畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (1): 1-8.doi: 10.11843/j.issn.0366-6964.2020.01.001
李广栋, 张鲁, 富俊才, 连正兴, 刘国世*
收稿日期:
2019-05-23
出版日期:
2020-01-23
发布日期:
2020-01-17
通讯作者:
刘国世,主要从事动物遗传育种与繁殖研究,E-mail:gshliu@cau.edu.cn
作者简介:
李广栋(1991-),男,山东泰安人,博士,主要从事动物遗传育种与繁殖研究,E-mail:15600911225@cau.edu.cn
基金资助:
LI Guangdong, ZHANG Lu, FU Juncai, LIAN Zhengxing, LIU Guoshi*
Received:
2019-05-23
Online:
2020-01-23
Published:
2020-01-17
摘要: 尽管新一代基因编辑技术CRISPR/Cas9拥有众多优点,但在执行单个碱基水平的突变时其效率往往很低。由于DNA的双链断裂具有很多的不确定性,又加上基于供体模板的同源末端重组(homology directed repair,HDR)仅仅发生在分裂活跃的细胞中,而非同源末端连接(non-homologous end joining,NHEJ)在整个细胞周期中都可以发生,因此,传统CRISPR/Cas9在单碱基分辨率上进行基因编辑时存在一定弊端。碱基编辑器(base editor,BE)的出现则在一定程度上弥补了这一缺陷。胞嘧啶碱基编辑器(cytosine base editor,CBE)或腺嘌呤碱基编辑器(adenine base editor,ABE)都能够在不引起双链断裂的情况下实现C·G到T·A或A·T到G·C的转换,极大地提高了单碱基编辑的应用价值。本文侧重对出现较早的CBE的原理、发展、应用及存在的问题进行综述,以期为高效单碱基突变工具在生物医学和畜牧业生产中的应用提供有益的参考和借鉴。
中图分类号:
李广栋, 张鲁, 富俊才, 连正兴, 刘国世. 单碱基水平上胞嘧啶碱基编辑器(CBE)的研究进展[J]. 畜牧兽医学报, 2020, 51(1): 1-8.
LI Guangdong, ZHANG Lu, FU Juncai, LIAN Zhengxing, LIU Guoshi. Research Progress of Cytosine Base Editor at the Single Base Level[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1): 1-8.
[1] | ZHAO J G,LAI L X,JI W Z,et al.Genome editing in large animals:current status and future prospects[J].Natl Sci Rev,2019,6(3):402-420. |
[2] | EID A,ALSHAREEF S,MAHFOUZ M M.CRISPR base editors:genome editing without double-stranded breaks[J].Biochem J,2018,475(11):1955-1964. |
[3] | KOMOR A C,KIM Y B,PACKER M S,et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature,2016,533(7603):420-424. |
[4] | YEH W H,CHIANG H,REES H A,et al.In vivo base editing of post-mitotic sensory cells[J].Nat Commun,2018,9(1):2184. |
[5] | GAUDELLI N M,KOMOR A C,REES H A,et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J].Nature,2017,551(7681):464-471. |
[6] | NISHIDA K,ARAZOE T,YACHIE N,et al.Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J].Science,2016,353(6305):aaf8729. |
[7] | MA Y Q,ZHANG J Y,YIN W J,et al.Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells[J].Nat Methods,2016,13(12):1029-1035. |
[8] | KOMOR A C,ZHAO K T,PACKER M S,et al.Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:a base editors with higher efficiency and product purity[J].Sci Adv,2017,3(8):eaao4774. |
[9] | WANG L J,XUE W,YAN L,et al.Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor[J].Cell Res,2017,27(10):1289-1292. |
[10] | KLEINSTIVER B P,PREW M S,TSAI S Q,et al.Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition[J].Nat Biotechnol,2015,33(12):1293-1298. |
[11] | KLEINSTIVER B P,PATTANAYAK V,PREW M S,et al.High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J].Nature,2016,529(7587):490-495. |
[12] | LIANG P P,SUN H W,SUN Y,et al.Effective gene editing by high-fidelity base editor 2 in mouse zygotes[J].Protein Cell,2017,8(8):601-611. |
[13] | REES H A,KOMOR A C,YEH W H,et al.Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery[J].Nat Commun,2017,8:15790. |
[14] | KIM Y B,KOMOR A C,LEVY J M,et al.Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J].Nat Biotechnol,2017,35(4):371-376. |
[15] | ZAFRA M P,SCHATOFF E M,KATTI A,et al.An optimized toolkit for precision base editing[J].bioRxiv,2018, |
[16] | ZAFRA M P,SCHATOFF E M,KATTI A,et al.Optimized base editors enable efficient editing in cells,organoids and mice[J].Nat Biotechnol,2018,36(9):888-893. |
[17] | COELHO M A,LI S Y,PANE L S,et al.BE-FLARE:a fluorescent reporter of base editing activity reveals editing characteristics of APOBEC3A and APOBEC3B[J].BMC Biol,2018,16(1):150. |
[18] | JIANG W,FENG S J,HUANG S S,et al.BE-PLUS:a new base editing tool with broadened editing window and enhanced fidelity[J].Cell Res,2018,28(8):855-861. |
[19] | GEHRKE J M,CERVANTES O,CLEMENT M K,et al.An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J].Nat Biotechnol,2018,36(10):977-982. |
[20] | WANG X,LI J A,WANG Y,et al.Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion[J].Nat Biotechnol,2018,36(10):946-949. |
[21] | KOBLAN L W,DOMAN J L,WILSON C,et al.Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J].Nat Biotechnol,2018,36(9):843-846. |
[22] | KUSCU C,PARLAK M,TUFAN T,et al.CRISPR-STOP:gene silencing through base-editing-induced nonsense mutations[J].Nat Methods,2017,14(7):710-712. |
[23] | BILLON P,BRYANT E E,JOSEPH S A,et al.CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons[J].Mol Cell,2017,67(6):1068-1079. |
[24] | JIA K,LU Z Y,ZHOU F,et al.Multiple sgRNAs facilitate base editing-mediated i-stop to induce complete and precise gene disruption[J].Protein Cell,2019,doi:10.1007/s13238-019-0611-6. |
[25] | LI Y F,MA S Y,SUN L,et al.Programmable single and multiplex base-editing in Bombyx mori using RNA-guided cytidine deaminases[J].G3(Bethesda),2018,8(5):1701-1709. |
[26] | YANG G,ZHOU C Y,WANG R,et al.Base-editing-mediated R17H substitution in histone H3 reveals methylation-dependent regulation of Yap signaling and early mouse embryo development[J].Cell Rep,2019,26(2):302-312e4. |
[27] | GAPINSKE M,LUU A,WINTER J,et al.CRISPR-SKIP:programmable gene splicing with single base editors[J].Genome Biol,2018,19:107. |
[28] | WEBBER B R,LONETREE C L,KLUESNER M G,et al.Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors[J].bioRxiv,2018,doi:10.1101/482497. |
[29] | LEE H K,WILLI M,SMITH H E,et al.Simultaneous targeting of linked loci in mouse embryos using base editing[J].Sci Rep,2019,9(1):1662. |
[30] | GAUDELLI N M,KOMOR A C,REES H A,et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J].Nature,2017,551(7681):464-471. |
[31] | KIM K,RYU S M,KIM S T,et al.Highly efficient RNA-guided base editing in mouse embryos[J].Nat Biotechnol,2017,35(5):435-437. |
[32] | PARK D S,YOON M,KWEON J,et al.Targeted base editing via RNA-guided cytidine deaminases in Xenopus laevis embryos[J].Mol Cells,2017,40(11):823-827. |
[33] | LIU Z Q,CHEN M,CHEN S Y,et al.Highly efficient RNA-guided base editing in rabbit[J].Nat Commun,2018,9(1):2717. |
[34] | LI Q,LI Y J,YANG S M,et al.CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development[J].Nat Cell Biol,2018,20(11):1315-1325. |
[35] | QIN W,LU X C,LIN S.Programmable base editing in zebrafish using a modified CRISPR-Cas9 system[J].Methods,2018,150:19-23. |
[36] | ZHANG H,PAN H,ZHOU C Y,et al.Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing[J].Development,2018,145(20):dev168906. |
[37] | AUSTIN C P,DAWKINS H J S.Next decade's goals for rare diseases[J].Nature,2017,548(7666):158. |
[38] | LIANG P P,DING C H,SUN H W,et al.Correction of β-thalassemia mutant by base editor in human embryos[J].Protein Cell,2017,8(11):811-822. |
[39] | CHADWICK A C,EVITT N H,LV W J,et al.Reduced blood lipid levels with in vivo CRISPR-Cas9 base editing of ANGPTL3[J].Circulation,2018,137(9):975-977. |
[40] | CARRERAS A,PANE L S,NITSCH R,et al.In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model[J].BMC Biol,2019,17(1):4. |
[41] | ZENG Y T,LI J N,LI G L,et al.Correction of the Marfan Syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos[J].Mol Ther,2018,26(11):2631-2637. |
[42] | VILLIGER L,GRISCH-CHAN H M,LINDSAY H,et al.Treatment of a metabolic liver disease by in vivo genome base editing in adult mice[J].Nat Med,2018,24(10):1519-1525. |
[43] | ROSSIDIS A C,STRATIGIS J D,CHADWICK A C,et al.In utero CRISPR-mediated therapeutic editing of metabolic genes[J].Nat Med,2018,24(10):1513-1518. |
[44] | LI G W,ZHOU S W,LI C,et al.Base pair editing of goat embryos:nonsense codon introgression into FGF5 to improve cashmere yield[J].bioRxiv,2018,doi:10.1101/348441. |
[45] | LI Z F,DUAN X Y,AN X M,et al.Efficient RNA-guided base editing for disease modeling in pigs[J].Cell Discov,2018,4:64. |
[46] | ZHOU S W,CAI B,HE C,et al.Programmable base editing of the sheep genome revealed no genome-wide off-target mutations[J].Front Genet,2019,10:215. |
[47] | YUAN H M,YU T T,WANG L Y,et al.Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs[J].Cell Mol Life Sci,2019,doi:10.1007/s00018-019-03205-2. |
[48] | CHEN K L,WANG Y P,ZHANG R,et al.CRISPR/Cas genome editing and precision plant breeding in agriculture[J].Annu Rev Plant Biol,2019,70:667-697. |
[49] | ZONG Y,SONG Q N,LI C,et al.Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J].Nat Biotechnol,2018,36(10):950-953. |
[50] | CHEN Y Y,WANG Z P,NI H W,et al.CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis[J].Sci China Life Sci,2017,60(5):520-523. |
[51] | TIAN S W,JIANG L J,CUI X X,et al.Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J].Plant Cell Rep,2018,37(9):1353-1356. |
[52] | VEILLET F,PERROT L,CHAUVIN L,et al.Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor[J].Int J Mol Sci,2019,20(2):402. |
[53] | BASTET A,ZAFIROV D,GIOVINAZZO N,et al.Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses[J].Plant Biotechnol J,2019,17(9):1736-1750. |
[54] | GUPTA P K.Beyond CRISPR:single base editors for human health and crop improvement[J].Curr Sci India,2019,116(3):386-397. |
[55] | XUE C X,ZHANG H W,LIN Q P,et al.Manipulating mRNA splicing by base editing in plants[J].Sci China Life Sci,2018,61(11):1293-1300. |
[56] | LI Z X,XIONG X Y,WANG F Z,et al.Gene disruption through base editing-induced messenger RNA missplicing in plants[J].New Phytol,2019,222(2):1139-1148. |
[57] | REN B,YAN F,KUANG Y J,et al.Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID Mutant[J].Mol Plant,2018,11(4):623-626. |
[58] | HUA K,TAO X P,ZHU J K.Expanding the base editing scope in rice by using Cas9 variants[J].Plant Biotechnol J,2019,17(2):499-504. |
[59] | SHAN Q W,VOYTAS D F.Editing plant genes one base at a time[J].Nat Plants,2018,4(7):412-413. |
[60] | HU J H,MILLER S M,GEURTS M H,et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J].Nature,2018,556(7699):57-63. |
[61] | NISHIMASU H,SHI X,ISHIGURO S,et al.Engineered CRISPR-Cas9 nuclease with expanded targeting space[J].Science,2018,361(6408):1259-1262. |
[62] | LI X S,WANG Y,LIU Y J,et al.Base editing with a Cpf1-cytidine deaminase fusion[J].Nat Biotechnol,2018,36(4):324-327. |
[63] | KLEINSTIVER B P,SOUSA A A,WALTON R T,et al.Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene,epigenetic and base editing[J].Nat Biotechnol,2019,37(3):276-282. |
[64] | TAN J J,ZHANG F,KARCHER D,et al.Engineering of high-precision base editors for site-specific single nucleotide replacement[J].Nat Commun,2019,10(1):439. |
[65] | JIN S,ZONG Y,GAO Q,et al.Cytosine,but not adenine,base editors induce genome-wide off-target mutations in rice[J].Science,2019,364(6437):292-295. |
[66] | ZUO E W,SUN Y D,WEI W,et al.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J].Science,2019,364(6437):289-292. |
[1] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[2] | 刘铃, 王丹丹, 崔凯, 马月辉, 蒋琳. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54(2): 434-442. |
[3] | 张硕, 周雨潇, 吴海波, 索伦. 长效CRISPR/Cas9基因编辑结局的动态追踪研究[J]. 畜牧兽医学报, 2023, 54(10): 4196-4208. |
[4] | 邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79. |
[5] | 邹惠影, 李俊良, 朱化彬. 引导编辑系统的研究与应用进展[J]. 畜牧兽医学报, 2022, 53(11): 3721-3730. |
[6] | 罗俊, 刘金玲, 郑鹿平, 罗琴, 滕蔓. 家禽疱疹病毒CRISPR/Cas9基因编辑最新研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3335-3344. |
[7] | 王欢, 邹惠影, 朱化彬, 赵善江. CRISPR/Cas9基因编辑技术在家畜育种新材料创制中的研究进展[J]. 畜牧兽医学报, 2021, 52(4): 851-861. |
[8] | 杨森, 滕蔓, 刘金玲, 周子誉, 郑鹿平, 楚钰淑, 丁轲, 余祖华, 罗俊. 鸡马立克病疫苗株CVI988/Rispens meq基因编辑及缺失毒株的构建与鉴定[J]. 畜牧兽医学报, 2020, 51(8): 1970-1976. |
[9] | 刘思远, 卢丹, 唐中林. CRISPR/Cas9技术及其在猪基因编辑中的应用[J]. 畜牧兽医学报, 2020, 51(3): 409-416. |
[10] | 吴海波, 边雪娇, 贾丽玲, 索伦. 二代靶向测序在CRISPR/Cas9靶区筛选中的应用性研究[J]. 畜牧兽医学报, 2019, 50(8): 1587-1595. |
[11] | 乔传民, 刘为伟, 杨强, 江浩筠, 黄路生, 幸宇云. 编辑PFF细胞的P53基因及其信号通路中重要基因的表达分析[J]. 畜牧兽医学报, 2019, 50(11): 2215-2225. |
[12] | 王玮玮,刘瑞琪,吴勇延,杨严格,王勇胜,卿素珠. CRISPR/Cas9基因编辑系统研究进展及其在动物基因编辑研究中的应用[J]. 畜牧兽医学报, 2016, 47(7): 1299-1305. |
[13] | 刘志国. CRISPR/Cas9系统介导基因组编辑的研究进展[J]. 畜牧兽医学报, 2014, 45(10): 1567-1583. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||