畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (11): 4477-4487.doi: 10.11843/j.issn.0366-6964.2023.11.005
邵静, 张颖, 唐毓, 许保增*
收稿日期:
2023-05-18
出版日期:
2023-11-23
发布日期:
2023-11-26
通讯作者:
许保增,主要从事特种经济动物遗传育种与繁殖研究,E-mail:xubaozeng@caas.cn
作者简介:
邵静(1994-),女,山东烟台人,博士生,主要从事特种经济动物遗传育种与繁殖研究,E-mail:zunko21@163.com
基金资助:
SHAO Jing, ZHANG Ying, TANG Yu, XU Baozeng*
Received:
2023-05-18
Online:
2023-11-23
Published:
2023-11-26
摘要: 受精是有性生殖的基本特征,也是个体发育的起点。卵母细胞的成熟状态是保障受精成功和胚胎发育的先决条件。卵母细胞在成熟和受精的过程里受到一系列分子机制细致精密的调控,在近年来发现的许多能调节哺乳动物卵母细胞成熟和受精的信号通路中,埃兹蛋白-根蛋白-膜突蛋白(ezrin-radixin-moesin,ERM)作为连接卵母细胞膜与细胞骨架的桥梁分子都直接或间接地介导了其中的多条通路,因此,ERM蛋白也成为研究这类生物学事件的焦点。本文综述了国内外关于ERM蛋白家族通过调节微绒毛的形成、极体的排出、卵母细胞-颗粒细胞间的信息交流以及精卵融合等细胞过程来参与卵母细胞成熟和受精过程的研究进展,以期为保障哺乳动物卵母细胞体外成熟和体外受精的成功率,提高雌性哺乳动物繁殖效率提供理论参考。
中图分类号:
邵静, 张颖, 唐毓, 许保增. ERM蛋白在哺乳动物卵母细胞成熟和受精中的研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4477-4487.
SHAO Jing, ZHANG Ying, TANG Yu, XU Baozeng. Research Progress of ERM Proteins in Mammalian Oocyte Maturation and Fertilization[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4477-4487.
[1] | LI L,ZHENG P,DEAN J.Maternal control of early mouse development[J].Development,2010,137(6):859-870. |
[2] | REYES J M,ROSS P J.Cytoplasmic polyadenylation in mammalian oocyte maturation[J].Wiley Interdiscip Rev RNA,2016, 7(1): 71-89. |
[3] | LANKES W T,FURTHMAYR H.Moesin:A member of the protein 4.1-talin-ezrin family of proteins[J].Proc Natl Acad Sci U S A,1991, 88(19): 8297-8301. |
[4] | SVITKINA T M.Actin cell cortex:Structure and molecular organization[J].Trends Cell Biol,2020,30(7):556-565. |
[5] | SENJU Y,TSAI F C.A biophysical perspective of the regulatory mechanisms of ezrin/radixin/moesin proteins[J].Biophys Rev, 2022, 14(1):199-208. |
[6] | BENNABI I,TERRET M E,VERLHAC M H.Meiotic spindle assembly and chromosome segregation in oocytes[J].J Cell Biol, 2016, 215(5):611-619. |
[7] | GATTI M,BELLI B,DE RUBEIS M,et al.Ultrastructural evaluation of mouse oocytes exposed in vitro to different concentrations of the fungicide mancozeb[J].Biology (Basel),2023,12(5):698. |
[8] | VISWANATHA R,BRETSCHER A,GARBETT D.Dynamics of ezrin and EBP50 in regulating microvilli on the apical aspect of epithelial cells[J].Biochem Soc Trans,2014,42(1):189-194. |
[9] | PHANG J M,HARROP S J,DUFF A P,et al.Structural characterization suggests models for monomeric and dimeric forms of full-length ezrin[J].Biochem J,2016,473(18):2763-2782. |
[10] | SHABARDINA V,KASHIMA Y,SUZUKI Y,et al.Emergence and evolution of ERM proteins and merlin in metazoans[J]. Genome Biol Evol,2020,12(1):3710-3724. |
[11] | CLUCAS J,VALDERRAMA F.ERM proteins in cancer progression[J].J Cell Sci,2014,127(Pt 2):267-275. |
[12] | VOGL A W,GUTTMAN J A.An introduction to actin and actin-rich structures[J].Anat Rec (Hoboken),2018,301(12):1986-1990. |
[13] | DEHAPIOT B,HALET G.Ran GTPase promotes oocyte polarization by regulating ERM (ezrin/radixin/moesin) inactivation[J]. Cell Cycle,2013,12(11):1672-1678. |
[14] | ROBERTSON T F,CHENGAPPA P,ATRIA D G,et al.Lymphocyte egress signal sphingosine-1-phosphate promotes ERM-guided,bleb-based migration[J].J Cell Biol,2021,220(6):e202007182. |
[15] | LUBART Q,VITET H,DALONNEAU F,et al.Role of phosphorylation in moesin interactions with PIP2-containing biomimetic membranes[J].Biophys J,2018,114(1):98-112. |
[16] | BRETSCHER A,EDWARDS K,FEHON R G.ERM proteins and merlin:integrators at the cell cortex[J].Nat Rev Mol Cell Biol,2002,3(8):586-599. |
[17] | ALI M,KHRAMUSHIN A,YADAV V K,et al.Elucidation of short linear motif-based interactions of the FERM domains of ezrin,radixin,moesin,and merlin[J].Biochemistry,2023,62(11):1594-1607. |
[18] | TAKAI Y,KITANO K,TERAWAKI S I,et al.Structural basis of the cytoplasmic tail of adhesion molecule CD43 and its binding to ERM proteins[J].J Mol Biol,2008,381(3):634-644. |
[19] | PANICKER S R,YAGO T,SHAO B J,et al.Neutrophils lacking ERM proteins polarize and crawl directionally but have decreased adhesion strength[J].Blood Adv,2020,4(15):3559-3571. |
[20] | SCHÖN M,MEY I,STEINEM C.Influence of cross-linkers on ezrin-bound minimal actin cortices[J].Prog Biophys Mol Biol,2019,144:91-101. |
[21] | ROBERTS R E,DEWITT S,HALLETT M B.Membrane tension and the role of ezrin during phagocytosis[J].Adv Exp Med Biol,2020,1246:83-102. |
[22] | RAHIMI N,HO R X Y,CHANDLER K B,et al.The cell adhesion molecule TMIGD1 binds to moesin and regulates tubulin acetylation and cell migration[J].J Biomed Sci,2021,28(1):61. |
[23] | YANG G,HIRUMA S,KITAMURA A,et al.Molecular basis of functional exchangeability between ezrin and other actin-membrane associated proteins during cytokinesis[J].Exp Cell Res,2021,403(2):112600. |
[24] | MURIEL O,TOMAS A,SCOTT C C,et al.Moesin and cortactin control actin-dependent multivesicular endosome biogenesis[J]. Mol Biol Cell, 2016,27(21):3305-3316. |
[25] | STEFANI C,GONZALEZ-RODRIGUEZ D,SENJU Y,et al.Ezrin enhances line tension along transcellular tunnel edges via NMIIa driven actomyosin cable formation[J].Nat Commun,2017,8:15839. |
[26] | GAETA I M,MEENDERINK L M,POSTEMA M M,et al.Direct visualization of epithelial microvilli biogenesis[J].Curr Biol,2021,31(12):2561-2575. e6. |
[27] | ABEYSUNDARA N,SIMMONDS A J,HUGHES S C.Moesin is involved in polarity maintenance and cortical remodeling during asymmetric cell division[J].Mol Biol Cell,2018,29(4):419-434. |
[28] | MAO L N,LOU H Y,LOU Y Y,et al.Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation[J].Reprod Biomed Online,2014,28(3):284-299. |
[29] | HSUEH A J W,KAWAMURA K,CHENG Y,et al.Intraovarian control of early folliculogenesis[J].Endocr Rev,2015,36(1):1-24. |
[30] | WANG N,LUO L L,XU J J,et al.Obesity accelerates ovarian follicle development and follicle loss in rats[J].Metabolism, 2014,63(1):94-103. |
[31] | ZHANG H,RISAL S,GORRE N,et al.Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice[J].Curr Biol,2014,24(21):2501-2508. |
[32] | YAN H,ZHANG J W,WEN J,et al.CDC42 controls the activation of primordial follicles by regulating PI3K signaling in mouse oocytes[J].BMC Biol,2018,16(1):73. |
[33] | TEILMANN S C.Differential expression and localisation of connexin-37 and connexin-43 in follicles of different stages in the 4-week-old mouse ovary[J].Mol Cell Endocrinol,2005,234(1-2):27-35. |
[34] | DUKIC A R,GERBAUD P,GUIBOURDENCHE J,et al.Ezrin-anchored PKA phosphorylates serine 369 and 373 on connexin 43 to enhance gap junction assembly,communication,and cell fusion[J].Biochem J,2018,475(2):455-476. |
[35] | PIDOUX G,GERBAUD P,DOMPIERRE J,et al.A PKA-ezrin-CX43 signaling complex controls gap junction communication and thereby trophoblast cell fusion[J].J Cell Sci,2014,127(Pt 19):4172-4185. |
[36] | WINTERHAGER E,KIDDER G M.Gap junction connexins in female reproductive organs:implications for women’s reproductive health[J].Hum Reprod Update,2015,21(3):340-352. |
[37] | LI R,ALBERTINI D F.The road to maturation:Somatic cell interaction and self-organization of the mammalian oocyte[J].Nat Rev Mol Cell Biol,2013,14(3):141-152. |
[38] | ZHANG Y,WANG Y,FENG X A,et al.Oocyte-derived microvilli control female fertility by optimizing ovarian follicle selection in mice[J].Nat Commun,2021,12(1):2523. |
[39] | BRETSCHER A,WEBER K.Purification of microvilli and an analysis of the protein components of the microfilament core bundle[J].Exp Cell Res,1978,116(2):397-407. |
[40] | EL-HAYEK S,YANG Q,ABBASSI L,et al.Mammalian oocytes locally remodel follicular architecture to provide the foundation for germline-soma communication[J].Curr Biol,2018,28(7):1124-1131. e3. |
[41] | 王周吉.猪卵泡形成中后期卵母细胞发育和闭锁变化的超微结构研究[J].东北农学院学报,1987,18(3):279-287.WANG Z J.Ultrastructural studies on the developmental and atretic changes of oocytes in middle and late follicles of sows[J].Journal of Northeast Agricultural University,1987,18(3):279-287.(in Chinese) |
[42] | SANTIQUET N W,DEVELLE Y,LAROCHE A,et al.Regulation of gap-junctional communication between cumulus cells during in vitro maturation in swine,a gap-FRAP study[J].Biol Reprod,2012,87(2):46. |
[43] | YONEMURA S,TSUKITA S,TSUKITA S.Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins[J].J Cell Biol,1999,145(7):1497-1509. |
[44] | BRUNET S,VERLHAC M H.Positioning to get out of meiosis:The asymmetry of division[J].Hum Reprod Update,2011, 17(1):68-75. |
[45] | CHAIGNE A,VERLHAC M H,TERRET M E.Spindle positioning in mammalian oocytes[J].Exp Cell Res,2012,318(12): 1442-1447. |
[46] | YI K X,RUBINSTEIN B,LI R.Symmetry breaking and polarity establishment during mouse oocyte maturation[J].Philos Trans R Soc B Biol Sci,2013,368(1629):20130002. |
[47] | SUN S C,GAO W W,XU Y N,et al.Degradation of actin nucleators affects cortical polarity of aged mouse oocytes[J].Fertil Steril,2012,97(4):984-990. |
[48] | DENG M Q,KISHIKAWA H,YANAGIMACHI R,et al.Chromatin-mediated cortical granule redistribution is responsible for the formation of the cortical granule-free domain in mouse eggs[J].Dev Biol,2003,257(1):166-176. |
[49] | NAMGOONG S,KIM N H.Roles of actin binding proteins in mammalian oocyte maturation and beyond[J].Cell Cycle,2016, 15(14):1830-1843. |
[50] | YI K X,UNRUH J R,DENG M Q,et al.Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes[J].Nat Cell Biol,2011,13(10):1252-1258. |
[51] | LARSON S M,LEE H J,HUNG P H,et al.Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and Ezrin-Radixin-Moesin (ERM) proteins[J].Mol Biol Cell,2010,21(18):3182-3192. |
[52] | PRIMAKOFF P,MYLES D G.Penetration,adhesion,and fusion in mammalian sperm-egg interaction[J].Science,2002, 296(5576): 2183-2185. |
[53] | WILSON N F,SNELL W J.Microvilli and cell-cell fusion during fertilization[J].Trends Cell Biol,1998,8(3):93-96. |
[54] | TALANSKY B E,MALTER H E,COHEN J.A preferential site for sperm-egg fusion in mammals[J].Mol Reprod Dev,1991,28(2): 183-188. |
[55] | GARCÍA-ORTIZ A,SERRADOR J M.ERM proteins at the crossroad of leukocyte polarization,migration and intercellular adhesion[J].Int J Mol Sci,2020,21(4):1502. |
[56] | LI Y H,HOU Y,MA W,et al.Localization of CD9 in pig oocytes and its effects on sperm-egg interaction[J].Reproduction, 2004,127(2):151-157. |
[57] | JÉGOU A,ZIYYAT A,BARRAUD-LANGE V,et al.CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization[J].Proc Natl Acad Sci U S A,2011,108(27):10946-10951. |
[58] | ZHOU G B,LIU G S,MENG Q G,et al.Tetraspanin CD9 in bovine oocytes and its role in fertilization[J].J Reprod Dev,2009, 55(3): 305-308. |
[59] | MIYADO K,YOSHIDA K,YAMAGATA K,et al.The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice[J].Proc Natl Acad Sci U S A,2008,105(35):12921-12926. |
[60] | INOUE N,SAITO T,WADA I.Unveiling a novel function of CD9 in surface compartmentalization of oocytes[J].Development, 2020,147(15):dev189985. |
[61] | BENAMMAR A,ZIYYAT A,LEFōVRE B,et al.Tetraspanins and mouse oocyte microvilli related to fertilizing ability[J].Reprod Sci,2017,24(7):1062-1069. |
[62] | KAJI K,ODA S,SHIKANO T,et al.The gamete fusion process is defective in eggs of CD9-deficient mice[J].Nat Genet,2000, 24(3):279-282. |
[63] | ZHU G Z,MILLER B J,BOUCHEIX C,et al.Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion[J].Development,2002,129(8):1995-2002. |
[64] | LE NAOUR F,RUBINSTEIN E,JASMIN C,et al.Severely reduced female fertility in CD9-deficient mice[J].Science,2000, 287(5451):319-321. |
[65] | SALA-VALDÉS M,URSA Á,CHARRIN S,et al.EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins[J].J Biol Chem,2006,281(28):19665-19675. |
[66] | KINOSHITA T,FUJITA M.Thematic review series:glycosylphosphatidylinositol (GPI) anchors:biochemistry and cell biology biosynthesis of GPI-anchored proteins:Special emphasis on GPI lipid remodeling[J].J Lipid Res,2016,57(1):6-24. |
[67] | COONROD S A,NAABY-HANSEN S,SHETTY J,et al.Treatment of mouse oocytes with PI-PLC releases 70-kDa (pI 5) and 35- to 45-kDa (pI 5.5) protein clusters from the egg surface and inhibits sperm-oolemma binding and fusion[J].Dev Biol,1999, 207(2):334-349. |
[68] | BIANCHI E,DOE B,GOULDING D,et al.Juno is the egg Izumo receptor and is essential for mammalian fertilization[J].Nature, 2014,508(7497):483-487. |
[69] | 胡文萍,汤继顺,张壮彪,等.Izumo1和Juno在哺乳动物受精过程中的研究进展[J].畜牧兽医学报,2019,50(9):1737-1745.HU W P,TANG J S,ZHANG Z B,et al.Progress of Izumo1 and Juno in mammalian fertilization[J].Acta Veterinaria et Zootechnica Sinica,2019,50(9):1737-1745.(in Chinese) |
[70] | LOPEZ S,RODRIGUEZ-GALLARDO S,SABIDO-BOZO S,et al.Endoplasmic reticulum export of GPI-anchored proteins[J].Int J Mol Sci,2019,20(14):3506. |
[71] | BÄR S,ROMMELAERE J,NVESCH J P F.Vesicular transport of progeny parvovirus particles through ER and Golgi regulates maturation and cytolysis[J].PLoS Pathog,2013,9(9):e1003605. |
[72] | MAHÉ C,ZLOTKOWSKA A M,REYNAUD K,et al.Sperm migration,selection,survival,and fertilizing ability in the mammalian oviduct[J].Biol Reprod,2021,105(2):317-331. |
[73] | GURAYA S S.Recent progress in the structure,origin,composition,and function of cortical granules in animal egg[J].Int Rev Cytol,1982,78:257-360. |
[74] | 孙青原,秦鹏春.牛卵母细胞发育的超微结构研究[J].山东农业大学学报,1989(4):9-16.SUN Q Y,QIN P C.Study on ultrastructure of bovine oocyte development[J].Journal of Shandong Agricultural University,1989(4): 9-16.(in Chinese) |
[75] | SUN Q Y,LAI L X,BONK A,et al.Cytoplasmic changes in relation to nuclear maturation and early embryo developmental potential of porcine oocytes:effects of gonadotropins,cumulus cells,follicular size,and protein synthesis inhibition[J].Mol Reprod Dev,2001,59(2):192-198. |
[76] | WANG W H,HOSOE M,SHIOYA Y.Induction of cortical granule exocytosis of pig oocytes by spermatozoa during meiotic maturation[J].J Reprod Fertil,1997,109(2):247-255. |
[77] | YU X B,ZHANG X C,ZHAO P,et al.Fertilized egg cells secrete endopeptidases to avoid polytubey[J].Nature,2021, 592(7854):433-437. |
[78] | TSUBAMOTO H,HASEGAWA A,NAKATA Y,et al.Expression of recombinant human zona pellucida protein 2 and its binding capacity to spermatozoa[J].Biol Reprod,1999,61(6):1649-1654. |
[79] | TSAADON A,ELIYAHU E,SHTRAIZENT N,et al.When a sperm meets an egg:block to polyspermy[J].Mol Cell Endocrinol, 2006, 252(1-2):107-114. |
[80] | ROJAS J,HINOSTROZA F,VERGARA S,et al.Knockin’ on egg’s door:maternal control of egg activation that influences cortical granule exocytosis in animal species[J].Front Cell Dev Biol,2021,9:704867. |
[81] | SACHDEV M,MANDAL A,MULDERS S,et al.Oocyte specific oolemmal SAS1B involved in sperm binding through intra-acrosomal SLLP1 during fertilization[J].Dev Biol,2012,363(1):40-51. |
[82] | HERRERO M B,MANDAL A,DIGILIO L C,et al.Mouse SLLP1,a sperm lysozyme-like protein involved in sperm-egg binding and fertilization[J].Dev Biol,2005,284(1):126-142. |
[83] | KÖRSCHGEN H,KUSKE M,KARMILIN K,et al.Intracellular activation of ovastacin mediates pre-fertilization hardening of the zona pellucida[J].Mol Hum Reprod,2017,23(9):607-616. |
[84] | GARCÍA-MARTÍNEZ S,GADEA J,COY P,et al.Addition of exogenous proteins detected in oviductal secretions to in vitro culture medium does not improve the efficiency of in vitro fertilization in pigs[J].Theriogenology,2020,157:490-497. |
[85] | PIEHL L L,FISCHMAN M L,HELLMAN U,et al.Boar seminal plasma exosomes:effect on sperm function and protein identification by sequencing[J].Theriogenology,2013,79(7):1071-1082. |
[86] | 陈晓勇,敦伟涛,孙洪新,等.哺乳动物卵子皮质反应机制的研究进展[J].黑龙江畜牧兽医,2010(8):27-30.CHEN X Y,DUN W T,SUN H X,et al.Research progress of mechanism of the cortical reaction in mammalian eggs[J].Heilongjiang Animal Science and Veterinary Medicine,2010(8):27-30.(in Chinese) |
[87] | ZHUAN Q R,LI J,ZHOU G Z,et al.Procyanidin b2 protects aged oocytes against meiotic defects through cortical tension modulation[J].Front Vet Sci,2022,9:795050. |
[1] | 肖艺梅, 王胜男, 许悦雯, 何晓琳, 尹福泉. 热应激对雄性哺乳动物生殖机能影响的研究[J]. 畜牧兽医学报, 2024, 55(1): 11-21. |
[2] | 张高猛, 丁纪强, 刘昱宏, 郑麦青, 文杰, 赵桂苹, 李庆贺. 全基因组关联分析揭示白羽肉鸡孵化性状的遗传基础[J]. 畜牧兽医学报, 2023, 54(2): 534-544. |
[3] | 闵星宇, 杨丽雪, 于海玲, 胡宇磊, 杨满珍, 杨璐瑜, 李键, 熊显荣. 犏牛PPP1R11基因的克隆及在睾丸中的表达规律研究[J]. 畜牧兽医学报, 2022, 53(2): 481-492. |
[4] | 闵星宇, 杨丽雪, 杨满珍, 胡宇磊, 于海玲, 杨璐瑜, 李键, 熊显荣. 犏牛和牦牛ESCO2基因的序列特征及其在睾丸中的表达对比分析[J]. 畜牧兽医学报, 2021, 52(11): 3126-3136. |
[5] | 王琴, 熊燕, 字向东. 体外成熟液中添加PAF对牦牛卵母细胞发育能力及基因表达的影响[J]. 畜牧兽医学报, 2020, 51(3): 514-523. |
[6] | 杨远潇, 字向东. 玻璃化冷冻对牦牛未成熟卵母细胞发育能力及COC转录组的影响[J]. 畜牧兽医学报, 2020, 51(2): 288-298. |
[7] | 马睿, 王萌, 孙莹, 芮弦, 王靖雷, 付延, 余四九, 王立斌, 崔燕, 潘阳阳. 自噬调节因子Atg5和Beclin1在不同来源小鼠胚胎早期发育过程中的表达分析[J]. 畜牧兽医学报, 2020, 51(12): 3057-3067. |
[8] | 胡文萍, 汤继顺, 张壮彪, 喇永富, 刘秋月, 狄冉, 王翔宇, 储明星. Izumo1和Juno在哺乳动物受精过程中的研究进展[J]. 畜牧兽医学报, 2019, 50(9): 1737-1745. |
[9] | 王斌, 殷实, 熊显荣, 秦文昌, 黄向月, 李键. 牦牛HDAC1基因克隆及其在组织和卵母细胞减数分裂过程中的表达研究[J]. 畜牧兽医学报, 2019, 50(10): 1997-2004. |
[10] | 范静, 马腾壑, 王攀林, 石雷, 李云雷, Adamu Mani Isa, 黄子妍, 倪爱心, 麻慧, 孙研研, 陈继兰. 母鸡持续受精能力的群体变异分析[J]. 畜牧兽医学报, 2019, 50(10): 2013-2021. |
[11] | 蒲思颖, 郑杰, 杨远潇, 王琴, 杨绕芬, 字向东. 牦牛新鲜囊胚与玻璃化冻融囊胚转录组的比较分析[J]. 畜牧兽医学报, 2018, 49(4): 709-717. |
[12] | 蔡雯祎, 熊显荣, 陈通, 杨显英, 韩杰, 阿果约达, 李键. KDM2B基因克隆及其在牦牛组织和卵母细胞减数分裂过程中的表达研究[J]. 畜牧兽医学报, 2018, 49(3): 534-541. |
[13] | 黄自强, 王玲玲, 庞云渭, 郝海生, 杜卫华, 赵学明, 刘岩, 朱化彬. 表没食子儿茶素没食子酸酯对牛冷冻精液品质及受精能力的影响[J]. 畜牧兽医学报, 2018, 49(10): 2154-2162. |
[14] | 字向东, 刘霜, 夏威, 熊显荣, 黄林, 张正帆, 李志雄, 李键, 钟金城, 王利, 朱江江. 犏牛体外受精胚胎的发育转录组分析[J]. 畜牧兽医学报, 2018, 49(1): 92-101. |
[15] | 徐松山, 孙研研, 李云雷, 薛夫光, 刘一帆, 许红, 陈继兰. 稀释和低温保存对鸡精液品质和受精能力的影响[J]. 畜牧兽医学报, 2017, 48(4): 645-651. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||