Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (4): 1561-1574.doi: 10.11843/j.issn.0366-6964.2025.04.009
• Review • Previous Articles Next Articles
LIU Aijun(), HUANG Xiaobing, ZHANG Chuanliang, ZHANG Hongli*(
)
Received:
2024-05-14
Online:
2025-04-23
Published:
2025-04-28
Contact:
ZHANG Hongli
E-mail:1468965900@qq.com;hongli577@163.com
CLC Number:
LIU Aijun, HUANG Xiaobing, ZHANG Chuanliang, ZHANG Hongli. Progress on the Interactions of Brucella with Host Innate Immunity Signaling Pathways[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1561-1574.
Table 1
The roles of innate immunity signaling during Brucella infection in mice"
受体 Receptor | 配体 Ligand | 感染途径 Route of infection | 作用 Function |
TLR2 | 脂蛋白[ | 腹腔注射 | TLR2-/-小鼠B. microti、B. abortus易感性均无显著差异[ |
气管内注射 | TLR2-/-小鼠肺泡巨噬细胞B. abortus负荷增高[ | ||
TLR4 | LPS和Omp16[ | 腹腔注射 | TLR4-/-小鼠B. microti、B. abortus易感性无显著差异[ |
TLR3/7 | RNA[ | 腹腔注射 | TLR3-/-和TLR7-/-小鼠B. abortus易感性均无显著差异[ |
TLR6 | 脂蛋白[ | 腹腔注射 | TLR6-/-小鼠B. abortus易感性增加[ |
TLR9 | DNA[ | 腹腔注射 | TLR9-/-小鼠B. abortus感染初期易感性增加[ |
cGAS | DNA[ | 气管内注射 | cGAS-/-小鼠B. abortus易感性增加[ |
腹腔注射 | cGAS-/-小鼠B. abortus易感性无显著性差异[ | ||
STING | c-diGMP和DNA[ | 气管内注射 | STING-/-小鼠B. abortus易感性增加[ |
腹腔注射 | STING-/-小鼠B. abortus易感性增加[ | ||
NLRP3 | DAMPs[ | 气管内注射 | NLRP3-/-小鼠B. abortus易感性增加[ |
腹腔注射 | NLRP3-/-小鼠B. abortus易感性增加[ | ||
AIM2 | DNA[ | 腹腔注射 | AIM2-/-小鼠B. abortus易感性增加[ |
气管内注射 | AIM2-/-小鼠B. abortus易感性增加[ | ||
NLRP6 | 尚不清楚 | 口服感染 | NLRP6-/-小鼠对B. abortus感染抵抗力增加[ |
腹腔注射 | NLRP6-/-小鼠B. abortus易感性无显著差异[ | ||
NLRP12 | 尚不清楚 | 腹腔注射 | NLRP12-/-小鼠对B. abortus感染抵抗力增加[ |
NOD1/2 | 尚不清楚 | 腹腔注射 | NOD1-/-和NOD2-/-小鼠B. abortus易感性无显著差异[ |
NLRC4 | 鞭毛蛋白[ | 腹腔注射 | NLRC4-/-小鼠B. melitensis易感性增加[ |
CASP11 | LPS[ | 腹腔注射 | CASP11-/-小鼠B. abortus易感性增加[ |
1 |
KURMANOVB,ZINCKED,SUW W,et al.Assays for identification and differentiation of Brucella species: a review[J].Microorganisms,2022,10(8):1584.
doi: 10.3390/microorganisms10081584 |
2 | LAINEC G,JOHNSONV E,SCOTTH M,et al.Global estimate of human brucellosis incidence[J].Emerg Infect Dis,2023,29(9):1789-1797. |
3 | 中华人民共和国国家卫生健康委员会. 2018年我国卫生健康事业发展统计公报[EB/OL]. (2019-05-22)[2025-03-13]. http://www.nhc.gov.cn/guihuaxxs/s10748/201905/9b8d52727cf346049de8acce25ffcbd0. shtml. |
National Health Commission of the People's Republic of China. Statistical bulletin on the development of health care in China[EB/OL]. (2019-05-22)[2025-03-13]. http://www.nhc.gov.cn/guihuaxxs/s10748/201905/9b8d52727cf346049de8acce25ffcbd0. shtml. (in Chinese) | |
4 | 中华人民共和国国家卫生健康委员会. 2023年我国卫生健康事业发展统计公报[EB/OL]. (2024-08-29)[2025-03-13]. http://www.nhc.gov.cn/guihuaxxs/s3585u/202408/6c037610b3a54f6c8535c515844fae96/files/58c5d1e9876344e5b1aa5aa2b083a51a.pdf. |
National Health Commission of the People's Republic of China. Statistical bulletin on the development of health care in China[EB/OL]. (2024-08-29)[2025-03-13]. http://www.nhc.gov.cn/guihuaxxs/s3585u/202408/6c037610b3a54f6c8535c515844fae96/files/58c5d1e9876344e5b1aa5aa2b083a51a.pdf. (in Chinese) | |
5 |
CARPENTERS,O'NEILLL A J.From periphery to center stage: 50 years of advancements in innate immunity[J].Cell,2024,187(9):2030-2051.
doi: 10.1016/j.cell.2024.03.036 |
6 |
MAM,JIANGW,ZHOUR B.DAMPs and DAMP-sensing receptors in inflammation and diseases[J].Immunity,2024,57(4):752-771.
doi: 10.1016/j.immuni.2024.03.002 |
7 |
DE CARVALHOT P,DA SILVAL A,CASTANHEIRAT L L,et al.Cell and tissue tropism of Brucella spp.[J].Infect Immun,2023,91(5):e0006223.
doi: 10.1128/iai.00062-23 |
8 | ROOPⅡ R M,BARTONI S,HOPERSBERGERD,et al.Uncovering the hidden credentials of Brucella virulence[J].Microbiol Mol Biol Rev,2021,85(1):e00021-19. |
9 |
MARCHESINIM I,SPERAJ M,COMERCID J.The 'ins and outs'of Brucella intracellular journey[J].Curr Opin Microbiol,2024,78,102427.
doi: 10.1016/j.mib.2024.102427 |
10 |
HUYT X N,NGUYENT T,KIMH,et al.Brucella phagocytosis mediated by pathogen-host interactions and their intracellular survival[J].Microorganisms,2022,10(10):2003.
doi: 10.3390/microorganisms10102003 |
11 |
CELLIJ.The intracellular life cycle of Brucella spp[J].Microbiol Spectr,2019,7(2):10.
doi: 10.1128/microbiolspec.bai-0006-2019 |
12 |
SPERAJ M,GUAIMASF,CZIBENERC,et al.Brucella egresses from host cells exploiting multivesicular bodies[J].mBio,2023,14(1):e0333822.
doi: 10.1128/mbio.03338-22 |
13 |
YANGJ K,WANGY,HOUY P,et al.Evasion of host defense by Brucella[J].Cell Insight,2024,3(1):100143.
doi: 10.1016/j.cellin.2023.100143 |
14 |
KAWAIT,IKEGAWAM,ORID,et al.Decoding toll-like receptors: recent insights and perspectives in innate immunity[J].Immunity,2024,57(4):649-673.
doi: 10.1016/j.immuni.2024.03.004 |
15 |
RODRÍGUEZA M,DELPINOM V,MIRAGLIAM C,et al.Immune mediators of pathology in neurobrucellosis: from blood to central nervous system[J].Neuroscience,2019,410,264-273.
doi: 10.1016/j.neuroscience.2019.05.018 |
16 | CAMPOSP C,GOMESM T R,GUIMARÃESE S,et al.TLR7 and TLR3 sense Brucella abortus RNA to induce proinflammatory cytokine production but they are dispensable for host control of infection[J].Front Immunol,2017,8,28. |
17 |
MILILLOM A,VELÁSQUEZL N,TROTTAA,et al.B. abortus RNA is the component involved in the down-modulation of MHC-I expression on human monocytes via TLR8 and the EGFR pathway[J].PLoS Pathog,2017,13(8):e1006527.
doi: 10.1371/journal.ppat.1006527 |
18 |
GOMESM T,CAMPOSP C,DE SOUSA PEREIRAG,et al.TLR9 is required for MAPK/NF-κB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus[J].J Leukoc Biol,2016,99(5):771-780.
doi: 10.1189/jlb.4A0815-346R |
19 | PENGY Z,BAIW H,WANGZ L,et al.TLR9/NF-κB Pathway regulates Brucella CpG DNA-mediated cytokine response in human peripheral blood mononuclear cells[J].Iran J Immunol,2021,18(4):268-278. |
20 |
YUH,GUX Y,WANGD F,et al.Brucella infection and Toll-like receptors[J].Front Cell Infect Microbiol,2024,14,1342684.
doi: 10.3389/fcimb.2024.1342684 |
21 |
O'NEILLL A J,GOLENBOCKD,BOWIEA G.The history of Toll-like receptors-redefining innate immunity[J].Nat Rev Immunol,2013,13(6):453-460.
doi: 10.1038/nri3446 |
22 |
DE ALMEIDAL A,MACEDOG C,MARINHOF A V,et al.Toll-like receptor 6 plays an important role in host innate resistance to Brucella abortus infection in mice[J].Infect Immun,2013,81(5):1654-1662.
doi: 10.1128/IAI.01356-12 |
23 |
WEISSD S,TAKEDAK,AKIRAS,et al.MyD88, but not toll-like receptors 4 and 2, is required for efficient clearance of Brucella abortus[J].Infect Immun,2005,73(8):5137-5143.
doi: 10.1128/IAI.73.8.5137-5143.2005 |
24 |
COPINR,DE BAETSELIERP,CARLIERY,et al.MyD88-dependent activation of B220-CD11b+ LY-6C+ dendritic cells during Brucella melitensis infection[J].J Immunol,2007,178(8):5182-5191.
doi: 10.4049/jimmunol.178.8.5182 |
25 |
OLIVEIRAF S,CARVALHON B,BRANDÃOA P M S,et al.Interleukin-1 receptor-associated kinase 4 is essential for initial host control of Brucella abortus infection[J].Infect Immun,2011,79(11):4688-4695.
doi: 10.1128/IAI.05289-11 |
26 |
LACEYC A,PONZILACQUA-SILVAB,CHAMBERSC A,et al.MyD88-dependent glucose restriction and itaconate production control Brucella infection[J].Infect Immun,2021,89(10):e0015621.
doi: 10.1128/IAI.00156-21 |
27 | ARIASM A,SANTIAGOL,COSTAS-RAMONS,et al.Toll-like receptors 2 and 4 cooperate in the control of the emerging pathogen Brucella microti[J].Front Cell Infect Microbiol,2017,6,205. |
28 |
FERREROM C,HIELPOSM S,CARVALHON B,et al.Key role of Toll-like receptor 2 in the inflammatory response and major histocompatibility complex class Ⅱ downregulation in Brucella abortus-infected alveolar macrophages[J].Infect Immun,2014,82(2):626-639.
doi: 10.1128/IAI.01237-13 |
29 |
WANGX L,ZHANGX J,LUT F,et al.Nucleotide variants in the TLR5 gene and promoter methylation with A susceptibility to brucellosis in Chinese goats[J].Folia Biol (Krakow),2022,70(2):55-66.
doi: 10.3409/fb_70-2.07 |
30 |
BYNDLOSSM X,TSOLISR M.Brucella spp. virulence factors and immunity[J].Annu Rev Anim Biosci,2016,4,111-127.
doi: 10.1146/annurev-animal-021815-111326 |
31 |
TERWAGNEM,FEROOZJ,ROLÁNH G,et al.Innate immune recognition of flagellin limits systemic persistence of Brucella[J].Cell Microbiol,2013,15(6):942-960.
doi: 10.1111/cmi.12088 |
32 |
LIJ M,ZHANGG D,ZHIF J,et al.BtpB inhibits innate inflammatory responses in goat alveolar macrophages through the TLR/NF-κB pathway and NLRP3 inflammasome during Brucella infection[J].Microb Pathog,2022,166,105536.
doi: 10.1016/j.micpath.2022.105536 |
33 |
MURUGANS,NANDIB R,MAZUMDARV,et al.Outer membrane protein 25 of Brucella suppresses TLR-mediated expression of proinflammatory cytokines through degradation of TLRs and adaptor proteins[J].J Biol Chem,2023,299(11):105309.
doi: 10.1016/j.jbc.2023.105309 |
34 |
ZHAIY Y,FANGJ Y,ZHENGW F,et al.A potential virulence factor: Brucella flagellin FliK does not affect the main biological properties but inhibits the inflammatory response in RAW264. 7 cells[J].Int Immunopharmacol,2024,133,112119.
doi: 10.1016/j.intimp.2024.112119 |
35 |
LIW N,KEY H,WANGY F,et al.Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection[J].Biochem Biophys Res Commun,2016,477(3):509-514.
doi: 10.1016/j.bbrc.2016.06.064 |
36 |
LUOX M,ZHANGX J,WUX C,et al.Brucella downregulates tumor necrosis factor-α to promote intracellular survival via Omp25 regulation of different microRNAs in porcine and murine macrophages[J].Front Immunol,2018,8,2013.
doi: 10.3389/fimmu.2017.02013 |
37 |
ZHOUY C,BUZ Y,QIANJ,et al.Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO[J].BMC Vet Res,2021,17,289.
doi: 10.1186/s12917-021-02993-9 |
38 |
MAZUMDARV,JOSHIK,NANDIB R,et al.Host F-box protein 22 enhances the uptake of Brucella by macrophages and drives a sustained release of proinflammatory cytokines through degradation of the anti-inflammatory effector proteins of Brucella[J].Infect Immun,2022,90(5):e0006022.
doi: 10.1128/iai.00060-22 |
39 | DEGOSC,HYSENAJL,GONZALEZ-ESPINOZAG,et al.Omp25-dependent engagement of SLAMF1 by Brucella abortus in dendritic cells limits acute inflammation and favours bacterial persistence in vivo[J].Cell Microbiol,2020,22(4):e13164. |
40 |
CUIB B,LIUW L,WANGX Y,et al.Brucella Omp25 upregulates miR-155, miR-21-5p, and miR-23b to inhibit interleukin-12 production via modulation of programmed death-1 signaling in human monocyte/macrophages[J].Front Immunol,2017,8,708.
doi: 10.3389/fimmu.2017.00708 |
41 |
DECOUTA,KATZJ D,VENKATRAMANS,et al.The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J].Nat Rev Immunol,2021,21(9):548-569.
doi: 10.1038/s41577-021-00524-z |
42 |
DE ALMEIDAL A,CARVALHON B,OLIVEIRAF S,et al.MyD88 and STING signaling pathways are required for IRF3-mediated IFN-β induction in response to Brucella abortus infection[J].PLoS One,2011,6(8):e23135.
doi: 10.1371/journal.pone.0023135 |
43 |
ALONSO PAIVAI M,A SANTOSR,BRITOC B,et al.Role of the cGAS/STING pathway in the control of Brucella abortus infection acquired through the respiratory route[J].Front Immunol,2023,14,1116811.
doi: 10.3389/fimmu.2023.1116811 |
44 |
COSTAFRANCO M M,MARIMF,GUIMARÃESE S,et al.Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation[J].J Immunol,2018,200(2):607-622.
doi: 10.4049/jimmunol.1700725 |
45 |
GOMESM T R,GUIMARÃESE S,MARINHOF V,et al.STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection[J].PLoS Pathog,2021,17(5):e1009597.
doi: 10.1371/journal.ppat.1009597 |
46 |
GUIMARÃESE S,GOMESM T R,CAMPOSP C,et al.Brucella abortus cyclic dinucleotides trigger STING-dependent unfolded protein response that favors bacterial replication[J].J Immunol,2019,202(9):2671-2681.
doi: 10.4049/jimmunol.1801233 |
47 |
WELLSK M,HEK,PANDEYA,et al.Brucella activates the host RIDD pathway to subvert BLOS1-directed immune defense[J].eLife,2022,11,e73625.
doi: 10.7554/eLife.73625 |
48 |
LUIZETJ B,RAYMONDJ,LACERDAT L S,et al.The Brucella effector BspL targets the ER-associated degradation (ERAD) pathway and delays bacterial egress from infected cells[J].Proc Natl Acad Sci U S A,2021,118(32):e2105324118.
doi: 10.1073/pnas.2105324118 |
49 |
GUIMARÃESE S,GOMESM T R,SANCHESR C O,et al.The endoplasmic reticulum stress sensor IRE1α modulates macrophage metabolic function during Brucella abortus infection[J].Front Immunol,2023,13,1063221.
doi: 10.3389/fimmu.2022.1063221 |
50 | DE JONGM F,STARRT,WINTERM G,et al.Sensing of bacterial type Ⅳ secretion via the unfolded protein response[J].mBio,2013,4(1):e00418-12. |
51 |
SMITHJ A,KHANM,MAGNANID D,et al.Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages[J].PLoS Pathog,2013,9(12):e1003785.
doi: 10.1371/journal.ppat.1003785 |
52 |
TAGUCHIY,IMAOKAK,KATAOKAM,et al.Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection[J].PLoS Pathog,2015,11(3):e1004747.
doi: 10.1371/journal.ppat.1004747 |
53 | BYNDLOSSM X,TSAIA Y,WALKERG T,et al.Brucella abortus infection of placental trophoblasts triggers endoplasmic reticulum stress-mediated cell death and fetal loss via type Ⅳ secretion system-dependent activation of CHOP[J].mBio,2019,10(4):e01538-19. |
54 |
LIR Z,LIUW L,YINX R,et al.Brucella spp. Omp25 promotes proteasome-mediated cGAS degradation to attenuate IFN-β production[J].Front Microbiol,2021,12,702881.
doi: 10.3389/fmicb.2021.702881 |
55 | 李瑞珍. 布鲁氏菌Omp25、RicA和BspB抑制cGAS-STING通路活化的分子机制研究[D]. 杨凌: 西北农林科技大学, 2022. |
LI R Z. Molecular mechanism inhibited the activation of cGAS-STING pathway by Brucella Omp25, RicA and BspB[D]. Yangling: Northwest A&F University, 2022. (in Chinese) | |
56 |
KHANM,HARMSJ S,LIUY P,et al.Brucella suppress STING expression via miR-24 to enhance infection[J].PLoS Pathog,2020,16(10):e1009020.
doi: 10.1371/journal.ppat.1009020 |
57 |
SUNDARAMB,TWEEDELLR E,KUMARS P,et al.The NLR family of innate immune and cell death sensors[J].Immunity,2024,57(4):674-699.
doi: 10.1016/j.immuni.2024.03.012 |
58 |
BROZP,DIXITV M.Inflammasomes: mechanism of assembly, regulation and signalling[J].Nat Rev Immunol,2016,16(7):407-420.
doi: 10.1038/nri.2016.58 |
59 |
CERQUEIRAD M,GOMESM T R,SILVAA L N,et al.Guanylate-binding protein 5 licenses caspase-11 for Gasdermin-D mediated host resistance to Brucella abortus infection[J].PLoS Pathog,2018,14(12):e1007519.
doi: 10.1371/journal.ppat.1007519 |
60 |
TUPIKJ D,COUTERMARSH-OTTS L,BENTONA H,et al.ASC-mediated inflammation and pyroptosis attenuates Brucella abortus pathogenesis following the recognition of gDNA[J].Pathogens,2020,9(12):1008.
doi: 10.3390/pathogens9121008 |
61 | LACEYC A,MITCHELLW J,DADELAHIA S,et al.Caspase-1 and caspase-11 mediate pyroptosis, inflammation, and control of Brucella joint infection[J].Infect Immun,2018,86(9):e00361-18. |
62 |
FRANCOM M S C,MARIMF M,ALVES-SILVAJ,et al.AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1β secretion, pyroptosis and resistance to bacterial infection in mice[J].Microbes Infect,2019,21(2):85-93.
doi: 10.1016/j.micinf.2018.09.001 |
63 |
CAMPOSP C,GOMESM T R,MARINHOF A V,et al.Brucella abortus nitric oxide metabolite regulates inflammasome activation and IL-1β secretion in murine macrophages[J].Eur J Immunol,2019,49(7):1023-1037.
doi: 10.1002/eji.201848016 |
64 |
HIELPOSM S,FERNÁNDEZA G,FALIVENEJ,et al.IL-1R and inflammasomes mediate early pulmonary protective mechanisms in respiratory Brucella abortus infection[J].Front Cell Infect Microbiol,2018,8,391.
doi: 10.3389/fcimb.2018.00391 |
65 |
GOMESM T R,CAMPOSP C,OLIVEIRAF S,et al.Critical role of ASC inflammasomes and bacterial type Ⅳ secretion system in caspase-1 activation and host innate resistance to Brucella abortus infection[J].J Immunol,2013,190(7):3629-3638.
doi: 10.4049/jimmunol.1202817 |
66 |
SANTOSR A,CERQUEIRAD M,ZAMBONID S,et al.Caspase-8 but not caspase-7 influences inflammasome activation to act in control of Brucella abortus infection[J].Front Microbiol,2022,13,1086925.
doi: 10.3389/fmicb.2022.1086925 |
67 |
RENH,YANGH,YANGX,et al.Brucella outer membrane lipoproteins 19 and 16 differentially induce interleukin-18 response or pyroptosis in human monocytic cells[J].J Infect Dis,2021,224(12):2148-2159.
doi: 10.1093/infdis/jiab272 |
68 | 孙灿,魏硕,鄢余静,等.布鲁氏菌BspF蛋白生物信息学分析及其对巨噬细胞炎症因子表达的影响[J].中国畜牧兽医,2024,51(5):1846-1856. |
SUNC,WEIS,YANY J,et al.Bioinformatics analysis of Brucella BspF protein and its effect on expression of inflammatory factors in macrophages[J].China Animal Husbandry & Veterinary Medicine,2024,51(5):1846-1856. | |
69 | 李佳,邓兴梅,陶婷婷,等.布鲁氏菌侵染过程中has-miR-5196-3p对炎症小体的调控作用[J].中国畜牧兽医,2021,48(5):1507-1515. |
LIJ,DENGX M,TAOT T,et al.Regulatory effect of has-miR-5196-3p on inflammasome during Brucella infection[J].China Animal Husbandry & Veterinary Medicine,2021,48(5):1507-1515. | |
70 | 李佳. 非编码RNA p662对布鲁氏菌导致细胞焦亡调节作用研究[D]. 石河子: 石河子大学, 2021. |
LI J. Study on the regulatory effect of non-coding RNA p662 on Brucella induced pyroptosis[D]. Shihezi: Shihezi University, 2021. (in Chinese) | |
71 | 邓兴梅,曹树珠,郭嘉,等.长链非编码RNA Gm35082-202对布鲁氏菌引起的细胞焦亡的影响[J].中国畜牧兽医,2022,49(9):3599-3609. |
DENGX M,CAOS Z,GUOJ,et al.Effect of long non-coding RNA Gm35082-202 on cell pyrodecay induced by Brucella[J].China Animal Husbandry & Veterinary Medicine,2022,49(9):3599-3609. | |
72 |
ARRIOLA BENITEZP C,PESCE VIGLIETTIA I,GOMESM T R,et al.Brucella abortus infection elicited hepatic stellate cell-mediated fibrosis through inflammasome-dependent IL-1β production[J].Front Immunol,2020,10,3036.
doi: 10.3389/fimmu.2019.03036 |
73 |
LACEYC A,CHAMBERSC A,MITCHELLW J,et al.IFN-γ-dependent nitric oxide suppresses Brucella-induced arthritis by inhibition of inflammasome activation[J].J Leukoc Biol,2019,106(1):27-34.
doi: 10.1002/JLB.4MIA1018-409R |
74 |
JAKKAP,NAMANIS,MURUGANS,et al.The Brucella effector protein TcpB induces degradation of inflammatory caspases and thereby subverts non-canonical inflammasome activation in macrophages[J].J Biol Chem,2017,292(50):20613-20627.
doi: 10.1074/jbc.M117.815878 |
75 |
RUNGUEM,MELOV,MARTINSD,et al.NLRP6-associated host microbiota composition impacts in the intestinal barrier to systemic dissemination of Brucella abortus[J].PLoS Negl Trop Dis,2021,15(2):e0009171.
doi: 10.1371/journal.pntd.0009171 |
76 |
SILVEIRAT N,GOMESM T R,OLIVEIRAL S,et al.NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus[J].Eur J Immunol,2017,47(1):51-59.
doi: 10.1002/eji.201646502 |
77 |
KEESTRA-GOUNDERA M,BYNDLOSSM X,SEYFFERTN,et al.NOD1 and NOD2 signalling links ER stress with inflammation[J].Nature,2016,532(7599):394-397.
doi: 10.1038/nature17631 |
78 | OLIVEIRAF S,CARVALHON B,ZAMBONID S,et al.Nucleotide-binding oligomerization domain-1 and-2 play no role in controlling Brucella abortus infection in mice[J].Clin Dev Immunol,2012,2012,861426. |
79 |
ZHANGP P,LIUY F,HUL C,et al.NLRC4 inflammasome-dependent cell death occurs by a complementary series of three death pathways and determines lethality in mice[J].Sci Adv,2021,7(43):eabi9471.
doi: 10.1126/sciadv.abi9471 |
80 |
REIS E SOUSAC,YAMASAKIS,BROWNG D.Myeloid C-type lectin receptors in innate immune recognition[J].Immunity,2024,57(4):700-717.
doi: 10.1016/j.immuni.2024.03.005 |
81 |
MNICHM E,VAN DALENR,VAN SORGEN M.C-type lectin receptors in host defense against bacterial pathogens[J].Front Cell Infect Microbiol,2020,10,309.
doi: 10.3389/fcimb.2020.00309 |
82 |
CHENS T,LIF J,HSUT Y,et al.CLEC5A is a critical receptor in innate immunity against Listeria infection[J].Nat Commun,2017,8(1):299.
doi: 10.1038/s41467-017-00356-3 |
83 |
SUNGP S,PENGY C,YANGS P,et al.CLEC5A is critical in Pseudomonas aeruginosa-induced NET formation and acute lung injury[J].JCI Insight,2022,7(18):e156613.
doi: 10.1172/jci.insight.156613 |
84 |
ZHANGL F,LEPENIESB,NAKAMAES,et al.The Vi capsular polysaccharide of Salmonella typhi promotes macrophage phagocytosis by binding the human C-type lectin DC-SIGN[J].mBio,2022,13(6):e0273322.
doi: 10.1128/mbio.02733-22 |
85 |
ZHANGH T,PALMAA S,ZHANGY B,et al.Generation and characterization of β1, 2-gluco-oligosaccharide probes from Brucella abortus cyclic β-glucan and their recognition by C-type lectins of the immune system[J].Glycobiology,2016,26(10):1086-1096.
doi: 10.1093/glycob/cww041 |
86 |
CAMPOSP C,GOMESM T R,GUIMARÃESG,et al.Brucella abortus DNA is a major bacterial agonist to activate the host innate immune system[J].Microbes Infect,2014,16(12):979-984.
doi: 10.1016/j.micinf.2014.08.010 |
87 |
ONOMOTOK,ONOGUCHIK,YONEYAMAM.Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors[J].Cell Mol Immunol,2021,18(3):539-555.
doi: 10.1038/s41423-020-00602-7 |
88 |
LIB B,CHENS,WANGC Q,et al.Integrated mRNA-seq and miRNA-seq analysis of goat fibroblasts response to Brucella Melitensis strain M5-90[J].PeerJ,2021,9,e11679.
doi: 10.7717/peerj.11679 |
89 |
XIONGX,LIB W,ZHOUZ X,et al.The VirB system plays a crucial role in Brucella intracellular infection[J].Int J Mol Sci,2021,22(24):13637.
doi: 10.3390/ijms222413637 |
90 |
ALAKAVUKLARM A,FIEBIGA,CROSSONS.The Brucella cell envelope[J].Annu Rev Microbiol,2023,77,233-253.
doi: 10.1146/annurev-micro-032521-013159 |
91 | 唐新月,朱小洁,武翠香,等.我国已上市动物布鲁氏菌病活疫苗的概况及新型疫苗研究方向[J].中国兽药杂志,2024,58(5):82-88. |
TANGX Y,ZHUX J,WUC X,et al.A comprehensive overview of approved animal brucellosis live attenuated vaccines in China and novel vaccine research direction[J].Chinese Journal of Veterinary Drug,2024,58(5):82-88. | |
92 |
MAJZOOBIM M,HASHEMIS H,MAMANIM,et al.Effect of hydroxychloroquine on treatment and recurrence of acute brucellosis: a single-blind, randomized clinical trial[J].Int J Antimicrob Agents,2018,51(3):365-369.
doi: 10.1016/j.ijantimicag.2017.08.009 |
[1] | YOU Liuchao, YIN Hao, TAO Zhengyu, HUANG Rong, FU Lei, CHU Yuefeng. Research Progress in the Virulence Factors and Intracellular Survival Mechanism of Brucella [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1575-1593. |
[2] | XU Zhenyu, DENG Xiaoyu, WANG Yueli, SUN Can, WU Aodi, CAO Jian, YI Jihai, WANG Yong, WANG Zhen, CHEN Chuangfu. Biological Characteristics of Brucella abortus A19ΔBtpA Deletion Strain and Its Immunogenicity Study [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2135-2145. |
[3] | WU Shangjie, LUAN Yuanyuan, WANG Mingkun, ZHANG Hechun, YU Bo, MA Yuehui, JIANG Lin, HE Xiaohong. Advances of Disease-Resistant Breeding on Ovine Brucellosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 882-893. |
[4] | CHEN Xiaoli, ZHOU Jiahao, ZHOU Jing, QU Qian, WANG Zhihua, XIONG Ying, ZHU Yongqi, JIA Weixin, LÜ Weijie, GUO Shining. Effect of Modified Yuyin Decoction on cGAS-STING Pathway of African Swine Fever Virus Infected PAMs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5839-5853. |
[5] | Ting JIANG, Wendong LI, Xingqi LI, Yu HUANG, Qigui WANG, Haiwei WANG, Chaowu YANG, Lingbin LIU. Screening Candidate Genes for Ovarian Development and Constructing Regulatory Network in Nesting Chickens by Transcriptome and Proteome [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4950-4967. |
[6] | Chengyan ZHAO, Haojie REN, Bo WAN, Zhanyong WEI, Wenrui HE. Construction and Functional Identification of Cell Lines Stably Expressing cGAS [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5317-5324. |
[7] | YANG Zhiyi, WANG Xinkai, SHI Yuting, FU Siyuan, ZHANG Yuxin, CAO Chenfu, JIA Weixin. Establishment of Nucleic Acid Detection Methods for Avian Influenza H5 Subtype Based on CRISPR-Cas13a and RT-RAA [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3803-3811. |
[8] | ZHAI Yunyi, YUAN Ye, LI Junmei, TIAN Lulu, DIAO Ziyang, LI Bin, CHEN Jialu, ZHOU Dong, JIN Yaping, WANG Aihua. Preparation and Preliminary Application of Monoclonal Antibody to Brucella Outer Membrane Protein 16 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2083-2091. |
[9] | XIANG Caixia, WANG Xiangguo, LI Junmei, ZHI Feijie, FANG Jiaoyang, ZHENG Weifang, CHEN Jialu, JIN Yaping, WANG Aihua. The Influence of Brucella Type IV Secretes System Effector Protein VceC on Endoplasmic Reticulum Stress and Gonadal Hormone Secretory in Goat Trophoblast Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1210-1220. |
[10] | XIE Qingyun, YI Weijie, LI Jiahao, BAI Yun, XIE Xing, YUAN Ting, ZHANG Yue, FENG Yufan, ZHAO Dongming, BU Zhigao, LIU Fei, FENG Zhixin. Development of Quantum Dot Microsphere-based Immunostrip for Early Detection of Specific sIgA Antibody to African Swine Fever Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4311-4319. |
[11] | LIU Qian, LI Dapeng, ZHANG Hong, LIU Qin, WANG Xuezhi, LI Jianxi, YANG Xiaopu, ZHANG Jingyan. Immunoregulation Effect of Astragalus Polysaccharide on Lipopolysaccharide Injuryed HD11 Cells and the Effect on TLRs mRNA Expression [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3251-3261. |
[12] | GUO Zihan, QIN Chunli, ZHANG Fangfang, ZHAO Na, WANG Bin, HE Zhifei, LI Hongjun, LÜ Jingzhi. Effects of Non-Fasting and Fasting before Slaughter on Stress Level, Meat Quality and Behavior of Meat Rabbits after Transportation [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2598-2607. |
[13] | LI Yang, ZHOU Dong, YIN Yanlong, ZHANG Guangdong, XIANG Caixia, ZHI Feijie, BAI Furong, LIN Pengfei, JIN Yaping, WANG Aihua. Effects of Brucella Outer Membrane Protein 16 on Apoptosis and Immune Activity of RAW264.7 Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2642-2651. |
[14] | YANG Qin, DENG Xiaoyu, XIE Shanshan, YI Jihai, WANG Yong, ZHANG Qian, WANG Zhen, CHEN Chuangfu. Effects of Brucella bovis Type IV Secretion System on Endoplasmic Reticulum Stress and Apoptosis of Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1192-1200. |
[15] | ZHANG Junzhen, LI Cai'e, LIU Bo, LI Jianhui, ZHANG Meng, LI Yali, CHANG Qiangqiang. Construction of Ovary Transcription Profile of Bian Chicken at Different Physiological Stages and Analysis of Genes Related to Follicular Development [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 423-435. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||