报, 2022, 53(6):1958-1970.LIU W W, ZHANG Y X, LI X M, et al. Mechanism of Mori folium in improving antioxidative function of chicken based on network pharmacology[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6):1958-1970. (in Chinese) |
[26] | RU J L, LI P, WANG J N, et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6:13. |
[27] | DAINA A, MICHIELIN O, ZOETE V. SwissADME:a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules[J]. Sci Rep, 2017, 7:42717. |
[28] | MARTIN Y C. A bioavailability score[J]. J Med Chem, 2005, 48(9):3164-3170. |
[29] | YOUNG R C, MITCHELL R C, BROWN T H, et al. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists[J]. J Med Chem, 1988, 31(3):656-671. |
[30] | CHAYAWAN, VIKAS. Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes:exploring relationships of log S W, log K OA, and log K OW with electron-correlation[J]. J Hazard Mater, 2015, 296:68-81. |
[31] | DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction:updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucl Acids Res, 2019, 47(W1):W357-W364. |
[32] | STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCards Suite:from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54:1. 30. 1-1. 30. 33. |
[33] | SZKLARCZYK D, GABLE A L, NASTOU K C, et al. The STRING database in 2021:customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucl Acids Res, 2021, 49(D1):D605-D612. |
[34] | DENNIS G, SHERMAN B T, HOSACK D A, et al. DAVID:database for annotation, visualization, and integrated discovery[J]. Genome Biol, 2003, 4(5):P3. |
[35] | 丁婷玉, 吴聪颖, 徐嘉欣, 等. 饲用植物蒲公英醇提物HPLC特征图谱的建立[J]. 饲料研究, 2021, 44(16):99-103.DING T Y, WU C Y, XU J X, et al. Establishment of HPLC characteristic spectrum of ethanol extract of forage plants Taraxaci herba[J]. Feed Res, 2021, 44(16):99-103. (in Chinese) |
[36] | CHIN C H, CHEN S H, WU H H, et al. cytoHubba:identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol, 2014, 8(Suppl 4):S11. |
[37] | XU D, HU M J, WANG Y Q, et al. Antioxidant activities of quercetin and its complexes for medicinal application[J]. Molecules, 2019, 24(6):E1123. |
[38] | HO C, CHOI E J, YOO G S, et al. Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum[J]. Planta Med, 1998, 64(6):577-578. |
[39] | KIM N Y, KIM S, LEE H J, et al. Sesquiterpenes from Artemisia princeps regulate inflammatory responses in RAW 264. 7 macrophages[J]. Nat Prod Res, 2022, doi:10. 1080/14786419. 2022. 2089881. |
[40] | KHAN Z, NATH N, RAUF A, et al. Multifunctional roles and pharmacological potential of β-sitosterol:emerging evidence toward clinical applications[J]. Chem-Biol Interact, 2022, 365:110117. |
[41] | LEONARD W, ZHANG P Z, YING D Y, et al. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods[J]. Biotechnol Adv, 2021, 49:107763. |
[42] | 张国英. 常见奶牛消化系统疾病的中药疗法[J]. 养殖与饲料, 2007(7):30-31.ZHANG G Y. Herbal remedies for common dairy cattle digestive disorders[J]. Animals Breeding and Feed, 2007(7):30-31. (in Chinese) |
[43] | WANG W, DOLAN L C, VON ALVENSLEBEN S, et al. Safety of standardized Macleaya cordata extract in an eighty-four-day dietary study in dairy cows[J]. J Anim Physiol Anim Nutr (Berl), 2018, 102(1):e61-e68. |
[44] | WU M Q, CHEN W Y, MIAO M Q, et al. Anti-anemia drug FG4592 retards the AKI-to-CKD transition by improving vascular regeneration and antioxidative capability[J]. Clin Sci (Lond), 2021, 135(14):1707-1726. |
[45] | FARIA A V S, CLERICI S P, DE SOUZA OLIVEIRA P F, et al. LMWPTP modulates the antioxidant response and autophagy process in human chronic myeloid leukemia cells[J]. Mol Cell Biochem, 2020, 466(1-2):83-89. |
[46] | CHEN L, ZHANG Z Y, HOSHINO A, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism[J]. Nat Metab, 2019, 1:404-415. |
[47] | ZUEHLKE A D, BEEBE K, NECKERS L, et al. Regulation and function of the human HSP90AA1 gene[J]. Gene, 2015, 570(1):8-16. |
[48] | SCHMELTER C, FOMO K N, PERUMAL N, et al. Synthetic polyclonal-derived CDR peptides as an innovative strategy in glaucoma therapy[J]. J Clin Med, 2019, 8(8):1222. |
[49] | LI Y, LIU X J, SU S L, et al. Evaluation of anti-inflammatory and antioxidant effectsof chrysanthemum stem and leaf extract on zebrafish inflammatory bowel disease model[J]. Molecules, 2022, 27(7):2114. |
[50] | TAKINO T, KOSHIKAWA N, MIYAMORI H, et al. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases[J]. Oncogene, 2003, 22(30):4617-4626. |
[51] | TSCHESCHE H, KNÄUPER V, KRÄMER S, et al. Latent collagenase and gelatinase from human neutrophils and their activation[J]. Matrix Suppl, 1992, 1:245-255. |
[52] | WILHELM S M, COLLIER I E, MARMER B L, et al. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages[J]. J Biol Chem, 1989, 264(29):17213-17221. |
[53] | DWIR D, CABUNGCAL J H, XIN L J, et al. Timely N-acetyl-cysteine and environmental enrichment rescue oxidative stress-induced parvalbumin interneuron impairments via MMP9/RAGE Pathway:a translational approach for early intervention in psychosis[J]. Schizophr Bull, 2021, 47(6):1782-1794. |
[54] | IVAN A L M, CAMPANINI M Z, MARTINEZ R M, et al. Pyrrolidine dithiocarbamate inhibits UVB-induced skin inflammation and oxidative stress in hairless mice and exhibits antioxidant activity in vitro[J]. J Photoch Photobiol B:Biol, 2014, 138:124-133. |
[55] | CODOÑER-FRANCH P, VALLS-BELLÉS V, ARILLA-CODOÑER A, et al. Oxidant mechanisms in childhood obesity:the link between inflammation and oxidative stress[J]. Transl Res, 2011, 158(6):369-384. |
[56] | WU S J, LIAO X Y, ZHU Z J, et al. Antioxidant and anti-inflammation effects of dietary phytochemicals:the Nrf2/NF- κ B signalling pathway and upstream factors of Nrf2[J]. Phytochemistry, 2022, 204:113429. |
[57] | KIM Y W, BYZOVA T V. Oxidative stress in angiogenesis and vascular disease[J]. Blood, 2014, 123(5):625-631. |
[58] | SHI T, VAN SOEST D M K, POLDERMAN P E, et al. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways[J]. Free Radical Biol Med, 2021, 172:298-311. |
[59] | KIM J S, SAENGSIRISUWAN V, SLONIGER J A, et al. Oxidant stress and skeletal muscle glucose transport:roles of insulin signaling and p38 MAPK[J]. Free Radical Biol Med, 2006, 41(5):818-824. |
[60] | PAQUISSI F C, ABENSUR H. The Th17/IL-17 axis and kidney diseases, with focus on lupus nephritis[J]. Front Med (Lausanne), 2021, 8:654912. |
[61] | AMATYA N, GARG A V, GAFFEN S L. IL-17 Signaling:the Yin and the Yang[J]. Trends Immunol, 2017, 38(5):310-322. |
[62] | FRIEDER J, KIVELEVITCH D, HAUGH I, et al. Anti-IL-23 and Anti-IL-17 biologic agents for the treatment of immune-mediated inflammatory conditions[J]. Clin Pharmacol Ther, 2018, 103(1):88-101. |
[63] | MANOLAGAS S C. From estrogen-centric to aging and oxidative stress:a revised perspective of the pathogenesis of osteoporosis[J]. Endocr Rev, 2010, 31(3):266-300. |
[64] | GENG Q H, GAO H Y, YANG R L, et al. Pyrroloquinoline Quinone prevents estrogen deficiency-induced osteoporosis by inhibiting oxidative stress and osteocyte senescence[J]. Int J Biol Sci, 2019, 15(1):58-68. |
[65] | BATHGATE R A D, HALLS M L, VAN DER WESTHUIZEN E T, et al. Relaxin family peptides and their receptors[J]. Physiol Rev, 2013, 93(1):405-480. |
[66] | KOHSAKA T, MINAGAWA I, MORIMOTO M, et al. Efficacy of relaxin for cisplatin-induced testicular dysfunction and epididymal spermatotoxicity[J]. Basic Clin Androl, 2020, 30:3. |
[67] | NISTRI S, FIORILLO C, BECATTI M, et al. Human Relaxin-2(Serelaxin) attenuates oxidative stress in cardiac muscle cells exposed in vitro to hypoxia-reoxygenation. Evidence for the involvement of reduced glutathione up-regulation[J]. Antioxidants (Basel), 2020, 9(9):774. |
[68] | BAUERSACHS J, KÖNIG T, VAN DER MEER P, et al. Pathophysiology, diagnosis and management of peripartum cardiomyopathy:a position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy[J]. Eur J Heart Fail, 2019, 21(7):827-843. |
[69] | IBRAHIM M A, ALBAHLOL I A, WANI F A, et al. Resveratrol protects against cisplatin-induced ovarian and uterine toxicity in female rats by attenuating oxidative stress, inflammation and apoptosis[J]. Chem-Biol Interact, 2021, 338:109402. |
[70] | ALAGBONSI A I, OLAYAKI L A, ABDULRAHIM H A, et al. Cannabinoid-deficient Benin republic hemp (Cannabis sativa L.) improves semen parameters by reducing prolactin and enhancing anti-oxidant status[J]. BMC Complement Altern Med, 2019, 19(1):132. |
[71] | HUANG G L, MEI X Y, HU J C. The Antioxidant activities of natural polysaccharides[J]. Curr Drug Targets, 2017, 18(11):1296-1300. |
[72] | MU S, YANG W J, HUANG G L. Antioxidant activities and mechanisms of polysaccharides[J]. Curr Opin Chem Biol, 2021, 97(3):628-632. |
[73] | YOSHIMURA M. Structure elucidation of antioxidative polyphenols and their biological properties[J]. Yakugaku Zasshi, 2014, 134(9):957-964. |
[74] | DE LIMA CHERUBIM D J, BUZANELLO MARTINS C V, OLIVEIRA FARIÑA L, et al. Polyphenols as natural antioxidants in cosmetics applications[J]. J Cosmet Dermatol, 2020, 19(1):33-37. |
[75] | DIAS M C, PINTO D C G A, SILVA A M S. Plant flavonoids:chemical characteristics and biological activity[J]. Molecules, 2021, 26(17):5377. |
[76] | SHEN N, WANG T F, GAN Q, et al. Plant flavonoids:classification, distribution, biosynthesis, and antioxidant activity[J]. Food Chem, 2022, 383:132531. |
[77] | HOSTETLER G L, RALSTON R A, SCHWARTZ S J. Flavones:food sources, bioavailability, metabolism, and bioactivity[J]. Adv Nutr, 2017, 8(3):423-435. |
[78] | FENG X C, LI Y, BROBBEY OPPONG M, et al. Insights into the intestinal bacterial metabolism of flavonoids and the bioactivities of their microbe-derived ring cleavage metabolites[J]. Drug Metab Rev, 2018, 50(3):343-356. |
[1] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[2] | 姜丽君, 宗云鹤, 李云雷, 陈继兰, 耿照玉, 孙研研, 金四华. 抗氧化剂在家禽精液储存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(3): 913-923. |
[3] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
[4] | 王栋, 柳可欣, 何炎峻, 邓守翔, 刘云, 马卫明. 饲粮中添加腐殖酸钠对鼠伤寒沙门菌感染肉鸡肝组织炎症和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(2): 629-639. |
[5] | 刘元红, 胡玉欢, 张莉, 杨萍瑞, 胡卫东, 马琪, 毕师诚. 白术-肉苁蓉治疗便秘的网络药理学分析及试验验证[J]. 畜牧兽医学报, 2024, 55(2): 834-845. |
[6] | 韩坤良, 兰伟, 胡新, 崔亚东, 孔祥峰. 复方中药超微粉对蛋鸡抗氧化性能及相关基因表达的影响[J]. 畜牧兽医学报, 2023, 54(9): 3784-3792. |
[7] | 张旭梅, 魏玉荣, 许丞惠, 杨彤, 史慧君, 付强, 杨莉. 基于网络药理学和试验验证分析小檗碱治疗鸡沙门菌感染的作用机制[J]. 畜牧兽医学报, 2023, 54(8): 3557-3570. |
[8] | 巩志国, 赵佳敏, 顾柏臣, 任佩佩, 于琢雅, 白云洁, 刘鑫煜, 王超, 刘博. 基于网络药理学分析党参减轻大肠杆菌感染小鼠急性肺损伤的作用机制[J]. 畜牧兽医学报, 2023, 54(8): 3571-3581. |
[9] | 熊程坤, 张道亮, 杨悦, 丁红研, 赵杰, 李玉, 王希春, 冯士彬, 赵畅, 汤继顺, 吴金节. 芦丁对围产期湖羊瘤胃发酵、瘤胃菌群结构及抗氧化性能的影响[J]. 畜牧兽医学报, 2023, 54(7): 2898-2909. |
[10] | 赵栋皓, 原梦, 马凯腾, 段卓, 祝一鑫, 唐芳, 韩克光, 霍乃蕊. 羊骨胶原肽对镉的螯合作用及对镉致鸡肝损伤的干预作用[J]. 畜牧兽医学报, 2023, 54(6): 2641-2652. |
[11] | 刘燕坤, 罗润波, 林焱, 朱伟云. 噬菌体鸡尾酒对断奶仔猪生长性能、血液参数和粪样菌群的影响[J]. 畜牧兽医学报, 2023, 54(4): 1555-1567. |
[12] | 潘婵媛, 赵梓轩, 段铭洁, 蒋林树, 童津津. 基于网络药理学预测青蒿缓解奶牛氧化应激的作用机制[J]. 畜牧兽医学报, 2023, 54(3): 1071-1084. |
[13] | 刘慧娟, 王超, 周斌斌, 张佳琦, 王恬, 庄苏. 饲粮中添加芦丁对肉鸡回肠形态、免疫、抗氧化及屏障功能的影响[J]. 畜牧兽医学报, 2023, 54(2): 630-641. |
[14] | 徐自强, 刘金松, 孙耀威, 史永浩, 吴艳萍, 张瑞强. 月桂酸对肉鸡屠宰性能、肌肉品质和抗氧化功能的影响[J]. 畜牧兽医学报, 2023, 54(11): 4691-4701. |
[15] | 苏丹, 文晓宾, 马腾, 钟儒清, 王阳, 陈亮. 羟基酪醇对肉仔鸡生长性能、抗氧化能力和肠道炎性因子的影响[J]. 畜牧兽医学报, 2023, 54(11): 4851-4859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||