畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (2): 494-503.doi: 10.11843/j.issn.0366-6964.2023.02.008
何豪杰, 薛美*, 冯力*
收稿日期:
2022-06-15
出版日期:
2023-02-23
发布日期:
2023-02-21
通讯作者:
薛美,主要从事动物疫苗与分子免疫学研究,E-mail:xuemei_23@126.com;冯力,主要从事兽医微生物及其分子生物学研究,E-mail:fengli@caas.cn
作者简介:
何豪杰(1998-),男,浙江诸暨人,硕士生,主要从事动物病毒及分子生物学研究,E-mail:haojhe@163.com;Tel:0451-51051715
基金资助:
HE Haojie, XUE Mei*, FENG Li*
Received:
2022-06-15
Online:
2023-02-23
Published:
2023-02-21
摘要: 核苷酸结合寡聚化结构域样受体蛋白1(NLRP1)是NOD样受体(nucleotide-binding oligomerization domain-like receptors,NLRs)家族的成员,是人们发现的第一个能形成炎性小体的蛋白。NLRP1的激活可引起半胱氨酸蛋白酶-1前体(pro-caspase-1)的活化并进一步促进炎性因子的成熟和释放,在天然免疫中发挥着重要作用。NLRP1的结构在不同种属间存在差异,目前能引起NLRP1激活的机制,主要包括通过蛋白酶体途径降解并激活NLRP1、通过抑制DPP9激活NLRP1以及弓形虫和部分代谢抑制剂激活NLRP1等。某些病毒蛋白或RNA也能够激活NLRP1,其具体激活机制以及NLRP1在抗病毒感染中发挥的作用尚未明确,还有待于进一步研究。
中图分类号:
何豪杰, 薛美, 冯力. NLRP1炎性小体的激活机制[J]. 畜牧兽医学报, 2023, 54(2): 494-503.
HE Haojie, XUE Mei, FENG Li. Activation Mechanism of NLRP1 Inflammasome[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 494-503.
[1] | THAISS C A, ZMORA N, LEVY M, et al. The microbiome and innate immunity[J]. Nature, 2016, 535(7610):65-74. |
[2] | DEMARIA O, CORNEN S, DAËRON M, et al. Harnessing innate immunity in cancer therapy[J]. Nature, 2019, 574(7776):45-56. |
[3] | LI D Y, WU M H. Pattern recognition receptors in health and diseases[J]. Sig Transduct Target Ther, 2021, 6(1):291. |
[4] | KANNEGANTI T D. Intracellular innate immune receptors:life inside the cell[J]. Immunol Rev, 2020, 297(1):5-12. |
[5] | DIAMOND M S, KANNEGANTI T D. Innate immunity:the first line of defense against SARS-CoV-2[J]. Nat Immunol, 2022, 23(2):165-176. |
[6] | FITZGERALD K A, KAGAN J C. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6):1044-1066. |
[7] | BROZ P, DIXIT V M. Inflammasomes:mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7):407-420. |
[8] | SHI J J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575):660-665. |
[9] | KAYAGAKI N, STOWE I B, LEE B L, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature, 2015, 526(7575):666-671. |
[10] | BURDETTE B E, ESPARZA A N, ZHU H, et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B, 2021, 11(9):2768-2782. |
[11] | MARTINON F, BURNS K, TSCHOPP J. The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL-β[J]. Mol Cell, 2002, 10(2):417-426. |
[12] | SHAW M H, REIMER T, KIM Y G, et al. NOD-like receptors (NLRs):bona fide intracellular microbial sensors[J]. Curr Opin Immunol, 2008, 20(4):377-382. |
[13] | TING J P Y, LOVERING R C, ALNEMRI E S, et al. The NLR gene family:a standard nomenclature[J]. Immunity, 2008, 28(3):285-287. |
[14] | LUPFER C, KANNEGANTI T D. The expanding role of NLRs in antiviral immunity[J]. Immunol Rev, 2013, 255(1):13-24. |
[15] | DANIS J, MELLETT M. Nod-like receptors in host defence and disease at the epidermal barrier[J]. Int J Mol Sci, 2021, 22(9):4677. |
[16] | QIAN X K, ZHANG J, LI X D, et al. Research progress on dipeptidyl peptidase family:structure, function and xenobiotic metabolism[J]. Curr Med Chem, 2022, 29(12):2167-2188. |
[17] | BENTHAM A, BURDETT H, ANDERSON P A, et al. Animal NLRs provide structural insights into plant NLR function[J]. Ann Bot, 2017, 119(5):698-702. |
[18] | HU Z H, YAN C Y, LIU P Y, et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism[J]. Science, 2013, 341(6142):172-175. |
[19] | MOTTA V, SOARES F, SUN T, et al. NOD-like receptors:versatile cytosolic sentinels[J]. Physiol Rev, 2015, 95(1):149-178. |
[20] | LIU P, LU Z W, LIU L L, et al. NOD-like receptor signaling in inflammation-associated cancers:from functions to targeted therapies[J]. Phytomedicine, 2019, 64:152925. |
[21] | MASTERNAK K, MUHLETHALER-MOTTET A, VILLARD J, et al. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex[J]. Genes Dev, 2000, 14(9):1156-1166. |
[22] | MAIER J K X, LAHOUA Z, GENDRON N H, et al. The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7[J]. J Neurosci, 2002, 22(6):2035-2043. |
[23] | DAVOODI J, GHAHREMANI M H, ES-HAGHI A, et al. Neuronal apoptosis inhibitory protein, NAIP, is an inhibitor of procaspase-9[J]. Int J Biochem Cell Biol, 2010, 42(6):958-964. |
[24] | SANNA M G, DA SILVA CORREIA J, DUCREY O, et al. IAP suppression of apoptosis involves distinct mechanisms:the TAK1/JNK1 signaling cascade and caspase inhibition[J]. Mol Cell Biol, 2002, 22(6):1754-1766. |
[25] | HAUSMANN A, BÖCK D, GEISER P, et al. Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella typhimurium due to site-specific bacterial PAMP expression[J]. Mucosal Immunol, 2020, 13(3):530-544. |
[26] | CORREA R G, MILUTINOVIC S, REED J C. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases[J]. Biosci Rep, 2012, 32(6):597-608. |
[27] | VELLOSO F J, TROMBETTA-LIMA M, ANSCHAU V, et al. NOD-like receptors:major players (and targets) in the interface between innate immunity and cancer[J]. Biosci Rep, 2019, 39(4):BSR20181709. |
[28] | SCHRODER K, TSCHOPP J. The inflammasomes[J]. Cell, 2010, 140(6):821-832. |
[29] | TATTOLI I, CARNEIRO L A, JéHANNO M, et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production[J]. EMBO Rep, 2008, 9(3):293-300. |
[30] | STOKMAN G, KORS L, BAKKER P J, et al. NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity[J]. J Exp Med, 2017, 214(8):2405-2420. |
[31] | TSCHOPP J, MARTINON F, BURNS K. NALPs:a novel protein family involved in inflammation[J]. Nat Rev Mol Cell Biol, 2003, 4(2):95-104. |
[32] | YU C H, MOECKING J, GEYER M, et al. Mechanisms of NLRP1-mediated autoinflammatory disease in humans and mice[J]. J Mol Biol, 2018, 430(2):142-152. |
[33] | ZHONG F L, MAMAÏ O, SBORGI L, et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation[J]. Cell, 2016, 167(1):187-202. e17. |
[34] | CHAVARRÍA-SMITH J, MITCHELL P S, HO A M, et al. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation[J]. PLoS Pathog, 2016, 12(12):e1006052. |
[35] | FINGER J N, LICH J D, DARE L C, et al. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity[J]. J Biol Chem, 2012, 287(30):25030-25037. |
[36] | XUE Y S, ENOSI TUIPULOTU D, TAN W H, et al. Emerging activators and regulators of inflammasomes and pyroptosis[J]. Trends Immunol, 2019, 40(11):1035-1052. |
[37] | D'OSUALDO A, WEICHENBERGER C X, WAGNER R N, et al. CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain[J]. PLoS One, 2011, 6(11):e27396. |
[38] | FAUSTIN B, LARTIGUE L, BRUEY J M, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation[J]. Mol Cell, 2007, 25(5):713-724. |
[39] | LILUE J, DORAN A G, FIDDES I T, et al. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci[J]. Nat Genet, 2018, 50(11):1574-1583. |
[40] | CHAVARRÍA-SMITH J, VANCE R E. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor[J]. PLoS Pathog, 2013, 9(6):e1003452. |
[41] | ROBERTS J E, WATTERS J W, BALLARD J D, et al. Ltx1, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11[J]. Mol Microbiol, 1998, 29(2):581-591. |
[42] | WICKLIFFE K E, LEPPLA S H, MOAYERI M. Killing of macrophages by anthrax lethal toxin:involvement of the N-end rule pathway[J]. Cell Microbiol, 2008, 10(6):1352-1362. |
[43] | BOYDEN E D, DIETRICH W F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin[J]. Nat Genet, 2006, 38(2):240-244. |
[44] | LEVINSOHN J L, NEWMAN Z L, HELLMICH K A, et al. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome[J]. PLoS Pathog, 2012, 8(3):e1002638. |
[45] | CHUI A J, OKONDO M C, RAO S D, et al. N-terminal degradation activates the NLRP1B inflammasome[J]. Science, 2019, 364(6435):82-85. |
[46] | SANDSTROM A, MITCHELL P S, GOERS L, et al. Functional degradation:a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes[J]. Science, 2019, 364(6435):eaau1330. |
[47] | TAABAZUING C Y, GRISWOLD A R, BACHOVCHIN D A. The NLRP1 and CARD8 inflammasomes[J]. Immunol Rev, 2020, 297(1):13-25. |
[48] | MITCHELL P S, SANDSTROM A, VANCE R E. The NLRP1 inflammasome:new mechanistic insights and unresolved mysteries[J]. Curr Opin Immunol, 2019, 60:37-45. |
[49] | WILSON C H, ZHANG H E, GORRELL M D, et al. Dipeptidyl peptidase 9 substrates and their discovery:current progress and the application of mass spectrometry-based approaches[J]. Biol Chem, 2016, 397(9):837-856. |
[50] | OKONDO M C, JOHNSON D C, SRIDHARAN R, et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis[J]. Nat Chem Biol, 2017, 13(1):46-53. |
[51] | OKONDO M C, RAO S D, TAABAZUING C Y, et al. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome[J]. Cell Chem Biol, 2018, 25(3):262-267. e5. |
[52] | ZHONG F L, ROBINSON K, TEO D E T, et al. Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding[J]. J Biol Chem, 2018, 293(49):18864-18878. |
[53] | GRISWOLD A R, CIFANI P, RAO S D, et al. A chemical strategy for protease substrate profiling[J]. Cell Chem Biol, 2019, 26(6):901-907. e6. |
[54] | JOHNSON D C, TAABAZUING C Y, OKONDO M C, et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia[J]. Nat Med, 2018, 24(8):1151-1156. |
[55] | HUANG M H, ZHANG X X, TOH G A, et al. Structural and biochemical mechanisms of NLRP1 inhibition by DPP9[J]. Nature, 2021, 592(7856):773-777. |
[56] | HOLLINGSWORTH L R, SHARIF H, GRISWOLD A R, et al. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation[J]. Nature, 2021, 592(7856):778-783. |
[57] | CIRELLI K M, GORFU G, HASSAN M A, et al. Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii[J]. PLoS Pathog, 2014, 10(3):e1003927. |
[58] | EWALD S E, CHAVARRIA-SMITH J, BOOTHROYD J C. NLRP1 is an inflammasome sensor for Toxoplasma gondii[J]. Infect Immun, 2014, 82(1):460-468. |
[59] | WITOLA W H, MUI E, HARGRAVE A, et al. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells[J]. Infect Immun, 2011, 79(2):756-766. |
[60] | GORFU G, CIRELLI K M, MELO M B, et al. Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii[J]. mBio, 2014, 5(1):e01117-13. |
[61] | ZHU L J, QI W J, YANG G, et al. Toxoplasma gondii rhoptry protein 7 (ROP7) interacts with NLRP3 and promotes inflammasome hyperactivation in THP-1-derived macrophages[J]. Cells, 2022, 11(10):1630. |
[62] | DUNCAN J A, BERGSTRALH D T, WANG Y H, et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling[J]. Proc Natl Acad Sci U S A, 2007, 104(19):8041-8046. |
[63] | LIAO K C, MOGRIDGE J. Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP[J]. Infect Immun, 2013, 81(2):570-579. |
[64] | ROBINSON K S, TEO D E T, TAN K S, et al. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia[J]. Science, 2020, 370(6521):eaay2002. |
[65] | TSU B V, BEIERSCHMITT C, RYAN A P, et al. Diverse viral proteases activate the NLRP1 inflammasome[J]. Elife, 2021, 10:e60609. |
[66] | NOZAKI K, LI L P, MIAO E A. Innate sensors trigger regulated cell death to combat intracellular infection[J]. Ann Rev Immunol, 2022, 40:469-498. |
[67] | PLANōS R, PINILLA M, SANTONI K, et al. Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells[J]. Mol Cell, 82(13):2385-2400. |
[68] | WANG Q K, GAO H B, CLARK K M, et al. CARD8 is an inflammasome sensor for HIV-1 protease activity[J]. Science, 2021, 371(6535):eabe1707. |
[69] | HOLLINGSWORTH L R, DAVID L, LI Y, et al. Mechanism of filament formation in UPA-promoted CARD8 and NLRP1 inflammasomes[J]. Nat Commun, 2021, 12(1):189. |
[70] | YANG X, ZHOU J F, LIU C R, et al. KSHV-encoded ORF45 activates human NLRP1 inflammasome[J]. Nat Immunol, 2022, 23(6):916-926. |
[71] | BAUERNFRIED S, SCHERR M J, PICHLMAIR A, et al. Human NLRP1 is a sensor for double-stranded RNA[J]. Science, 2021, 371(6528):eabd0811. |
[72] | TUPIK J D, NAGAI-SINGER M A, ALLEN I C. To protect or adversely affect?The dichotomous role of the NLRP1 inflammasome in human disease[J]. Mol Aspects Med, 2020, 76:100858. |
[73] | ALEHASHEMI S, GOLDBACH-MANSKY R. Human autoinflammatory diseases mediated by NLRP3-, Pyrin-, NLRP1-, and NLRC4-inflammasome dysregulation updates on diagnosis, treatment, and the respective roles of IL-1 and IL-18[J]. Front Immunol, 2020, 11:1840. |
[74] | SAND J, FENINI G, GROSSI S, et al. The NLRP1 inflammasome pathway is silenced in cutaneous squamous cell carcinoma[J]. J Invest Dermatol, 2019, 139(8):1788-1797. e6. |
[75] | FENINI G, KARAKAYA T, HENNIG P, et al. The NLRP1 inflammasome in human skin and beyond[J]. Int J Mol Sci, 2020, 21(13):4788. |
[76] | YAP J K Y, PICKARD B S, CHAN E W L, et al. The role of neuronal NLRP1 inflammasome in Alzheimer's disease:bringing neurons into the neuroinflammation game[J]. Mol Neurobiol, 2019, 56(11):7741-7753. |
[77] | MULLARD A. NLRP3 inhibitors stoke anti-inflammatory ambitions[J]. Nat Rev Drug Discov, 2019, 18(6):405-407. |
[78] | DE BRITO TOSCANO E C, ROCHA N P, LOPES B N A, et al. Neuroinflammation in Alzheimer's disease:focus on NLRP1 and NLRP3 inflammasomes[J]. Curr Protein Pept Sci, 2021, 22(8):584-598. |
[79] | WANG P H, ZHU S, YANG L, et al. Nlrp6 regulates intestinal antiviral innate immunity[J]. Science, 2015, 350(6262):826-830. |
[1] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[2] | 余祖华, 高梦茹, 齐志颖, 张静雨, 何雷, 陈建, 丁轲. RNA结合蛋白ELAVL1的功能及其调控病毒复制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1914-1925. |
[3] | 黄金, 李思远, 毛立, 蔡旭航, 谢玲玲, 王府, 周华, 李基棕, 李彬. 牛冠状病毒S1蛋白的真核表达及间接ELISA方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(5): 2050-2060. |
[4] | 韩阳, 关帅印, 李振, 周赛赛, 袁红根, 宋云峰. 猪圆环病毒3型Rep蛋白的原核表达及酶活性分析[J]. 畜牧兽医学报, 2024, 55(5): 2061-2071. |
[5] | 宋晓晴, 邓瑞德, 李欣, 李姣, 李润成, 杜丽飞, 董伟, 葛猛. PCV4 Cap抗体ELISA检测方法的建立及血清流行病学调查[J]. 畜牧兽医学报, 2024, 55(5): 2072-2079. |
[6] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[7] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
[8] | 熊挺, 何献铭, 赵希雅, 庄婷婷, 黄美珍, 梁世金, 余传照, 梁雪静, 陈瑞爱. 三株鸡传染性支气管炎病毒优势流行毒株全基因组分析及其致病性[J]. 畜牧兽医学报, 2024, 55(5): 2109-2122. |
[9] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[10] | 王静, 张淑娟, 胡霞, 刘向阳, 张兴翠, 宋振辉. CD44通过影响猪流行性腹泻病毒复制调节钠氢交换体3活性[J]. 畜牧兽医学报, 2024, 55(5): 2176-2185. |
[11] | 张颖, 宋春莲, 张莹, 沈鸿, 舒相华, 杨洪贵. 伪狂犬病病毒感染小鼠基质金属蛋白酶-9介导紧密连接蛋白损伤血脑屏障的研究[J]. 畜牧兽医学报, 2024, 55(5): 2186-2194. |
[12] | 李鹏飞, 高桂琴, 周广青, 吴锦艳, 颜新敏, 曹小安, 何继军, 袁莉刚, 尚佑军. 山羊地方性鼻内肿瘤病毒TaqMan荧光定量RT-PCR检测方法的建立及应用[J]. 畜牧兽医学报, 2024, 55(5): 2259-2266. |
[13] | 胡泽奇, 李润成, 谭祖明, 谢秀艳, 王江平, 秦乐娟, 李荣, 葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(5): 2267-2272. |
[14] | 郭雪莲, 李永琴, 李瑞乾, 李昊, 靳双媛, 王雪妍, 杜家伟, 许立华. 牛呼吸道合胞体病毒G和F蛋白的生物学功能[J]. 畜牧兽医学报, 2024, 55(4): 1478-1487. |
[15] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||