畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (1): 32-42.doi: 10.11843/j.issn.0366-6964.2022.01.004
段志强1,2*, 谢玲玲3, 陈佳琪1,2, 唐宏1,2, 王燕碧1,2, 赵采芹1,2, 赵佳福1,2
收稿日期:
2020-07-19
出版日期:
2022-01-23
发布日期:
2022-01-26
通讯作者:
段志强,E-mail:zqduan@gzu.edu.cn
作者简介:
段志强(1985-),男,湖北襄阳人,博士,副教授,主要从事家禽重要疫病发病机理和免疫防控新技术研究
基金资助:
DUAN Zhiqiang1,2*, XIE Lingling3, CHEN Jiaqi1,2, TANG Hong1,2, WANG Yanbi1,2, ZHAO Caiqin1,2, ZHAO Jiafu1,2
Received:
2020-07-19
Online:
2022-01-23
Published:
2022-01-26
摘要: 新城疫病毒(Newcastle disease virus,NDV)是单股负链不分节段的RNA病毒,其基因组大小约为15.2 kb,编码6种结构蛋白和2种非结构蛋白。由于NDV基因组较小,不能编码病毒复制需要的所有蛋白,因此必须借助宿主蛋白来完成NDV的生活周期。M蛋白是一种非糖基化膜相关蛋白,在抑制宿主细胞基因转录、调节病毒基因组复制和转录、促进子代病毒粒子组装和出芽等方面具有重要作用。目前,国内外在M蛋白与NDV毒力和复制的关系,以及以M蛋白为核心的病毒样颗粒形成和利用方面取得了较大的研究进展,但是对M蛋白与宿主蛋白相互作用以及M蛋白如何调控NDV的复制研究进展相对缓慢。鉴于M蛋白在NDV复制中的重要作用,本文主要从M蛋白的结构特征和细胞内定位特征,以及M蛋白与宿主蛋白相互作用的功能研究方面进行综述,以期为更好地认识和研究M蛋白在NDV复制和致病性中的作用提供参考。
中图分类号:
段志强, 谢玲玲, 陈佳琪, 唐宏, 王燕碧, 赵采芹, 赵佳福. 新城疫病毒M蛋白与宿主蛋白相互作用的研究进展[J]. 畜牧兽医学报, 2022, 53(1): 32-42.
DUAN Zhiqiang, XIE Lingling, CHEN Jiaqi, TANG Hong, WANG Yanbi, ZHAO Caiqin, ZHAO Jiafu. Research Progress on the Interactions of Newcastle Disease Virus M Protein with Host Proteins[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 32-42.
[1] | AMARASINGHE G K, AYLLÓN M A, BÀO Y, et al. Taxonomy of the order Mononegavirales:update 2019[J]. Arch Virol, 2019, 164(7):1967-1980. |
[2] | BATTISTI A J, MENG G, WINKLER D C, et al. Structure and assembly of a paramyxovirus matrix protein[J]. Proc Natl Acad Sci U S A, 2012, 109(35):13996-14000. |
[3] | COLEMAN N A, PEEPLES M E. The matrix protein of Newcastle disease virus localizes to the nucleus via a bipartite nuclear localization signal[J]. Virology, 1993, 195(2):596-607. |
[4] | DUAN Z Q, DENG S S, JI X Q, et al. Nuclear localization of Newcastle disease virus matrix protein promotes virus replication by affecting viral RNA synthesis and transcription and inhibiting host cell transcription[J]. Vet Res, 2019, 50(1):22. |
[5] | DUAN Z Q, SONG Q Q, WANG Y Y, et al. Characterization of signal sequences determining the nuclear export of Newcastle disease virus matrix protein[J]. Arch Virol, 2013, 158(12):2589-2595. |
[6] | PANTUA H D, MCGINNES L W, PEEPLES M E, et al. Requirements for the assembly and release of Newcastle disease virus-like particles[J]. J Virol, 2006, 80(22):11062-11073. |
[7] | DUAN Z Q, LI J, ZHU J, et al. A single amino acid mutation, R42A, in the Newcastle disease virus matrix protein abrogates its nuclear localization and attenuates viral replication and pathogenicity[J]. J Gen Virol, 2014, 95(5):1067-1073. |
[8] | XU H X, SONG Q Q, ZHU J, et al. A single R36Q mutation in the matrix protein of pigeon paramyxovirus type 1 reduces virus replication and shedding in pigeons[J]. Arch Virol, 2016, 161(7):1949-1955. |
[9] | XU H X, DUAN Z Q, CHEN Y, et al. Simultaneous mutation of G275A and P276A in the matrix protein of Newcastle disease virus decreases virus replication and budding[J]. Arch Virol, 2016, 161(12):3527-3533. |
[10] | 段志强, 嵇辛勤, 邓珊珊, 等. 鸭源新城疫病毒M蛋白核定位信号突变影响病毒的毒力和复制能力[J]. 微生物学报, 2018, 58(10):1786-1797.DUAN Z Q, JI X Q, DENG S S, et al. Nuclear localization signal mutation in the M protein attenuates the virulence and replication of duck-origin Newcastle disease virus[J]. Acta Microbiologica Sinica, 2018, 58(10):1786-1797. (in Chinese) |
[11] | XU X H, DING Z, LI J D, et al. Newcastle disease virus-like particles containing the Brucella BCSP31 protein induce dendritic cell activation and protect mice against virulent Brucella challenge[J]. Vet Microbiol, 2019, 229:39-47. |
[12] | XU X H, QIAN J, QIN L S, et al. Chimeric Newcastle disease virus-like particles containing DC-binding peptide-fused haemagglutinin protect chickens from virulent Newcastle disease virus and H9 N2 avian influenza virus challenge[J]. Virol Sin, 2020, 35(4):455-467. |
[13] | YANG Y P, SHI W, ABIONA O M, et al. Newcastle disease virus-like particles displaying prefusion-stabilized SARS-CoV-2 spikes elicit potent neutralizing responses[J]. Vaccines (Basel), 2021, 9(2):73. |
[14] | CHAMBERS P, MILLAR N S, PLATT S G, et al. Nucleotide sequence of the gene encoding the matrix protein of Newcastle disease virus[J]. Nucl Acids Res, 1986, 14(22):9051-9061. |
[15] | 姜维雨. 新城疫病毒M蛋白K119和K260泛素化修饰有助于病毒样颗粒的形成[D]. 上海: 中国农业科学院, 2019.JIANG W Y. K119 and K260 ubiquitination of Newcastle disease virus M protein is essential for efficient virus-like particle formation[D]. Shanghai: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) |
[16] | 彭听雨, 杨冰欢, 谭 磊, 等. 新城疫病毒M蛋白247位赖氨酸对其功能的影响[J/OL]. 中国动物传染病学报, 2021:1-10. (2021-04-27). http://kns. cnki. net/kcms/detail/31. 2031.S. 20210427. 1012. 010.html. PENG T Y, YANG B H, TAN L, et al. Effect of 247 lysine in Newcastle disease virus matrix protein on its functions[J/OL]. Chinese Journal of Animal Infectious Diseases, 2021:1-10. (2021-04-27). http://kns. cnki. net/kcms/detail/31. 2031.S. 20210427. 1012. 010.html.(in Chinese) |
[17] | 董 靖. 新城疫病毒M蛋白单克隆抗体制备及核定位研究[D]. 合肥: 安徽农业大学, 2020.DONG J. Establishment of monoclonal antibodies against Newcastle disease virus matrix protein and its nuclear localization[D]. Hefei: Anhui Agricultural University. (in Chinese) |
[18] | BI Y K, JIN Z Y, WANG Y H, et al. Identification of two distinct linear B cell epitopes of the matrix protein of the Newcastle disease virus vaccine strain LaSota[J]. Viral Immunol, 2019, 32(5):221-229. |
[19] | EL NAJJAR F, SCHMITT A P, DUTCH R E. Paramyxovirus glycoprotein incorporation, assembly and budding:a three way dance for infectious particle production[J]. Viruses, 2014, 6(8):3019-3054. |
[20] | SHTYKOVA E V, PETOUKHOV M V, DADINOVA L A, et al. Solution structure, self-assembly, and membrane interactions of the matrix protein from Newcastle disease virus at neutral and acidic pH[J]. J Virol, 2019, 93(6):e01450-18. |
[21] | SÁNCHEZ-FELIPE L, VILLAR E, MUOZ-BARROSO I. Entry of Newcastle disease virus into the host cell:role of acidic pH and endocytosis[J]. Biochim Biophys Acta, 2014, 1838(1):300-309. |
[22] | ZHAO R, SHI Q K, HAN Z X, et al. Newcastle disease virus entry into chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytic pathway that requires Rab5[J]. J Virol, 2021, 95(13):e0228820. |
[23] | FAABERG K S, PEEPLES M E. Strain variation and nuclear association of Newcastle disease virus matrix protein[J]. J Virol, 1988, 62(2):586-593. |
[24] | PEEPLES M E, WANG C, GUPTA K C, et al. Nuclear entry and nucleolar localization of the Newcastle disease virus (NDV) matrix protein occur early in infection and do not require other NDV proteins[J]. J Virol, 1992, 66(5):3263-3269. |
[25] | DUAN Z Q, LI Q H, HE L, et al. Application of green fluorescent protein-labeled assay for the study of subcellular localization of Newcastle disease virus matrix protein[J]. J Virol Methods, 2013, 194(1-2):118-122. |
[26] | WOLFF B, PARK M K, KLIMA E, et al. Antibodies against the SV40 large T antigen nuclear localization sequence[J]. Arch Biochem Biophys, 1991, 288(1):131-140. |
[27] | PAINE P L, YASSIN R, PAINE T M, et al. Intranuclear binding on nucleoplasmin[J]. J Cell Biochem, 1995, 58(1):105-114. |
[28] | FUNG H Y J, NIESMAN A, CHOOK Y M. An update to the CRM1 cargo/NES database NESdb[J]. Mol Biol Cell, 2021, 32(6):467-469. |
[29] | DUAN Z Q, CHEN J, XU H X, et al. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication[J]. Virology, 2014, 452-453:212-222. |
[30] | BURMAN B, PESCI G, ZAMARIN D. Newcastle disease virus at the forefront of cancer immunotherapy[J]. Cancers (Basel), 2020, 12(12):3552. |
[31] | REN S H, REHMAN Z U, SHI M Y, et al. Hemagglutinin-neuraminidase and fusion proteins of virulent Newcastle disease virus cooperatively disturb fusion-fission homeostasis to enhance mitochondrial function by activating the unfolded protein response of endoplasmic reticulum and mitochondrial stress[J]. Vet Res, 2019, 50(1):37. |
[32] | REN S H, UR REHMAN Z, GAO B, et al. ATM-mediated DNA double-strand break response facilitated oncolytic Newcastle disease virus replication and promoted syncytium formation in tumor cells[J]. PLoS Pathog, 2020, 16(6):e1008514. |
[33] | CHENG J H, SUN Y J, ZHANG F Q, et al. Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response[J]. Sci Rep, 2016, 6:24721. |
[34] | GRAY Z, TABARRAEI A, MORADI A, et al. M51R and Delta-M51 matrix protein of the vesicular stomatitis virus induce apoptosis in colorectal cancer cells[J]. Mol Biol Rep, 2019, 46(3):3371-3379. |
[35] | KOJIMA I, IZUMI F, OZAWA M, et al. Analyses of cell death mechanisms related to amino acid substitution at position 95 in the rabies virus matrix protein[J]. J Gen Virol, 2021, 102(4):001594, doi:10. 1099/jgv. 0. 001594. |
[36] | MOLOUKI A, HSU Y T, JAHANSHIRI F, et al. The matrix (M) protein of Newcastle disease virus binds to human bax through its BH3 domain[J]. Virol J, 2011, 8:385. |
[37] | GHILDYAL R, HO A, JANS D A. Central role of the respiratory syncytial virus matrix protein in infection[J]. FEMS Microbiol Rev, 2006, 30(5):692-705. |
[38] | HARRISON M S, SAKAGUCHI T, SCHMITT A P. Paramyxovirus assembly and budding:building particles that transmit infections[J]. Int J Biochem Cell Biol, 2010, 42(9):1416-1429. |
[39] | PENTECOST M, VASHISHT A A, LESTER T, et al. Evidence for ubiquitin-regulated nuclear and subnuclear trafficking among Paramyxovirinae matrix proteins[J]. PLoS Pathog, 2015, 11(3):e1004739. |
[40] | YU X L, SHAHRIARI S, LI H M, et al. Measles virus matrix protein inhibits host cell transcription[J]. PLoS One, 2016, 11(8):e0161360. |
[41] | DONNELLY C M, ROBY J A, SCOTT C J, et al. The structural features of Henipavirus matrix protein driving intracellular trafficking[J]. Viral Immunol, 2021, 34(1):27-40. |
[42] | DENIS G V, MCCOMB M E, FALLER D V, et al. Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines[J]. J Proteome Res, 2006, 5(3):502-511. |
[43] | ZHOU L, HAN Y F, YUAN C, et al. Screening and bioinformatics analysis of cellular proteins interacting with chicken bromodomain-containing protein 2 in DF-1 cells[J]. Br Poult Sci, 2021:1-10.doi:10. 1080/00071668. 2021. 1943311. |
[44] | 周 磊, 韩一帆, 段志强. 含溴结构域蛋白2结构与功能的研究进展[J]. 中国细胞生物学学报, 2021, 43(4):856-865.ZHOU L, HAN Y F, DUAN Z Q. Advances in the structure and function of bromodomain-containing protein 2[J]. Chinese Journal of Cell Biology, 2021, 43(4):856-865. (in Chinese) |
[45] | DUAN Z Q, HAN Y F, ZHOU L, et al. Chicken bromodomain-containing protein 2 interacts with the Newcastle disease virus matrix protein and promotes viral replication[J]. Vet Res, 2020, 51(1):120. |
[46] | FU X K, LIANG C, LI F F, et al. The rules and functions of nucleocytoplasmic shuttling proteins[J]. Int J Mol Sci, 2018, 19(5):1445. |
[47] | PACI G, ZHENG T T, CARIA J, et al. Molecular determinants of large cargo transport into the nucleus[J]. Elife, 2020, 9:e55963. |
[48] | DUAN Z Q, XU H X, JI X Q, et al. Importin α5 negatively regulates importin β1-mediated nuclear import of Newcastle disease virus matrix protein and viral replication and pathogenicity in chicken fibroblasts[J]. Virulence, 2018, 9(1):783-803. |
[49] | WANG A Y, LIU H T. The past, present, and future of CRM1/XPO1 inhibitors[J]. Stem Cell Investig, 2019, 6:6. |
[50] | SALVETTI A, GRECO A. Viruses and the nucleolus:the fatal attraction[J]. Biochim Biophys Acta Mol Basis Dis, 2014, 1842(6):840-847. |
[51] | RAWLINSON S M, MOSELEY G W. The nucleolar interface of RNA viruses[J]. Cell Microbiol, 2015, 17(8):1108-1120. |
[52] | ZHOU J W, DAI Y D, LIN C, et al. Nucleolar protein NPM1 is essential for circovirus replication by binding to viral capsid[J]. Virulence, 2020, 11(1):1379-1393. |
[53] | DONG D D, ZHU S Q, MIAO Q H, et al. Nucleolin (NCL) inhibits the growth of peste des petits ruminants virus[J]. J Gen Virol, 2020, 101(1):33-43. |
[54] | CHEN G Q, YAN Q, WANG H R, et al. Identification and characterization of the nucleolar localization signal of Autographa Californica multiple nucleopolyhedrovirus LEF5[J]. J Virol, 2020, 94(4):e01891-19. |
[55] | 段志强, 谢玲玲, 周 迪, 等. 新城疫病毒M蛋白细胞核定位的机制与功能研究进展[J]. 畜牧兽医学报, 2021, 52(4):891-898.DUAN Z Q, XIE L L, ZHOU D, et al. Research progress on the mechanism and function of nuclear localization of Newcastle disease virus M protein[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4):891-898. (in Chinese) |
[56] | GIUFFRE R M, TOVELL D R, KAY C M, et al. Evidence for an interaction between the membrane protein of a paramyxovirus and actin[J]. J Virol, 1982, 42(3):963-968. |
[57] | REN X P, XUE C Y, KONG Q M, et al. Proteomic analysis of purified Newcastle disease virus particles[J]. Proteome Sci, 2012, 10(1):32. |
[58] | KOGA R, KUBOTA M, HASHIGUCHI T, et al. Annexin A2 mediates the localization of measles virus matrix protein at the plasma membrane[J]. J Virol, 2018, 92(10):e00181-18. |
[59] | VIETRI M, RADULOVIC M, STENMARK H. The many functions of ESCRTs[J]. Nat Rev Mol Cell Biol, 2020, 21(1):25-42. |
[60] | MENG B, LEVER A M L. The interplay between ESCRT and viral factors in the enveloped virus life cycle[J]. Viruses, 2021, 13(2):324. |
[61] | DUAN Z Q, HU Z L, ZHU J, et al. Mutations in the FPIV motif of Newcastle disease virus matrix protein attenuate virus replication and reduce virus budding[J]. Arch Virol, 2014, 159(7):1813-1819. |
[62] | LATA S, SCHOEHN G, SOLOMONS J, et al. Structure and function of ESCRT-III[J]. Biochem Soc Trans, 2009, 37(1):156-160. |
[63] | LI X, LI X Q, CAO H, et al. Engagement of new castle disease virus (NDV) matrix (M) protein with charged multivesicular body protein (CHMP) 4 facilitates viral replication[J]. Virus Res, 2013, 171(1):80-88. |
[64] | BEN KHALIFA Y, LUCO S, BESSON B, et al. The matrix protein of rabies virus binds to RelAp43 to modulate NF-κB-dependent gene expression related to innate immunity[J]. Sci Rep, 2016, 6:39420. |
[65] | MARQUIS K A, BECKER R L, WEISS A N, et al. The VSV matrix protein inhibits NF-κB and the interferon response independently in mouse L929 cells[J]. Virology, 2020, 548:117-123. |
[66] | HUI X F, ZHANG L L, CAO L, et al. SARS-CoV-2 promote autophagy to suppress type I interferon response[J]. Sig Transduct Target Ther, 2021, 6(1):180. |
[67] | 王 蕾, 陈福勇, 郑世军, 等. 新城疫病毒(NDV)基质(M)蛋白在体外对炎症因子诱导的作用[J]. 中国兽医杂志, 2008, 44(4):14-15.WANG L, CHEN F Y, ZHENG S J, et al. Induction effect of Newcastle disease virus (NDV) matrix (M) protein on the production of inflammatory factors in vitro[J]. Chinese Journal of Veterinary Medicine, 2008, 44(4):14-15. (in Chinese). |
[68] | DUAN Z Q, YUAN C, HAN Y F, et al. TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein[J]. Virulence, 2020, 11(1):607-635. |
[69] | NG L F P, HISCOX J A. Viperin poisons viral replication[J]. Cell Host & Microbe, 2018, 24(2):181-183. |
[70] | YUAN Y K, MIAO Y, QIAN L P, et al. Targeting UBE4A revives viperin protein in epithelium to enhance host antiviral defense[J]. Mol Cell, 2020, 77(4):734-747. |
[71] | SHAH M, BHARADWAJ M S K, GUPTA A, et al. Chicken viperin inhibits Newcastle disease virus infection in vitro:A possible interaction with the viral matrix protein[J]. Cytokine, 2019, 120:28-40. |
[72] | BECK S, ZICKLER M, PINHO DOS REIS V, et al. ANP32B deficiency protects mice from lethal influenza A virus challenge by dampening the host immune response[J]. Front Immunol, 2020, 11:450. |
[73] | GÜNTHER M, BAUER A, MVLLER M, et al. Interaction of host cellular factor ANP32B with matrix proteins of different paramyxoviruses[J]. J Gen Virol, 2020, 101(1):44-58. |
[74] | RAJANI K R, KNELLER E L P, MCKENZIE M O, et al. Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription[J]. PLoS Pathog, 2012, 8(9):e1002929. |
[75] | QUAN B L, SEO H S, BLOBEL G, et al. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1·Nup98)[J]. Proc Natl Acad Sci U S A, 2014, 111(25):9127-9132. |
[76] | BEILSTEIN F, OBIANG L, RAUX H, et al. Characterization of the interaction between the matrix protein of vesicular stomatitis virus and the immunoproteasome subunit LMP2[J]. J Virol, 2015, 89(21):11019-11029. |
[77] | PAN W, SONG D G, HE W Q, et al. EIF3i affects vesicular stomatitis virus growth by interacting with matrix protein[J]. Vet Microbiol, 2017, 212:59-66. |
[78] | PEI Z F, BAI Y T, SCHMITT A P. PIV5 M protein interaction with host protein angiomotin-like 1[J]. Virology, 2010, 397(1):155-166. |
[79] | RAY G, SCHMITT P T, SCHMITT A P. Angiomotin-like 1 links paramyxovirus M proteins to NEDD4 family ubiquitin ligases[J]. Viruses, 2019, 11(2):128. |
[80] | 段云兵. 新城疫病毒基质(M)蛋白生物学功能的初步研究[D]. 南京: 南京农业大学, 2014.DUAN Y B. Preliminary study on biological functions of Newcastle disease virus matrix protein[D]. Nanjing: Nanjing Agricultural University, 2014. |
[1] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[2] | 荆扬, 王玉淼, 李洋, 常辉, 马志倩, 李志伟, 肖书奇. 稳定表达PRRSV M蛋白的MARC-145ORF6细胞系的构建及其对PRRSV增殖的影响[J]. 畜牧兽医学报, 2024, 55(3): 1159-1169. |
[3] | 宋雯妍, 张瀚文, 吴澳迪, 张丽燕, 刘照, 叶桐桐, 陈创夫, 盛金良. 猪繁殖与呼吸综合征病毒GP5蛋白纳米抗体的筛选及其对病毒复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(1): 258-270. |
[4] | 丁晓艳, 何久香, 周晓杨, 周伃欣, 李晋涛. 非洲猪瘟病毒感染相关调控基因以及毒力基因初步筛选[J]. 畜牧兽医学报, 2023, 54(7): 2964-2971. |
[5] | 方源, 侯巧弟, 项超辉, 赵红奕, 齐雪峰. IFITM3对小反刍兽疫病毒在山羊子宫内膜上皮细胞中增殖的调控效应[J]. 畜牧兽医学报, 2023, 54(5): 2200-2207. |
[6] | 王岚, 何明宇, 张敏, 丁军涛. MicroRNA调控抗病毒免疫和病毒复制[J]. 畜牧兽医学报, 2023, 54(2): 463-472. |
[7] | 邵静, 张颖, 唐毓, 许保增. ERM蛋白在哺乳动物卵母细胞成熟和受精中的研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4477-4487. |
[8] | 陈胜, 廖志宏, 谢姿, 陈峰, 谢青梅, 舒薇. GADD45β蛋白抑制ALV-J在DF-1细胞中的复制[J]. 畜牧兽医学报, 2021, 52(6): 1662-1669. |
[9] | 段志强, 谢玲玲, 周迪, 王燕碧, 赵采芹, 唐宏. 新城疫病毒M蛋白细胞核定位的机制与功能研究进展[J]. 畜牧兽医学报, 2021, 52(4): 891-898. |
[10] | 栗永华, 刘伟, 徐智凯, 刘炜玮, 孙英杰, 仇旭升, 谭磊, 宋翠萍, 廖瑛, 丁铲, 孟春春. 稳定表达TIGAR基因的BHK-21细胞系的构建及其对新城疫病毒增殖效果的评价[J]. 畜牧兽医学报, 2021, 52(2): 440-449. |
[11] | 邵琪, 屈阳, 朱子晨, 孟春春, 仇旭升, 廖瑛, 谭磊, 宋翠萍, 刘炜玮, 孙英杰, 丁铲. 应用G3BP1稳转细胞系监测应激状态下的应激颗粒形成[J]. 畜牧兽医学报, 2020, 51(9): 2275-2283. |
[12] | 冯宇, 殷鑫欢, 杨晓宇, 徐雷, 徐志文, 朱玲. 猪δ冠状病毒重组M蛋白间接ELISA抗体检测方法的建立与应用[J]. 畜牧兽医学报, 2020, 51(7): 1710-1718. |
[13] | 吴寒光, 孙军峰, 梁雨萌, 刘胜旺, 李海. 新城疫病毒复制对其溶瘤作用影响的初步分析[J]. 畜牧兽医学报, 2020, 51(4): 794-800. |
[14] | 梅力, 王英超, 吴迪, 李月, 宋彦军, 韦海涛, 王林, 高晓龙, 冯小宇. 1种检测新城疫病毒的微滴式数字PCR方法[J]. 畜牧兽医学报, 2020, 51(12): 3187-3192. |
[15] | 武炜, 王飒, 孟春春, 仇旭升, 廖瑛, 谭磊, 宋翠萍, 刘炜玮, 孙英杰, 丁铲. 应用CRISPR/Cas9敲除HeLa细胞DDX21基因对新城疫病毒复制的影响[J]. 畜牧兽医学报, 2019, 50(7): 1433-1440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||