畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (3): 409-416.doi: 10.11843/j.issn.0366-6964.2020.03.001
刘思远1,3, 卢丹1,4, 唐中林1,2*
收稿日期:
2019-08-28
出版日期:
2020-03-25
发布日期:
2020-03-20
通讯作者:
唐中林,主要从事动物基因组与育种研究,E-mail:tangzhonglin@caas.cn
作者简介:
刘思远(1992-),女,湖南湘潭人,博士生,主要从事分子生物学研究,E-mail:liusiyuan@caas.cn
基金资助:
LIU Siyuan1,3, LU Dan1,4, TANG Zhonglin1,2*
Received:
2019-08-28
Online:
2020-03-25
Published:
2020-03-20
摘要: CRISPR/Cas9(clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9)是一种新型基因编辑系统,是由细菌和古细菌对抗入侵病毒及外源DNA的适应性免疫防御系统演变而来的。该系统具有简易、精准、经济和高效的优点,目前已广泛应用于基因编辑及其相关研究中。本文总结了近几年CRISPR/Cas9技术在猪基因组编辑中的研究进展,并展望了其应用前景。
中图分类号:
刘思远, 卢丹, 唐中林. CRISPR/Cas9技术及其在猪基因编辑中的应用[J]. 畜牧兽医学报, 2020, 51(3): 409-416.
LIU Siyuan, LU Dan, TANG Zhonglin. Research Progress on CRISPR/Cas9 and Its Application in Pigs Genome Editing[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 409-416.
[1] | ISHINO Y,SHINAGAWA H,MAKINO K,et al.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J].J Bacteriol,1987,169(12):5429-5433. |
[2] | JANSEN R,VAN EMBDEN J D A,GAASTRA W,et al.Identification of genes that are associated with DNA repeats in prokaryotes[J].Mol Microbiol,2002,43(6):1565-1575. |
[3] | POURCEL C,SALVIGNOL G,VERGNAUD G.CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA,and provide additional tools for evolutionary studies[J].Microbiology,2005,151(3):653-663. |
[4] | BROUNS S J,JORE M M,LUNDGREN M,et al.Small CRISPR RNAs guide antiviral defense in prokaryotes[J].Science, 2008, 321(5891):960-964. |
[5] | JIANG W Y,BIKARD D,COX D,et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J].Nat Biotechnol, 2013,31(3):233-239. |
[6] | SHAH S A,GARRETT R A.CRISPR/Cas and Cmr modules,mobility and evolution of adaptive immune systems[J].Res Microbiol, 2011,162(1):27-38. |
[7] | JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816-821. |
[8] | WHITWORTH K M,ROWLAND R R R,EWEN C L,et al.Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J].Nat Biotechnol,2016,34(1):20-22. |
[9] | RUAN J X,LI H G,XU K,et al.Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs[J].Sci Rep, 2015,5:14253. |
[10] | WANG K K,OUYANG H S,XIE Z Z,et al.Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Sci Rep,2015,5:16623. |
[11] | XIANG G H,REN J L,HAI T,et al.Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cell Mol Life Sci,2018,75(24):4619-4628. |
[12] | LIU X F,LIU H B,WANG M,et al.Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs[J].Transgenic Res,2019,28(1):141-150. |
[13] | ZHENG Q T,LIN J,HUANG J J,et al.Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J].Proc Natl Acad Sci U S A,2017,114(45):E9474-E9482. |
[14] | VAN GORP H,VAN BREEDAM W,VAN DOORSSELAERE J,et al.Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus[J].J Virol,2010,84(6):3101-3105. |
[15] | WELLS K D,BARDOT R,WHITWORTH K M,et al.Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus[J].J Virol,2017,91(2):e01521-e01516. |
[16] | WHITWORTH K M,LEE K,BENNE J A,et al.Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J].Biol Reprod,2014,91(3):78. |
[17] | BURKARD C,OPRIESSNIG T,MILEHAM A J,et al.Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J].J Virol,2018,92(16):e00415-e00418. |
[18] | GUO C H,WANG M,ZHU Z B,et al.Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to porcine reproductive and respiratory syndrome virus 2 infection[J].Front Immunol,2019,10:1846. |
[19] | YANG H Q,ZHANG J,ZHANG X W,et al.CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J].Antiviral Res,2018,151:63-70. |
[20] | YU M,SUN X S,TYLER S R,et al.Highly efficient transgenesis in ferrets using CRISPR/Cas9-mediated homology-independent insertion at the ROSA26 locus[J].Sci Rep,2019,9(1):1971. |
[21] | WANG M,SUN Z L,ZOU Z Y,et al.Efficient targeted integration into the bovine ROSA26 locus using TALENs[J].Sci Rep,2018, 8(1):10385. |
[22] | WU Y M,LUNA M J,BONILLA L S,et al.Characterization of knockin mice at the Rosa26,Tac1 and Plekhg1 loci generated by homologous recombination in oocytes[J].PLoS One,2018,13(2):e0193129. |
[23] | XIE Z C,PANG D X,YUAN H M,et al.Genetically modified pigs are protected from classical swine fever virus[J].PLoS Pathog, 2018,14(12):e1007193. |
[24] | HAI T,TENG F,GUO R F,et al.One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J].Cell Res, 2014, 24(3):372-375. |
[25] | WANG J Z,LIU M L,ZHAO L H,et al.Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9-mediated SIX1 and SIX4 gene targeting[J].Xenotransplantation,2019,26(3):e12484. |
[26] | LAI L X,KOLBER-SIMONDS D,PARK K W,et al.Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning[J].Science,2002,295(5557):1089-1092. |
[27] | XIN J G,YANG H Q,FAN N N,et al.Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs[J]. PLoS One,2013,8(12):e84250. |
[28] | SATO M,MIYOSHI K,NAGAO Y,et al.The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts[J]. Xenotransplantation,2014,21(3):291-300. |
[29] | CHUANG C K,CHEN C H,HUANG C L,et al.Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors[J].Anim Biotechnol,2017,28(3):174-181. |
[30] | 唐雨婷,高景波,杜敏杰,等.CRISPR/Cas9介导的β4GalNT2基因敲除猪制备[J].农业生物技术学报,2017,25(10):1697-1705.TANG Y T,GAO J B,DU M J,et al.Generation of β4GalNT2 gene knockout pigs (Sus scrofa) via CRISPR/Cas9[J].Journal of Agricultural Biotechnology,2017,25(10):1697-1705.(in Chinese) |
[31] | NIU D,WEI H J,LIN L,et al.Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J].Science, 2017, 357(6357):1303-1307. |
[32] | ZHOU X Q,XIN J G,FAN N N,et al.Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J]. Cell Mol Life Sci,2015,72(6):1175-1184. |
[33] | YAN S,TU Z C,LIU Z M,et al.A huntingtin knockin pig model recapitulates features of selective neurodegeneration in huntington's disease[J].Cell,2018,173(4):989-1002.e13. |
[34] | 靳伟,代敏敏,李德娟,等.CRISPR/Cas9介导的外源基因在猪PSP位点的定点整合[J].农业生物技术学报,2019, 27(9):1569-1581.JIN W,DAI M M,LI D J,et al.CRISPR/Cas9-mediated site specific integration of foreign genes in pig (Sus scrofa) PSP locus[J]. Journal of Agricultural Biotechnology,2019,27(9):1569-1581.(in Chinese) |
[35] | PENG J,WANG Y,JIANG J Y,et al.Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J].Sci Rep,2015,5:16705. |
[36] | YANG Y,WANG K P,WU H,et al.Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering[J].J Mol Cell Biol,2016,8(2):174-177. |
[37] | YANG Z,TAO Y X.Mutations in melanocortin-3 receptor gene and human obesity[J].Prog Mol Biol Transl Sci,2016,140:97-129. |
[38] | EHTESHAM S,QASIM A,MEYRE D.Loss-of-function mutations in the melanocortin-3 receptor gene confer risk for human obesity:a systematic review and meta-analysis[J].Obes Rev,2019,20(8):1085-1092. |
[39] | YIN Y J,HAO H Y,XU X B,et al.Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology[J].Lipids Health Dis,2019,18(1):122. |
[40] | 王晓朋,徐奎,魏迎辉,等.CRISPR/Cas9介导的猪IPEC-J2细胞CD13基因敲除细胞系的建立[J].畜牧兽医学报,2019, 50(7):1319-1327.WANG X P,XU K,WEI Y H,et al.Establishment of CD13 gene knockout IPEC-J2 cell lines mediated by CRISPR/Cas9 system[J]. Acta Veterinaria et Zootechnica Sinica,2019,50(7):1319-1327.(in Chinese) |
[41] | PANG L,ZHANG N,XIA Y,et al.Serum APN/CD13 as a novel diagnostic and prognostic biomarker of pancreatic cancer[J]. Oncotarget, 2016,7(47):77854-77864. |
[42] | 张东杰,刘娣,张旭,等.利用CRISPR-Cas9系统定点突变猪MSTN基因的研究[J].畜牧兽医学报,2016,47(1):207-212.ZHANG D J,LIU D,ZHANG X,et al.Study of pig MSTN gene point mutation based on the CRISPR-Cas9 system[J].Acta Veterinaria et Zootechnica Sinica,2016,47(1):207-212.(in Chinese) |
[43] | 李聪聪,张永辉,赵婉霞,等.CRISPR/Cas9系统介导的miR-155基因敲除细胞的制备[J].生物技术通报,2019,35(11):231-239.LI C C,ZHANG Y H,ZHAO W X,et al.Preparation of miR-155 knockout cells mediated by CRISPR/Cas9 technology[J]. Biotechnology Bulletin,2019,35(11):231-239.(in Chinese) |
[44] | SATO M,KOSUKE M,KORIYAMA M,et al.Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes[J].Theriogenology,2018,108:29-38. |
[45] | KIMURA Y,HISANO Y,KAWAHARA A.Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering[J].Sci Rep,2014,4:6545. |
[46] | ZUO E W,CAI Y J,LI K,et al.One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs[J].Cell Res,2017,27(7):933-945. |
[47] | CRISPO M,MULET A P,TESSON L,et al.Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J].PLoS One,2015,10(8):e0136690. |
[48] | ZHANG J P,ZHU Z S,YUE W,et al.Establishment of CRISPR/Cas9-mediated knock-in system for porcine cells with high efficiency[J]. Appl Biochem Biotechnol,2019,189(1):26-36. |
[49] | FU Y F,FODEN J A,KHAYTER C,et al.High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J].Nat Biotechnol,2013,31(9):822-826. |
[50] | RAN F A,HSU P D,LIN C Y.Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6):1380-1389. |
[51] | KIM E J,KOO T,PARK S W,et al.In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J]. Nat Commun, 2017,8:14500. |
[52] | RAN F A,CONG L,YAN W X,et al.In vivo genome editing using Staphylococcus aureus Cas9[J].Nature,2015, 520(7546):186-191. |
[53] | 吴金青,梅瑰,刘志国,等.应用SSA报告载体提高ZFN和CRISPR/Cas9对猪IGF2基因的打靶效率[J].遗传,2015, 37(1):55-62.WU J Q,MEI G,LIU Z G,et al.Improving gene targeting efficiency on pig IGF2 mediated by ZFNs and CRISPR/Cas9 by using SSA reporter system[J].Hereditas,2015,37(1):55-62.(in Chinese) |
[54] | ZUO E W,SUN Y D,WEI W,et al.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science,2019,364(6437):289-292. |
[55] | ABUDAYYEH O O,GOOTENBERG J S,FRANKLIN B,et al.A cytosine deaminase for programmable single-base RNA editing[J].Science,2019,365(6451):382-386. |
[56] | CHEN Y C,ZHENG Y H,KANG Y,et al.Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9[J]. Hum Mol Genet,2015,24(13):3764-3774. |
[57] | YANG L H,GVELL M,NIU D,et al.Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J].Science,2015, 350(6264):1101-1104. |
[58] | YAN J J,YEOM H J,JEONG J C,et al.Beneficial effects of the transgenic expression of human sTNF-αR-Fc and HO-1 on pig-to-mouse islet xenograft survival[J].Transpl Immunol,2016,34:25-32. |
[59] | CHAN J L,SINGH A K,CORCORAN P C,et al.Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model[J].Xenotransplantation,2017,24(6):e12330. |
[60] | BALIOU S,ADAMAKI M,KYRIAKOPOULOS A M,et al.CRISPR therapeutic tools for complex genetic disorders and cancer (Review)[J].Int J Oncol,2018,53(2):443-468. |
[61] | KRUMINIS-KASZKIEL E,JURANEK J,MAKSYMOWICZ W,et al.CRISPR/Cas9 technology as an emerging tool for targeting amyotrophic lateral sclerosis (ALS)[J].Int J Mol Sci,2018,19(3):906. |
[62] | GAUDELLI N M,KOMOR A C,REES H A,et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature,2017,551(7681):464-471. |
[63] | KOMOR A C,BADRAN A H,LIU D R.CRISPR-based technologies for the manipulation of eukaryotic genomes[J].Cell,2017, 168(1-2):20-36. |
[64] | XIE S S,SHEN B,ZHANG C B,et al.sgRNAcas9:a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites[J].PLoS One,2014,9(6):e100448. |
[65] | ZHAO C Z,ZHENG X G,QU W B,et al.CRISPR-offinder:a CRISPR guide RNA design and off-target searching tool for user-defined protospacer adjacent motif[J].Int J Biol Sci,2017,13(12):1470-1478. |
[66] | 吴海波,边雪娇,贾丽玲,等.二代靶向测序在CRISPR/Cas9靶区筛选中的应用性研究[J].畜牧兽医学报,2019,50(8):1587-1595.WU H B,BIAN X J,JIA L L,et al.Screening of CRISPR/Cas9 gene editing targets using next generation targeted sequence[J].Acta Veterinaria et Zootechnica Sinica,2019,50(8):1587-1595.(in Chinese) |
[67] | LINO C A,HARPER J C,CARNEY J P,et al.Delivering CRISPR:a review of the challenges and approaches[J].Drug Deliv,2018, 25(1):1234-1257. |
[1] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
[2] | 孙雯莉, 王浩奇, 泽里磋, 高雨樊, 张非凡, 张健, 段梦琪, 商鹏, 强巴央宗. 藏猪促炎因子(IL-1β、IL-6、TNF-α)多态性及其表达与免疫性状的关联分析[J]. 畜牧兽医学报, 2024, 55(5): 1958-1969. |
[3] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
[4] | 韩阳, 关帅印, 李振, 周赛赛, 袁红根, 宋云峰. 猪圆环病毒3型Rep蛋白的原核表达及酶活性分析[J]. 畜牧兽医学报, 2024, 55(5): 2061-2071. |
[5] | 宋晓晴, 邓瑞德, 李欣, 李姣, 李润成, 杜丽飞, 董伟, 葛猛. PCV4 Cap抗体ELISA检测方法的建立及血清流行病学调查[J]. 畜牧兽医学报, 2024, 55(5): 2072-2079. |
[6] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[7] | 马茹梦, 赵玉梁, 马明爽, 国桂海, 刘芯孜, 李佳璇, 崔文, 姜艳平, 单智夫, 周晗, 王丽, 乔薪瑗, 唐丽杰, 王晓娜, 李一经. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55(5): 2090-2099. |
[8] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
[9] | 王静, 张淑娟, 胡霞, 刘向阳, 张兴翠, 宋振辉. CD44通过影响猪流行性腹泻病毒复制调节钠氢交换体3活性[J]. 畜牧兽医学报, 2024, 55(5): 2176-2185. |
[10] | 王吉英, 尹蕊如, 谢星, 王海燕, 刘胡栋, 胡辉, 熊祺琰, 冯志新, 邵国青, 于岩飞. 猪肺炎支原体乳酸脱氢酶在诱导猪支气管上皮细胞凋亡中的作用[J]. 畜牧兽医学报, 2024, 55(5): 2195-2205. |
[11] | 胡泽奇, 李润成, 谭祖明, 谢秀艳, 王江平, 秦乐娟, 李荣, 葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(5): 2267-2272. |
[12] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[13] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[14] | 黄杰, 阮子豪, 蔡瑞. 抗菌肽在猪精液常温保存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1401-1411. |
[15] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||