畜牧兽医学报 ›› 2021, Vol. 52 ›› Issue (5): 1141-1153.doi: 10.11843/j.issn.0366-6964.2021.05.001
张帆1,2, 张海亮2, 罗汉鹏2, 米思远2, 邱文卿2, 初芹3, 王雅春2*
收稿日期:
2020-09-07
出版日期:
2021-05-23
发布日期:
2021-05-22
通讯作者:
王雅春,主要从事分子及数量遗传学研究,E-mail:wangyachun@cau.edu.cn
作者简介:
张帆(1998-),男,辽宁葫芦岛人,硕士生,主要从事分子及数量遗传学研究,E-mail:19945846467@163.com
基金资助:
ZHANG Fan1,2, ZHANG Hailiang2, LUO Hanpeng2, MI Siyuan2, QIU Wenqing2, CHU Qin3, WANG Yachun2*
Received:
2020-09-07
Online:
2021-05-23
Published:
2021-05-22
摘要: 本文基于关键词共现分析和文献共引分析等计量学方法,分析了1990—2020年科学引文索引数据库所收录的奶牛热应激遗传机制领域共1 026条科技文献,统计了这些文献的作者、发文机构和年度发文量等,绘制了该领域共被引文献与关键词的共现网络图谱。重点通过高被引文献和高频关键词,透视了国际上该领域整体研究状况和研究热点,解读了该领域的发展脉络和趋势。此外,本文还通过中国知网数据库检索了国内在相关领域进行的研究,共检索到52篇文献,对国内在热应激遗传机制领域进行的研究进行了总结。通过国内外文献的关键词和文献共被引分析发现,热休克蛋白、单核苷酸多态性、氧化应激和繁殖性能一直是该领域的研究热点。随着研究的不断深入,热应激遗传机制研究从对热应激相关基因表达量的关注逐渐深入到对耐热多态的挖掘和对热应激相关基因表达调控的研究。在热应激基因表达过程中,表观修饰和miRNA是目前研究最广泛的两种调控方式。在奶牛热应激遗传机制研究领域,本文有助于我国研究人员宏观地了解本领域的研究现状及知识结构,快速定位首要关注点和重点文献。
中图分类号:
张帆, 张海亮, 罗汉鹏, 米思远, 邱文卿, 初芹, 王雅春. 奶牛热应激遗传机制研究知识图谱分析[J]. 畜牧兽医学报, 2021, 52(5): 1141-1153.
ZHANG Fan, ZHANG Hailiang, LUO Hanpeng, MI Siyuan, QIU Wenqing, CHU Qin, WANG Yachun. Knowledge Mapping Analysis on Heat Stress Genetic Mechanisms Research of Dairy Cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5): 1141-1153.
[1] | ROENFELDT S.You can’t afford to ignore heat stress[J].Dairy Manage,1998,35(5):6-12. |
[2] | SRIKANDAKUMAR A,JOHNSON E H.Effect of heat stress on milk production,rectal temperature,respiratory rate and blood chemistry in Holstein,Jersey and Australian milking Zebu cows[J].Trop Anim Health Prod,2004,36(7):685-692. |
[3] | ST-PIERRE N R,COBANOV B,SCHNITKEY G.Economic losses from heat stress by US livestock industries[J].J Dairy Sci,2003,86(S1):E52-E77. |
[4] | 张华林,赵晓铎,李倩倩,等.抗热应激性能奶牛选育的研究进展[J].中国奶牛,2019(2):9-13.ZHANG H L,ZHAO X D,LI Q Q,et al.Research progress in breeding of dairy cows with resistance to heat stress[J].China Dairy Cattle,2019(2):9-13.(in Chinese) |
[5] | GAULY M,BOLLWEIN H,BREVES G,et al.Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe-a review[J].Animal,2013,7(5):843-859. |
[6] | HERNÁNDEZ-CERÓN J,CHASE JR C C,HANSEN P J.Differences in heat tolerance between preimplantation embryos from brahman,romosinuano,and angus breeds[J].J Dairy Sci,2004,87(1):53-58. |
[7] | HANSEN P J.Physiological and cellular adaptations of zebu cattle to thermal stress[J].Anim Reprod Sci,2004,82-83:349-360. |
[8] | GENDELMAN M,ROTH Z.Seasonal effect on germinal vesicle-stage bovine oocytes is further expressed by alterations in transcript levels in the developing embryos associated with reduced developmental competence[J].Biol Reprod,2012,86(1):1-9. |
[9] | CATOZZI C,ÁVILA G,ZAMARIAN V,et al.In-vitro effect of heat stress on bovine monocytes lifespan and polarization[J]. Immunobiology,2020,225(2):151888. |
[10] | BELHADJ SLIMEN I,NAJAR T,GHRAM A,et al.Heat stress effects on livestock:molecular,cellular and metabolic aspects,a review[J].J Anim Physiol Anim Nutr (Berl),2016,100(3):401-412. |
[11] | SHEN C F,LIU W L,ZHANG S,et al.Downregulation of miR-541 induced by heat stress contributes to malignant transformation of human bronchial epithelial cells via HSP27[J].Environ Res,2020,184:108954. |
[12] | 秦长江,侯汉清.知识图谱——信息管理与知识管理的新领域[J].大学图书馆学报,2009,27(1):30-37,96.QIN C J,HOU H Q.Mapping knowledge domain——a new field of information management and knowledge management[J]. Journal of Academic Libraries,2009,27(1):30-37,96.(in Chinese) |
[13] | CHEN C M.CiteSpace II:Detecting and visualizing emerging trends and transient patterns in scientific literature[J].J Am Soc Inf Sci Tec,2006,57(3):359-377. |
[14] | COLLIER R J,COLLIER J L,RHOADS R P,et al.Invited review:Genes involved in the bovine heat stress response[J].J Dairy Sci,2008,91(2):445-454. |
[15] | BERNABUCCI U,LACETERA N,BAUMGARD L H,et al.Metabolic and hormonal acclimation to heat stress in domesticated ruminants[J].Animal,2010,4(7):1167-1183. |
[16] | WHEELOCK J B,RHOADS R P,VANBAALE M J,et al.Effects of heat stress on energetic metabolism in lactating Holstein cows[J].J Dairy Sci,2010,93(2):644-655. |
[17] | RHOADS M L,RHOADS R P,VANBAALE M J,et al.Effects of heat stress and plane of nutrition on lactating Holstein cows:I.Production,metabolism,and aspects of circulating somatotropin[J].J Dairy Sci,2009,92(5):1986-1997. |
[18] | BASIRICÒ L,MORERA P,PRIMI V,et al.Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows[J].Cell Stress Chaperones,2011,16(4):441-448. |
[19] | HANSEN P J.Effects of heat stress on mammalian reproduction[J].Philos Trans R Soc Lond B Biol Sci,2009,364(1534): 3341-3350. |
[20] | PAULA-LOPES F F,HANSEN P J.Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon[J].Biol Reprod,2002,66(4):1169-1177. |
[21] | AGUILAR I,MISZTAL I,TSURUTA S.Genetic components of heat stress for dairy cattle with multiple lactations[J].J Dairy Sci,2009,92(11):5702-5711. |
[22] | SAKATANI M,ALVAREZ N V,TAKAHASHI M,et al.Consequences of physiological heat shock beginning at the zygote stage on embryonic development and expression of stress response genes in cattle[J].J Dairy Sci,2012,95(6):3080-3091. |
[23] | DEB R,SAJJANAR B,SINGH U,et al.Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus×Bos taurus) breed of cattle:A comparative study[J].Gene,2014,536(2):435-440. |
[24] | SAKATANI M,BONILLA L,DOBBS K B,et al.Changes in the transcriptome of morula-stage bovine embryos caused by heat shock:relationship to developmental acquisition of thermotolerance[J].Reprod Biol Endocrinol,2013,11:3. |
[25] | DIKMEN S,WANG X Z,ORTEGA M S,et al.Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress[J].J Anim Breed Genet,2015,132(6):409-419. |
[26] | BONILLA A Q S,OLIVEIRA L J,OZAWA M,et al.Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo[J].Mol Cell Endocrinol,2011,332(1-2):170-179. |
[27] | SAKATANI M,HANSEN P J.Effect of physiological heat shock on development and expression of stress response genes in bovine preimplantation embryos[J].Biol Reprod,2011,85(S1):246. |
[28] | ORTEGA M S,ROCHA-FRIGONI N A S,MINGOTI G Z,et al.Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L[J].J Dairy Sci,2016,99(11):9152-9164. |
[29] | DEB R,SAJJANAR B,SINGH U,et al.Promoter variants at AP2 box region of Hsp70.1 affect thermal stress response and milk production traits in Frieswal cross bred cattle[J].Gene,2013,532(2):230-235. |
[30] | DEB R,SAJJANAR B,SINGH U,et al.Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus×Bos taurus) breed of cattle:A comparative study[J].Gene,2014,536(2):435-440. |
[31] | SINGH A K,UPADHYAY R C,CHANDRA G,et al.Genomewide expression analysis of the heat stress response in dermal fibroblasts of Tharparkar (zebu) and Karan-Fries (zebu×taurine) cattle[J].Cell Stress Chaperones,2020,25(2):327-344. |
[32] | WILSON S J,MARION R S,SPAIN J N,et al.Effects of controlled heat stress on ovarian function of dairy cattle.1.lactating cows[J].J Dairy Sci,1998,81(8):2124-2131. |
[33] | 张健,蒋永清,邵涛.奶牛热应激机理及其营养调控研究进展[J].畜牧与兽医,2009,41(2):88-92.ZHANG J,JIANG Y Q,SHAO T.Advances in heat stress mechanism of dairy cows and nutrition control[J].Animal Husbandry & Veterinary Medicine,2009,41(2):88-92.(in Chinese) |
[34] | DAS M,MARAK C C,JEREMY M,et al.Heat-induced changes in the expression and localisation of PGC-1α in the mice testis[J].Andrologia,2020,52(9):e13713. |
[35] | SIGDEL A,LIU L,ABDOLLAHI-ARPANAHI R,et al.Genetic dissection of reproductive performance of dairy cows under heat stress[J].Anim Genet,2020,51(4):511-520. |
[36] | BURDON R H.Heat shock and the heat shock proteins[J].Biochem J,1986,240(2):313-324. |
[37] | LI Q L,ZHANG Z F,XIA P,et al.A SNP in the 3'-UTR of HSF1 in dairy cattle affects binding of target bta-miR-484[J].Genet Mol Res,2015,14(4):12746-12755. |
[38] | VERMA N,GUPTA I D,VERMA A,et al.Novel SNPs in HSPB8 gene and their association with heat tolerance traits in Sahiwal indigenous cattle[J].Trop Anim Health Prod,2015,48(1):175-180. |
[39] | CHENG S Z,GUANG-XIN E,LIU C L,et al.SNP of AHSA2 gene in three cattle breeds using snapshot technology[J].J Genet, 2020,99(1):54. |
[40] | JIA P,CAI C C,QU K X,et al.Four novel SNPs of MYO1A gene associated with heat-tolerance in Chinese cattle[J].Animals, 2019,9(11):964. |
[41] | NING Q Q,QU K X,HANIF Q,et al.MTOR variation related to heat resistance of Chinese cattle[J].Animals,2019,9(11):915. |
[42] | 程维杰,李秋玲,孙延鸣,等.中国荷斯坦牛HSP70-1基因遗传多态性与其耐热性的关系分析[J].华北农学报,2009,24(4):41-45.CHENG W J,LI Q L,SUN Y M,et al.The relation analysis between the genetic polymorphism and the heat resistance of Chinese Holstein cattle HSP70-1[J].Acta Agriculturae Boreali-Sinica,2009,24(4):41-45.(in Chinese) |
[43] | WANG K Y,CAO Y H,RONG Y,et al.A novel SNP in EIF2AK4 gene is associated with thermal tolerance traits in Chinese cattle[J].Animals,2019,9(6):375. |
[44] | BADRI T M,CHEN K L,ALSIDDIG M A,et al.Genetic polymorphism in Hsp90AA1 gene is associated with the thermotolerance in Chinese Holstein cows[J].Cell Stress Chaperones,2018,23(4):639-651. |
[45] | KUMAR R,GUPTA I D,VERMA A,et al.Novel SNP identification in exon 3 of HSP90AA1 gene and their association with heat tolerance traits in Karan Fries (Bos taurus×Bos indicus) cows under tropical climatic condition[J].Trop Anim Health Prod,2016, 48(4):735-740. |
[46] | DAS R,GUPTA I D,VERMA A,et al.Single nucleotide polymorphisms in ATP1A1 gene and their association with thermotolerance traits in Sahiwal and Karan Fries cattle[J].Ind J Anim Res,2017,51(1):70-74. |
[47] | DAVIES K J A.Oxidative stress:the paradox of aerobic life[J].Biochem Soc Symp,1995,61:1-31. |
[48] | HANSFORD R G,HOGUE B A,MILDAZIENE V.Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age[J].J Bioenerg Biomembr,1997,29(1):89-95. |
[49] | PAMPLONA R,COSTANTINI D.Molecular and structural antioxidant defenses against oxidative stress in animals[J].Am J Physiol-Regul Integr Comp Physiol,2011,301(4):R843-R863. |
[50] | YANG L,TAN G Y,FU Y Q,et al.Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration,ROS production and lipid peroxidation in broiler chickens[J].Comp Biochem Physiol C Toxicol Pharmacol,2010, 151(2):204-208. |
[51] | MUJAHID A,AKIBA Y,WARDEN C H,et al.Sequential changes in superoxide production,anion carriers and substrate oxidation in skeletal muscle mitochondria of heat-stressed chickens[J].FEBS Lett,2007,581(18):3461-3467. |
[52] | KIKUSATO M,TOYOMIZU M.Crucial role of membrane potential in heat stress-induced overproduction of reactive oxygen species in avian skeletal muscle mitochondria[J].PLoS One,2013,8(5):e64412. |
[53] | GREEN K,BRAND M D,MURPHY M P.Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes[J]. Diabetes,2004,53(1):S110-S118. |
[54] | SAHIN K,ONDERCI M,SAHIN N,et al.Dietary vitamin C and folic acid supplementation ameliorates the detrimental effects of heat stress in Japanese quail[J].J Nutr,2003,133(6):1882-1886. |
[55] | MUJAHID A,YOSHIKI Y,AKIBA Y,et al.Superoxide radical production in chicken skeletal muscle induced by acute heat stress[J].Poult Sci,2005,84(2):307-314. |
[56] | IWAKI T,IWAKI A,TATEISHI J,et al.Sense and antisense modification of glial alpha B-crystallin production results in alterations of stress fiber formation and thermoresistance[J].J Cell Biol,1994,125(6):1385-1393. |
[57] | KANTOROW M,PIATIGORSKY J.α-crystallin/small heat shock protein has autokinase activity[J].Proc Natl Acad Sci U S A,1994,91(8): 3112-3116. |
[58] | BERNABUCCI U,LACETERA N,BAUMGARD L H,et al.Metabolic and hormonal acclimation to heat stress in domesticated ruminants[J].Animal,2010,4(7):1167-1183. |
[59] | SUZUKI N,KOUSSEVITZKY S,MITTLER R,et al.ROS and redox signalling in the response of plants to abiotic stress[J].Plant Cell Environ,2012,35(2):259-270. |
[60] | KAHWAGE P R,ESTEVES S N,JACINTO M A C,et al.High systemic and testicular thermolytic efficiency during heat tolerance test reflects better semen quality in rams of tropical breeds[J].Int J Biometeorol,2017,61(10):1819-1829. |
[61] | DE AGUIAR L H,HYDE K A,PEDROZA G H,et al.Heat stress impairs in vitro development of preantral follicles of cattle[J].Anim Reprod Sci,2020,213:106277. |
[62] | SADEESH E M,SIKKA P,BALHARA A K,et al.Developmental competence and expression profile of genes in buffalo (Bubalus bubalis) oocytes and embryos collected under different environmental stress[J].Cytotechnology,2016,68(6):2271-2285. |
[63] | SHEN C F,LIU W L,ZHANG S,et al.Downregulation of miR-541 induced by heat stress contributes to malignant transformation of human bronchial epithelial cells via HSP27[J].Environ Res,2020,184:108954. |
[64] | EVERT B O,NALAVADE R,JUNGVERDORBEN J,et al.Upregulation of miR-370 and miR-543 is associated with reduced expression of heat shock protein 40 in spinocerebellar ataxia type 3[J].PLoS One,2018,13(8):e0201794. |
[65] | GUO D,MA J,LI T F,et al.Up-regulation of miR-122 protects against neuronal cell death in ischemic stroke through the heat shock protein 70-dependent NF-κB pathway by targeting FOXO3[J].Exp Cell Res,2018,369(1):34-42. |
[66] | KISLIOUK T,CRAMER T,MEIRI N.Methyl CpG level at distal part of heat-shock protein promoter HSP70 exhibits epigenetic memory for heat stress by modulating recruitment of POU2F1-associated nucleosome-remodeling deacetylase (NuRD) complex[J].J Neurochem,2017,141(3):358-372. |
[67] | KISLIOUK T,ROSENBERG T,BEN-NUN O,et al.Early-Life m6A RNA demethylation by fat mass and obesity-associated protein (FTO) influences resilience or vulnerability to heat stress later in life[J].eNeuro,2020,7(3):519-549. |
[68] | ROSENBERG T,KISLIOUK T,BEN-NUN O,et al.Cross-tolerance:embryonic heat conditioning induces inflammatory resilience by affecting different layers of epigenetic mechanisms regulating IL6 expression later in life[J].Epigenetics,2021,16(2):228-241. |
[69] | 吴国良,崔群维,刘卉玲,等.奶牛HSP70基因3'-侧翼区多态性分析及其与生产性能的关系[J].激光生物学报,2009,18(5):614-618.WU G L,CUI Q W,LIU H L,et al.Polymorphism analysis in 3'-flanking region of heat shock protein 70 gene and their associations with production traits in dairy cows[J].Acta Laser Biology Sinica,2009,18(5):614-618.(in Chinese) |
[70] | 杨小娇,郑海松,余晓峰,等.急性热应激对肉鸡肉品质及热休克蛋白108 mRNA表达的影响[J].中国家禽,2011,33(14):20-24.YANG X J,ZHENG H S,YU X F,et al.Effect of acute heat stress on meat quality and differential expression of heat shock protein 108 m RNA in broilers[J].China Poultry,2011,33(14):20-24.(in Chinese) |
[71] | 许生友,陈兴勇,姜润深,等.肉鸡热应激下肝脏和下丘脑HSP70 mRNA的表达[J].中国农业大学学报,2011,16(3):112-116.XU S Y,CHEN X Y,JIANG R S,et al.Expression of HSP70 mRNA in liver and hypothalamus in chicken under heat stress[J].Journal of China Agricultural University,2011,16(3):112-116.(in Chinese) |
[72] | 李军乔.高温环境对肉仔鸡血液生化指标、热应激蛋白(HSP72)转录及肉品质的影响[D].保定:河北农业大学,2004.LI J Q.Effect of high temperature environment on blood biochemical indicator,HSP72 transcription and meat quality of broiler[D].Baoding:Agricultural University of Hebei,2004.(in Chinese) |
[73] | 宋学立,钱令嘉,李凤芝,等.bcl-2基因转染对热应激心肌细胞保护作用的机制探讨[J].中国应用生理学杂志,2002,18(4):347-349.SONG X L,QIAN L J,LI F Z,et al.Mechanisms of protection effect of bcl-2 gene transfection on heat-stressed cardiomyocytes[J].Chinese Journal of Applied Physiology,2002,18(4):347-349.(in Chinese) |
[74] | 李秋玲,鞠志花,贾祥捷,等.中国荷斯坦牛HSF1基因microRNA SNPs与耐热性能的相关性研究[J].中国农业科学,2011,44(3):570-578.LI Q L,JU Z H,JIA X J,et al.Identification of microRNA SNPs of HSF1 gene and their association with heat tolerance in Chinese Holstein[J].Scientia Agricultura Sinica,2011,44(3):570-578.(in Chinese) |
[75] | 杜方磊,李秋玲,王长法,等.荷斯坦奶牛热休克蛋白70基因3'-侧翼区遗传变异与耐热性的关系[J].农业生物技术学报,2010,18(2):296-301.DU F L,LI Q L,WANG C F,et al.Genetic variation at 3'-UTR of the heat shock protein 70 gene and its relationship with thermal tolerance in holstein cows[J].Journal of Agricultural Biotechnology,2010,18(2):296-301.(in Chinese) |
[76] | 王延久,李建斌,王长法,等.荷斯坦种公牛HSF1和HSBP1基因多态性分析[J].安徽农业科学,2011,39(14):8634-8637.WANG Y J,LI J B,WANG C F,et al.Analysis of genetic polymorphisms of HSF1 and HSBP1 gene in Holstein breeds bulls[J].Journal of Anhui Agricultural Sciences,2011,39(14):8634-8637.(in Chinese) |
[77] | 方文良,黄金明,王长法,等.中国荷斯坦牛PPAR-α基因多态性研究及其与耐热性能的关联分析[J].中国畜牧兽医,2012,39(8):165-170.FANG W L,HUANG J M,WANG C F,et al.Study on the polymorphisms of PPAR-α gene and its association with heat shock response in Chinese Holstein[J].Chinese Animal Husbandry & Veterinary Medicine,2012,39(8):165-170.(in Chinese) |
[78] | 李秋玲,齐颖,王琛,等.热应激对中国荷斯坦牛乳腺组织基因表达及信号通路的影响[J].浙江农业学报,2020,32(5):770-778.LI Q L,QI Y,WANG C,et al.Effect of heat stress on gene expressions and signaling pathways of mammary gland in Chinese Holstein[J].Acta Agriculturae Zhejiangensis,2020,32(5):770-778.(in Chinese) |
[79] | 彭孝坤,胡建宏,张恩平.热应激对肉牛和肉羊生理生化指标及外周血miRNA表达水平的影响[J].家畜生态学报,2018,39(3):1-7.PENG X K,HU J H,ZHANG E P.Effects of heat stress on physiological and biochemical indexes and expression levels of miRNA in peripheral blood of beef cattle,sheep and goats[J].Acta Ecologae Animalis Domastici,2018,39(3):1-7.(in Chinese) |
[80] | 胡煜,蔡明成,王玲,等.热应激状态下牛血清生化指标、miRNA表达变化及其相关性分析[J].畜牧兽医学报,2016,47(9): 1840-1847.HU Y,CAI M C,WANG L,et al.The serum biochemical indexes and miRNA expression in cattle under heat stress and their correlation analysis[J].Acta Veterinaria et Zootechnica Sinica,2016,47(9):1840-1847.(in Chinese) |
[81] | 郑月,陈坤琳,李惠侠,等.热应激奶牛血清miRNA表达谱及miR-181a靶基因分析[J].南京农业大学学报,2014,37(6): 130-136.ZHENG Y,CHEN K L,LI H X,et al.Profiling of differential expression of microRNAs in serum of heat-stresseded cows and bioinformatic analyses of miR-181a target genes[J].Journal of Nanjing Agricultural University,2014,37(6):130-136.(in Chinese) |
[1] | 牛佳佳, 徐丹, 刘洋, 赵小玲. 鸡芦花羽性状遗传调控机制研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1883-1892. |
[2] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[3] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[4] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[5] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[6] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[7] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[8] | 张志飞, 唐雪颖, 闵力, 童雄, 陈卫东, 巨向红, 李大刚. 荷斯坦奶牛肝脏组织中与泌乳时期及繁殖力相关的基因共表达网络构建[J]. 畜牧兽医学报, 2024, 55(2): 528-539. |
[9] | 霍元楠, 邱美佳, 张姣姣, 杨炜蓉, 王鲜忠. 精氨酸及其代谢物抑制热应激诱导仔猪支持细胞凋亡的机制[J]. 畜牧兽医学报, 2024, 55(2): 587-597. |
[10] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[11] | 肖艺梅, 王胜男, 许悦雯, 何晓琳, 尹福泉. 热应激对雄性哺乳动物生殖机能影响的研究[J]. 畜牧兽医学报, 2024, 55(1): 11-21. |
[12] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
[13] | 孟璐, 胡海燕, 董蕾, 郑楠, 王加启. 基于SourceTracker分析牧场环境对乳房炎乳菌群的影响[J]. 畜牧兽医学报, 2023, 54(9): 3872-3883. |
[14] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
[15] | 赵婉莉, 曹棋棋, 杨悦, 邓昭举, 徐闯. 胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用[J]. 畜牧兽医学报, 2023, 54(7): 2751-2760. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||