

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (4): 1744-1754.doi: 10.11843/j.issn.0366-6964.2025.04.023
• Animal Genetics and Breeding • Previous Articles Next Articles
LI Cong1(
), SU Jiangtian1, LI Yidan1, WANG Zhaofei1, YU Jie2, LEI Chuzhao1, DANG Ruihua1,*(
)
Received:2024-10-08
Online:2025-04-23
Published:2025-04-28
Contact:
DANG Ruihua
E-mail:lc863749946@163.com;dangruihua@nwsuaf.edu.cn
CLC Number:
LI Cong, SU Jiangtian, LI Yidan, WANG Zhaofei, YU Jie, LEI Chuzhao, DANG Ruihua. Genome-wide Association Study of Body Traits in Dezhou Donkey[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1744-1754.
Table 1
Statistical description of body traits in Dezhou donkeys"
| 性状 Trait | 最大值 Max | 最小值 Min | 平均值±标准差 Mean±SD | 变异系数/% CV |
| 体长/cm Body length | 155.00 | 118.00 | 132.17±6.86 | 5.19 |
| 体高/cm Withers height | 151.00 | 117.00 | 138.04±6.19 | 4.49 |
| 头长/cm Head length | 64.00 | 44.00 | 55.11±3.30 | 5.99 |
| 颈长/cm Neck length | 82.00 | 55.00 | 69.45±4.83 | 6.96 |
| 胸围/cm Chest circumference | 179.00 | 133.00 | 157.11±7.06 | 4.50 |
| 胸宽/cm Chest width | 53.00 | 32.00 | 42.10±3.47 | 8.25 |
| 胸深/cm Chest depth | 67.00 | 48.00 | 58.12±3.93 | 6.76 |
| 尻长/cm Hip length | 49.00 | 35.00 | 40.45±2.51 | 6.19 |
| 尻宽/cm Hip width | 52.00 | 36.00 | 43.64±2.90 | 6.65 |
| 尻高/cm Hip height | 152.00 | 118.00 | 139.43±6.12 | 4.39 |
| 管围/cm Cannon circumference | 21.00 | 13.00 | 15.74±1.35 | 8.55 |
Table 2
Description of SNPs significantly associated with body traits"
| 性状 Trait | 位点 SNP | P值 P-value | 基因 Gene |
| 体长 Body length | 21:91 503 240 | 3.14×10-7 | ATG7, SYN2, PPARG |
| 20:21 286 387 | 2.07×10-5 | BARX2 | |
| 体高 Withers height | 24:23 343 731 | 1.60×10-6 | ASCC3, SIM1 |
| 头长 Head length | 6:72 093 776 | 8.14×10-6 | CTNNA2 |
| 29:35 886 892 | 1.44×10-5 | GJD4 | |
| 2:46 901 188 | 1.85×10-5 | ADGRA1, CFAP46, KNDC1 | |
| 14:15 884 941 | 1.98×10-5 | CLEC16A, CIITA, SOCS1 | |
| 颈长 Neck length | 4:83 924 683 | 2.54×10-6 | TSN, NIFK |
| 4:84 006 403 | 1.97×10-5 | ||
| 胸宽 Chest width | 16:45 878 080 | 8.85×10-7 | PDE4B, LEPR |
| 胸深 Chest depth | 16:29 057 786 | 1.90×10-6 | COL24A1, CCN1, ZNHIT6, SYDE2, DNAI3 |
| 16:29 189 524 | 5.06×10-6 | ||
| 16:29 121 493 | 1.22×10-5 | ||
| 16:28 935 452 | 2.10×10-5 | ||
| 11:58 626 672 | 1.08×10-5 | Not found | |
| 尻长 Hip length | 16:33 634 323 | 5.65×10-7 | Not found |
| 22:10 131 560 | 9.98×10-6 | LRIG3, SLC16A7 | |
| 27:8 494 369 | 1.61×10-5 | VEGFC | |
| 尻宽 Hip width | 1:68 845 784 | 1.88×10-6 | ZNF804B, STEAP1, TEX47 |
| 5:38 279 154 | 8.46×10-6 | PIK3R3, MAST2 | |
| 管围 | 7:94 911 085 | 4.86×10-6 | PIK3C3 |
| Cannon circumference | 13:4 356 242 | 5.87×10-6 | NT5M, PEMT, FLCN, MPRIP, COPS3 |
| 13:5 440 529 | 7.80×10-6 | FAM83G, GRAP, EPN2, MFAP4 |
Table 3
Fine mapping analysis of candidate regions"
| 性状 Trait | 候选区域 Candidate region | 位点 SNP | 后验概率 Posterior probability |
| 体长 Body length | 20: 20 793 098-21 758 076 | 20:21 286 387 | 0.999 |
| 20:21 467 517 | 0.889 | ||
| 21: 91 046 592-91 929 365 | 21:91 503 240 | 0.999 | |
| 21:91 224 217 | 0.476 | ||
| 体高 Withers height | 24: 22 855 789-23 775 288 | 24:23 595 950 | 1.000 |
| 24:23 690 180 | 1.000 | ||
| 24:23 343 731 | 1.000 | ||
| 24:22 920 106 | 0.554 | ||
| 头长 Head length | 6: 71 605 039-72 542 551 | 6:72 093 776 | 0.936 |
| 6:72 179 511 | 0.352 | ||
| 29: 35 388 388-36 370 323 | 29:35 886 892 | 0.999 | |
| 29:36 370 323 | 0.993 | ||
| 29:36 314 803 | 0.991 | ||
| 2: 46 439 788-47 286 995 | 2:46 901 188 | 0.962 | |
| 14: 15 390 407-16 379 240 | 14:15 884 941 | 0.991 | |
| 14:15 390 407 | 0.846 | ||
| 颈长 Neck length | 4: 83 666 925-84 489 543 | 4:83 924 683 | 1.000 |
| 4:84 006 403 | 1.000 | ||
| 4:84 489 543 | 0.523 | ||
| 胸宽 Chest width | 16: 45 379 140-46 335 855 | 16:45 878 080 | 0.999 |
| 16:45 863 712 | 0.430 | ||
| 胸深 Chest depth | 11: 58 128 302-59 098 496 | 11:58 626 672 | 0.994 |
| 11:58 295 507 | 0.809 | ||
| 16: 28 622 350-29 616 040 | 16:29 057 786 | 0.494 | |
| 16:28 622 350 | 0.297 | ||
| 尻长 Hip length | 16: 33 143 130-34 132 572 | 16:33 634 323 | 0.999 |
| 16:34 083 160 | 0.996 | ||
| 16:33 853 810 | 0.399 | ||
| 22: 9 664 581-10 553 415 | 22:10 131 560 | 0.974 | |
| 27: 8 024 389-8 978 857 | 27:8 494 369 | 0.968 | |
| 尻宽 Hip width | 1: 68 361 851-69 298 764 | 1:68 845 784 | 1.000 |
| 1:68 640 878 | 0.999 | ||
| 1:68 583 033 | 0.972 | ||
| 1:68 746 075 | 0.869 | ||
| 5: 37 815 051-38 776 904 | 5:38 279 154 | 0.994 | |
| 5:38 647 887 | 0.372 | ||
| 管围 | 7: 94 456 782-95 388 036 | 7:94 911 085 | 0.989 |
| Cannon circumference | 13: 3 862 146-4 807 467 | 13:4 356 242 | 0.983 |
| 13: 4 956 846-5 919 064 | 13:5 440 529 | 0.998 | |
| 13:5 830 048 | 0.579 | ||
| 13:5 029 534 | 0.613 |
| 1 |
SEYITI S , KELIMU A . Donkey industry in China: Current aspects, suggestions and future challenges[J]. J Equine Vet Sci, 2021, 102, 103642.
doi: 10.1016/j.jevs.2021.103642 |
| 2 |
SOUROULLAS K , ASPRI M , PAPADEMAS P . Donkey milk as a supplement in infant formula: Benefits and technological challenges[J]. Food Res Int, 2018, 109, 416- 425.
doi: 10.1016/j.foodres.2018.04.051 |
| 3 |
LI Y , FAN Y , SHAIKH A S , et al. Dezhou donkey (Equus asinus) milk a potential treatment strategy for type 2 diabetes[J]. J Ethnopharmacol, 2020, 246, 112221.
doi: 10.1016/j.jep.2019.112221 |
| 4 |
BENNETT R , PFUDERER S . The potential for new donkey farming systems to supply the growing demand for hides[J]. Animals, 2020, 10 (4): 718.
doi: 10.3390/ani10040718 |
| 5 | 李聪, 刘书琴, 高峰, 等. 家驴40K液相芯片开发及其初步应用[J]. 畜牧兽医学报, 2024, 55 (12): 5538- 5548. |
| LI C , LIU S Q , GAO F , et al. Development and preliminary application of domestic donkey 40K liquid chip[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (12): 5538- 5548. | |
| 6 |
LI C , DUAN D D , XUE Y H , et al. An association study on imputed whole-genome resequencing from high-throughput sequencing data for body traits in crossbred pigs[J]. Anim Genet, 2022, 53 (2): 212- 219.
doi: 10.1111/age.13170 |
| 7 |
WANG M , LI H , ZHANG X , et al. An analysis of skin thickness in the Dezhou donkey population and identification of candidate genes by RNA-seq[J]. Anim Genet, 2022, 53 (3): 368- 379.
doi: 10.1111/age.13196 |
| 8 |
LAI Z , WU F , LI M , et al. Tissue expression profile, polymorphism of IGF1 gene and its effect on body size traits of Dezhou donkey[J]. Gene, 2021, 766, 145118.
doi: 10.1016/j.gene.2020.145118 |
| 9 | 侯浩宾, 李海静, 杨莉, 等. 德州驴NCAPG-DCAF16基因区域多态性与生长性状的关联分析[J]. 畜牧兽医学报, 2019, 50 (2): 302- 313. |
| HOU H B , LI H J , YANG L , et al. Association between NCAPG-DCAF16 region polymorphisms and growth traits in dezhou donkeys[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (2): 302- 313. | |
| 10 |
WANG F , WANG G , DALIELIHAN B , et al. A novel 31bp deletion within the CDKL5 gene is significantly associated with growth traits in Dezhou donkey[J]. Anim Biotechnol, 2023, 34 (3): 503- 507.
doi: 10.1080/10495398.2021.1977653 |
| 11 |
WANG G , LI M , ZHOU J , et al. A novel A>G polymorphism in the intron 2 of TBX3 gene is significantly associated with body size in donkeys[J]. Gene, 2021, 785, 145602.
doi: 10.1016/j.gene.2021.145602 |
| 12 |
WANG T , SHI X , LIU Z , et al. A Novel A>G Polymorphism in the Intron 1 of LCORL Gene Is Significantly Associated with Hide Weight and Body Size in Dezhou Donkey[J]. Animals, 2022, 12 (19): 2581.
doi: 10.3390/ani12192581 |
| 13 | CHANG C C , CHOW C C , TELLIER L C , et al. Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. GigaScience, 2015, 4 (1): 7. |
| 14 |
ZHOU X , STEPHENS M . Genome-wide efficient mixed-model analysis for association studies[J]. Nat Genet, 2012, 44 (7): 821- 824.
doi: 10.1038/ng.2310 |
| 15 |
WANG K , LI M , HAKONARSON H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38 (16): e164.
doi: 10.1093/nar/gkq603 |
| 16 | BU D , LUO H , HUO P , et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J]. Nucleic Acids Res, 2021, 49 (1): 317- 325. |
| 17 |
BENNER C , SPENCER C C , HAVULINNA A S , et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies[J]. Bioinformatics, 2016, 32 (10): 1493- 1501.
doi: 10.1093/bioinformatics/btw018 |
| 18 |
DONG S S , HE W M , JI J J , et al. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files[J]. Brief Bioinform, 2021, 22 (4): bbaa227.
doi: 10.1093/bib/bbaa227 |
| 19 | 刘玲玲, 孟军, 王琼, 等. 马体尺性状的全基因组关联分析[J]. 农业生物技术学报, 2020, 28 (11): 1994- 2001. |
| LIU L L , MENG J , WANG Q , et al. Genome-wide Association Study of Morphometric Traits in Horse (Equus caballus)[J]. Journal of Agricultural Biotechnology, 2020, 28 (11): 1994- 2001. | |
| 20 |
LIU L L , CHEN B , CHEN S L , et al. A genome-wide association study of the chest circumference trait in Xinjiang donkeys based on whole-genome sequencing technology[J]. Genes, 2023, 14 (5): 1081.
doi: 10.3390/genes14051081 |
| 21 |
SONG S , WANG S , LI N , et al. Genome-wide association study to identify SNPs and candidate genes associated with body size traits in donkeys[J]. Front Genet, 2023, 14, 1112377.
doi: 10.3389/fgene.2023.1112377 |
| 22 |
MENG X H , CHEN X D , GREENBAUM J , et al. Integration of summary data from GWAS and eQTL studies identified novel causal BMD genes with functional predictions[J]. Bone, 2018, 113, 41- 48.
doi: 10.1016/j.bone.2018.05.012 |
| 23 |
BAROI S , CZERNIK P J , CHOUGULE A , et al. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss[J]. Bone, 2021, 147, 115913.
doi: 10.1016/j.bone.2021.115913 |
| 24 |
ZHANG J , ZHANG T , TANG B , et al. The miR-187 induced bone reconstruction and healing in a mouse model of osteoporosis, and accelerated osteoblastic differentiation of human multipotent stromal cells by targeting BARX2[J]. Pathol Res Pract, 2021, 219, 153340.
doi: 10.1016/j.prp.2021.153340 |
| 25 |
CHAWLA A , BOISVERT W A , LEE C H , et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis[J]. Mol Cell, 2001, 7 (1): 161- 171.
doi: 10.1016/S1097-2765(01)00164-2 |
| 26 |
LI C , DUAN D D , XUE Y H , et al. An association study on imputed whole-genome resequencing from high-throughput sequencing data for body traits in crossbred pigs[J]. Anim Genet, 2022, 53 (2): 212- 219.
doi: 10.1111/age.13170 |
| 27 |
MEUNIER J , VILLAR-QUILES R N , DUBAND-GOULET I , et al. Inherited defects of the ASC-1 complex in congenital neuromuscular diseases[J]. Int J Mol Sci, 2021, 22 (11): 6039.
doi: 10.3390/ijms22116039 |
| 28 |
YAMADA Y , SAKUMA J , TAKEUCHI I , et al. Identification of rs7350481 at chromosome 11q23.3 as a novel susceptibility locus for metabolic syndrome in Japanese individuals by an exome-wide association study[J]. Oncotarget, 2017, 8 (24): 39296- 39308.
doi: 10.18632/oncotarget.16945 |
| 29 |
WANG W , LIU Y , HAO J , et al. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis[J]. Gene, 2016, 591 (1): 43- 47.
doi: 10.1016/j.gene.2016.06.058 |
| 30 |
WANG W T , HUANG Z P , SUI S , et al. microRNA-1236 promotes chondrocyte apoptosis in osteoarthritis via direct suppression of PIK3R3[J]. Life Sci, 2020, 253, 117694.
doi: 10.1016/j.lfs.2020.117694 |
| 31 |
KOMINAKIS A , TARSANI E , HAGER-THEODORIDES A L , et al. Genetic differentiation of mainland-island sheep of Greece: Implications for identifying candidate genes for long-term local adaptation[J]. PLoS One, 2021, 16 (9): e0257461.
doi: 10.1371/journal.pone.0257461 |
| 32 |
CAI D , WANG Z , ZHOU Z , et al. Integration of transcriptome sequencing and whole genome resequencing reveal candidate genes in egg production of upright and pendulous-comb chickens[J]. Poult Sci, 2023, 102 (4): 102504.
doi: 10.1016/j.psj.2023.102504 |
| 33 |
MULLIN B H , TICKNER J , ZHU K , et al. Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts[J]. Genome Biol, 2020, 21 (1): 80.
doi: 10.1186/s13059-020-01997-2 |
| 34 |
TAYLOR S E , LEE J , SMERIGLIO P , et al. Identification of human juvenile chondrocyte-specific factors that stimulate stem cell growth[J]. Tissue Eng Part A, 2016, 22 (7-8): 645- 653.
doi: 10.1089/ten.tea.2015.0366 |
| 35 |
LIU H , HE J , BAGHERI-YARMAND R , et al. Osteocyte CⅡTA aggravates osteolytic bone lesions in myeloma[J]. Nat Commun, 2022, 13 (1): 3684.
doi: 10.1038/s41467-022-31356-7 |
| 36 |
JENSEN V F , SWANBERG M , HERLIN M , et al. Differential expression of the inflammatory ciita gene may be accompanied by altered bone properties in intact sex steroid-deficient female rats[J]. BMC Res Notes, 2023, 16 (1): 372.
doi: 10.1186/s13104-023-06543-4 |
| 37 |
ABOUSOLIMAN I , REYER H , OSTER M , et al. Genome-wide analysis for early growth-related traits of the locally adapted egyptian Barki sheep[J]. Genes, 2021, 12 (8): 1243.
doi: 10.3390/genes12081243 |
| 38 |
ZHANG C , XIAO D , SHU L , et al. Single-cell RNA sequencing uncovers cellular heterogeneity and the progression of heterotopic ossification of the elbow[J]. Front Pharmacol, 2024, 15, 1434146.
doi: 10.3389/fphar.2024.1434146 |
| 39 |
YU Y , OH S Y , KIM H Y , et al. Valproic acid-induced CCN1 promotes osteogenic differentiation by increasing CCN1 protein stability through HDAC1 inhibition in tonsil-derived mesenchymal stem cells[J]. Cells, 2022, 11 (3): 534.
doi: 10.3390/cells11030534 |
| 40 |
ZHAO G , KIM E W , JIANG J , et al. CCN1/Cyr61 Is Required in osteoblasts for responsiveness to the anabolic activity of PTH[J]. J Bone and Miner Res, 2020, 35 (11): 2289- 2300.
doi: 10.1002/jbmr.4128 |
| 41 |
MACÉ T , GONZÁLEZ-GARCÍA E , FOULQUIÉ D , et al. Genome-wide analyses reveal a strong association between LEPR gene variants and body fat reserves in ewes[J]. BMC Genomics, 2022, 23 (1): 412.
doi: 10.1186/s12864-022-08636-z |
| 42 |
ÓVILO C , TRAKOOLJUL N , NÚÑEZ Y , et al. SNP discovery and association study for growth, fatness and meat quality traits in Iberian crossbred pigs[J]. Sci Rep, 2022, 12 (1): 16361.
doi: 10.1038/s41598-022-20817-0 |
| 43 |
ANGEL S P , BAGATH M , SEJIAN V , et al. Expression patterns of candidate genes reflecting the growth performance of goats subjected to heat stress[J]. Mol Biol Rep, 2018, 45 (6): 2847- 2856.
doi: 10.1007/s11033-018-4440-0 |
| 44 |
EL-TARABANY M S , SALEH A A , EL-ARABY I E , et al. Association of LEPR polymorphisms with egg production and growth performance in female Japanese quails[J]. Anim Biotechnol, 2022, 33 (4): 599- 611.
doi: 10.1080/10495398.2020.1812617 |
| 45 |
WANG X , ZHAO Y , BAI J . Research note: Association of LEPR gene polymorphism with growth and carcass traits in Savimalt and French Giant meat-type quails[J]. Poult Sci, 2023, 102 (12): 103047.
doi: 10.1016/j.psj.2023.103047 |
| 46 |
LI H , ZHOU W , SUN S , et al. Microfibrillar-associated protein 5 regulates osteogenic differentiation by modulating the Wnt/β-catenin and AMPK signaling pathways[J]. Mol Med, 2021, 27 (1): 153.
doi: 10.1186/s10020-021-00413-0 |
| 47 |
NISHIHARA S , IKEDA M , OZAWA H , et al. Role of cAMP in phenotypic changes of osteoblasts[J]. Biochem Bioph Res Co, 2018, 495 (1): 941- 946.
doi: 10.1016/j.bbrc.2017.11.125 |
| 48 | ZHANG H , JIANG C , LI M , et al. CXCR4 enhances invasion and proliferation of bone marrow stem cells via PI3K/AKT/NF-κB signaling pathway[J]. Int J Clin Exp Pathol, 2017, 10 (9): 9829- 9836. |
| 49 |
ULICI V , HOENSELAAR K D , GILLESPIE J R , et al. The PI3K pathway regulates endochondral bone growth through control of hypertrophic chondrocyte differentiation[J]. BMC Dev Biol, 2008, 8, 40.
doi: 10.1186/1471-213X-8-40 |
| [1] | WU Jiahao, WU Ziyi, DOU Tengfei, BAI Liyao, ZHANG Yongqian, DONG Lianhe, LI Pengfei, LI Xinjian, HAN Xuelei, LI Xiuling. Genome-wide Association Study of Copy Number Variation in Growth-Related Traits of Yunong-Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1110-1119. |
| [2] | Hongyan HUANG, Liyun ZHANG, Zhirong HUANG, Zhongping WU, Xumeng ZHANG, Hongjia OUYANG, Junpeng CHEN, Zhenping LIN, Yunbo TIAN, Xiujin LI, Yunmao HUANG. The Study on Population Genetic Diversity and Genome-wide Association Study of Body Weight and Size Traits for Lion-head Geese [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3914-3924. |
| [3] | Ruiqi ZHANG, Yanqin PANG, Zaishan LI, Xiuguo SHANG, Ganqiu LAN, Jinbiao GUO, Yunxiang ZHAO. Research on Feeding Capacity Selection of Lactating Sows Based on Intelligent Precision Feeding [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2890-2900. |
| [4] | CUI Shengdi, WANG Kai, ZHAO Zhenjian, CHEN Dong, SHEN Qi, YU Yang, WANG Junge, CHEN Ziyang, YU Shixin, CHEN Jiamiao, WANG Xiangfeng, TANG Guoqing. Identification of Candidate Genes for Pork Texture Traits Using GWAS Combined with Co-localisation of DNA Methylation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1945-1957. |
| [5] | Xiaokun LIN, Mengmeng DU, Lisheng ZHOU, Zhengang HUANG, Di WANG, Donghui ZHOU, Xinxin CAO, Jianning HE, Jinshan ZHAO, Hegang LI. Genome-Wide Association Study of Wool Economic Traits in Aohan Fine Wool Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4346-4359. |
| [6] | LI Keanning, DU Lili, AN Bingxing, DENG Tianyu, LIANG Mang, CAO Sheng, DU Yueying, XU Lingyang, GAO Xue, ZHANG Lupei, LI Junya, GAO Huijiang. Genetic Parameter Estimation and Genome-Wide Association Study for Carcass Traits and Primal Cuts Weight Traits in Huaxi Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3664-3676. |
| [7] | FAN Chenyu, SHAN Yanju, ZHANG Ming, JI Gaige, JU Xiaojun, TU Yunjie, HE Xi, SHU Jingting, LIU Yifan, ZHANG Haihan. Genome-wide Association Study of Body Weight and Meat Quality Traits in Lihua Mahuang Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4982-4992. |
| [8] | LI Hongwei, XU Lingyang, WANG Zezhao, CAI Wentao, ZHU Bo, CHEN Yan, GAO Xue, ZHANG Lupei, GAO Huijiang, LI Junya. Genome-wide Association Study of Slaughter Traits Based on Haplotype in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4232-4243. |
| [9] | YANG Xinting, ZHENG Maiqing, TAN Xiaodong, ZHAO Guiping, HUANG Chao, LI Sen, LI Wei, WEN Jie, LIU Ranran. Genetic Parameters Estimation and Key Genes Identification for Meat Quality Traits of Fast-growing Yellow-feather Meat-type Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2416-2428. |
| [10] | OUYANG Fengzheng, WANG Ligang, YUE Jingwei, YAN Hua, ZHANG Longchao, HOU Xinhua, LIU Xin, WANG Lixian. Genome-wide Association Study of Copy Number Variations and Quantitative Trait Loci Mapping to Identify Candidate Genes for Body Height Trait in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1515-1524. |
| [11] | LIU Xiaojing, LIU Lu, WANG Jie, CUI Huanxian, ZHAO Guiping, WEN Jie. Genome-wide Association Study of Chicken Blood Glucose Traits Using Whole Genome Resequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1187-1195. |
| [12] | HOU Haobin, LI Haijing, YANG Li, ZHANG Xinhao, SHI Tianpei, WANG Xinyue, ZHAO Zhida, ZHANG Li. Association between NCAPG-DCAF16 Region Polymorphisms and Growth Traits in Dezhou Donkeys [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(2): 302-313. |
| [13] | WU Qun-qing, ZHANG Long-chao, HUANG Sheng-qiang, WANG Li-xian. A Genome-wide Association Study of Different Size Populations Based on Tail Analysis [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(7): 1181-1190. |
| [14] | XU Pan,ZHANG Zhen,CUI Lei-lei,YANG Bin,DUAN Yan-yu. A Systems Genetics Study of Hematological Traits in a White Duroc × Erhualian Pigs F2 Resource Population [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(2): 232-240. |
| [15] | HAO Xing-jie,HU Lin,ZHANG Shu-jun. Progresses in Research of Genome-wide Association Study Methods [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(2): 213-217. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||