Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (4): 1508-1517.doi: 10.11843/j.issn.0366-6964.2025.04.004
• Review • Previous Articles Next Articles
WANG Ying1(), ZHANG Jiaojiao1, WANG Xianzhong1,*(
), QUAN Fusheng2,*(
)
Received:
2024-10-09
Online:
2025-04-23
Published:
2025-04-28
Contact:
WANG Xianzhong, QUAN Fusheng
E-mail:yingzaizai_wang@163.com;wang1973@swu.edu.cn;quanfusheng@nwsuaf.edu.cn
CLC Number:
WANG Ying, ZHANG Jiaojiao, WANG Xianzhong, QUAN Fusheng. Advances in Autophagy of Ovarian Granulosa Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1508-1517.
Table 1
miRNAs associated with GCs autophagy in female ovaries"
miRNAs | 物种Species | 靶基因Target gene | 功能Function | 作用通路Pathway | 参考文献Reference |
miR-23a | yak | ASK1 | promote GCs autophagy and inhibit GCs apoptosis, increase the abundance of estradiol receptor α (ER-α) and β (ER-β) and the concentrations of estradiol (E2), progesterone (P4) in yak GCs. | lncRNA MEG3/miR-23a /ASK1/JNK pathway | [ |
miR-30a-5p | rat | SOCS3 | inhibit autophagy and NLRP3-mediated pyroptosis in GCs. | SOCS3/mTOR/P70S6K pathway | [ |
miR-128-3p, miR-21-5p | chicken | / | regulate GCs autophagy. | / | [ |
miRNA-29-3p | chicken | PTEN | inhibit GCs autophagy and apoptosis. | PTEN/AKT/mTOR pathway | [ |
miR-129-1-3p | laying hens | MCU | promote autophagic death of GCs. | miR-129-1-3p/MCU calcium pathway | [ |
miR-486 | guanz--hong dairy goat | SRSF3 | promote GCs apoptosis and inhibit GCs proliferation and autophagy. | / | [ |
miR-128-3p | bovine | FOXO4/TFEB | promote GCs autophagy and inhibit GCs apoptosis. | / | [ |
miR-29b-3p | mouse | H19 | inhibit GCs autophagy. | H19/miR-29b-3p pathway | [ |
miR-1298-5p | human/rat | GSR | promote GCs autophagy. | / | [ |
miR-654 | mouse | STC2 | promote apoptosis and autophagy. | lncRNA NEAT1/miR-654/STC2/MAPK pathway | [ |
miR-34a-5p | chicken | LEF1 | promote GCs autophagy and apoptosis. | Hippo-YAP signaling pathway | [ |
miR-26b | yak | SMAD1 | inhibit GCs proliferation and autophagy and promote apoptosis. | H19/miR-26b/SMAD1 Axis | [ |
miR-146b-3p | chicken | AKT1 | promote GCs apoptosis and attenuate autophagy. | PI3K/AKT signaling pathway | [ |
miR-30a-5p | chicken | Beclin1 | inhibit GCs autophagy and apoptosis, and promote the synthesis of steroid hormones and increase the level of oxidative stress. | / | [ |
let-7e | human | / | inhibited GCs autophagy and promoted GCs proliferation. | p21signaling pathway | [ |
miR-378d | human | / | regulate GCs autophagy and apoptosis. | / | [ |
miR-21-3p | bovine | FGF2 | inhibit GCs autophagy. | AKT/mTOR pathway | [ |
miR-21-3p | bovine | VEGFA | inhibit GCs autophagy. | PI3K/AKT signaling | [ |
let-7g | mouse | IGF-1R | promote GCs autophagy. | IGF1R/AKT/mTOR signaling | [ |
1 |
HUANG Z , WELLS D . The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome[J]. Mol Hum Reprod, 2010, 16 (10): 715- 725.
doi: 10.1093/molehr/gaq031 |
2 |
NIU W , SPRADLING AC . Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary[J]. Proc Natl Acad Sci U S A, 2020, 117 (33): 20015- 20026.
doi: 10.1073/pnas.2005570117 |
3 |
TURATHUM B , GAO E M , CHIAN R C . The Function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization[J]. Cells, 2021, 10 (9): 2292.
doi: 10.3390/cells10092292 |
4 |
DIAZ F J , WIGGLESWORTH K , EPPIG J J . Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice[J]. Dev Biol, 2007, 305 (1): 300- 311.
doi: 10.1016/j.ydbio.2007.02.019 |
5 |
EPPIG J J . Oocyte control of ovarian follicular development and function in mammals[J]. Reproduction, 2001, 122 (6): 829- 838.
doi: 10.1530/rep.0.1220829 |
6 |
ZHANG L , JIANG S , WOZNIAK P J , et al. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro[J]. Mol Reprod Dev, 1995, 40 (3): 338- 344.
doi: 10.1002/mrd.1080400310 |
7 |
OKUDAIRA Y , WAKAI T , FUNAHASHI H . Levels of cyclic-AMP and cyclic-GMP in porcine oocyte-cumulus complexes and cumulus-free oocytes derived from small and middle follicles during the first 24-hour period of in vitro maturation[J]. J Reprod Dev, 2017, 63 (2): 191- 197.
doi: 10.1262/jrd.2016-156 |
8 |
TANGHE S , VAN SOOM A , NAUWYNCK H , et al. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization[J]. Mol Reprod Dev, 2002, 61 (3): 414- 424.
doi: 10.1002/mrd.10102 |
9 |
KIDDER G M , MHAWI A A . Gap junctions and ovarian folliculogenesis[J]. Reproduction, 2002, 123 (5): 613- 620.
doi: 10.1530/rep.0.1230613 |
10 |
KONG P , YIN M , TANG C , et al. Effects of early cumulus cell removal on treatment outcomes in patients undergoing in vitro fertilization: A retrospective cohort study[J]. Front Endocrinol (Lausanne), 2021, 12, 669507.
doi: 10.3389/fendo.2021.669507 |
11 |
NICHOLS J A , PEREGO M C , SCHUTZ L F , et al. Hormonal regulation of vascular endothelial growth factor A (VEGFA) gene expression in granulosa and theca cells of cattle1[J]. J Anim Sci, 2019, 97 (7): 3034- 3045.
doi: 10.1093/jas/skz164 |
12 |
HOBEIKA E , ARMOUTI M , FIERRO M A , et al. Regulation of insulin-like growth factor 2 by oocyte-secreted factors in primary human granulosa cells[J]. J Clin Endocrinol Metab, 2020, 105 (1): 327- 335.
doi: 10.1210/clinem/dgz057 |
13 | DIAZ F J , WIGGLESWORTH K , EPPIG J J . Oocytes determine cumulus cell lineage in mouse ovarian follicles[J]. J Cell Sci, 2007, 120 (Pt 8): 1330- 1340. |
14 |
STRINGER J M , ALESI L R , WINSHIP A L , et al. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life[J]. Hum Reprod Update, 2023, 29 (4): 434- 456.
doi: 10.1093/humupd/dmad005 |
15 |
ADASHI E Y , RESNICK C E , HURWITZ A , et al. Insulin-like growth factors: the ovarian connection[J]. Hum Reprod, 1991, 6 (9): 1213- 1219.
doi: 10.1093/oxfordjournals.humrep.a137514 |
16 |
ZHANG M , SU Y Q , SUGIURA K , et al. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes[J]. Science, 2010, 330 (6002): 366- 369.
doi: 10.1126/science.1193573 |
17 |
RICHANI D , DUNNING K R , THOMPSON J G , et al. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence[J]. Hum Reprod Update, 2021, 27 (1): 27- 47.
doi: 10.1093/humupd/dmaa043 |
18 |
GALLUZZI L , BAEHRECKE E H , BALLABIO A , et al. Molecular definitions of autophagy and related processes[J]. EMBO J, 2017, 36 (13): 1811- 1836.
doi: 10.15252/embj.201796697 |
19 |
ZHOU J , PENG X , MEI S . Autophagy in ovarian follicular development and atresia[J]. Int J Biol Sci, 2019, 15 (4): 726- 737.
doi: 10.7150/ijbs.30369 |
20 |
LEVINE B , KROEMER G . Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132 (1): 27- 42.
doi: 10.1016/j.cell.2007.12.018 |
21 |
DOHERTY J , BAEHRECKE E H . Life, death and autophagy[J]. Nat Cell Biol, 2018, 20 (10): 1110- 1117.
doi: 10.1038/s41556-018-0201-5 |
22 | KIM J , LIM Y M , LEE M S . The role of autophagy in systemic metabolism and human-type diabetes[J]. Mol Cells, 2018, 41 (1): 11- 17. |
23 |
D'ARCY M S . Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43 (6): 582- 592.
doi: 10.1002/cbin.11137 |
24 |
TONG C , WU Y , ZHANG L , et al. Insulin resistance, autophagy and apoptosis in patients with polycystic ovary syndrome: Association with PI3K signaling pathway[J]. Front Endocrinol (Lausanne), 2022, 13, 1091147.
doi: 10.3389/fendo.2022.1091147 |
25 |
TAKEMURA G , KANAMORI H , OKADA H , et al. Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration[J]. Heart Fail Rev, 2018, 23 (5): 759- 772.
doi: 10.1007/s10741-018-9708-x |
26 |
LI D , YOU Y , BI F F , et al. Autophagy is activated in the ovarian tissue of polycystic ovary syndrome[J]. Reproduction, 2018, 155 (1): 85- 92.
doi: 10.1530/REP-17-0499 |
27 |
LIU M , ZHU H , ZHU Y , et al. Guizhi Fuling Wan reduces autophagy of granulosa cell in rats with polycystic ovary syndrome via restoring the PI3K/AKT/mTOR signaling pathway[J]. J Ethnopharmacol, 2021, 270, 113821.
doi: 10.1016/j.jep.2021.113821 |
28 |
LU G , WU Z , SHANG J , et al. The effects of metformin on autophagy[J]. Biomed Pharmacother, 2021, 137, 111286.
doi: 10.1016/j.biopha.2021.111286 |
29 |
CHEN X , TANG H , LIANG Y , et al. Acupuncture regulates the autophagy of ovarian granulosa cells in polycystic ovarian syndrome ovulation disorder by inhibiting the PI3K/AKT/mTOR pathway through LncMEG3[J]. Biomed Pharmacother, 2021, 144, 112288.
doi: 10.1016/j.biopha.2021.112288 |
30 |
GAWRILUK T R , HALE A N , FLAWS J A , et al. Autophagy is a cell survival program for female germ cells in the murine ovary[J]. Reproduction, 2011, 141 (6): 759- 765.
doi: 10.1530/REP-10-0489 |
31 |
SONG Z H , YU H Y , WANG P , et al. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice[J]. Cell Death Dis, 2015, 6 (1): e1589.
doi: 10.1038/cddis.2014.559 |
32 |
BHARDWAJ J K , PALIWAL A , SARAF P , et al. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary[J]. J Cell Physiol, 2022, 237 (2): 1157- 1170.
doi: 10.1002/jcp.30613 |
33 |
LI L , FU Y C , XU J J , et al. Caloric restriction promotes the reserve of follicle pool in adult female rats by inhibiting the activation of mammalian target of rapamycin signaling[J]. Reprod Sci, 2015, 22 (1): 60- 67.
doi: 10.1177/1933719114542016 |
34 |
KUMARIYA S , UBBA V , JHA R K , et al. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective[J]. Autophagy, 2021, 17 (10): 2706- 2733.
doi: 10.1080/15548627.2021.1938914 |
35 |
CHOI J , JO M , LEE E , et al. Induction of apoptotic cell death via accumulation of autophagosomes in rat granulosa cells[J]. Fertil Steril, 2011, 95 (4): 1482- 1486.
doi: 10.1016/j.fertnstert.2010.06.006 |
36 |
KANG J W , CHO H I , LEE S M . Melatonin inhibits mTOR-dependent autophagy during liver ischemia/reperfusion[J]. Cell Physiol Biochem, 2014, 33 (1): 23- 36.
doi: 10.1159/000356647 |
37 | LIM H J , SONG H . Evolving tales of autophagy in early reproductive events[J]. Int J Dev Biol, 2014, 58 (2-4): 183- 187. |
38 |
CHOI J Y , JO M W , LEE E Y , et al. The role of autophagy in follicular development and atresia in rat granulosa cells[J]. Fertil Steril, 2010, 93 (8): 2532- 2537.
doi: 10.1016/j.fertnstert.2009.11.021 |
39 |
SHEN M , JIANG Y , GUAN Z , et al. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy[J]. Autophagy, 2017, 13 (8): 1364- 1385.
doi: 10.1080/15548627.2017.1327941 |
40 |
SHEN M , CAO Y , JIANG Y , et al. Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: Implication of an antioxidation-independent mechanism[J]. Redox Biol, 2018, 18, 138- 157.
doi: 10.1016/j.redox.2018.07.004 |
41 |
CHOI J Y , JO M W , LEE E Y , et al. AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia[J]. Reproduction, 2014, 147 (1): 73- 80.
doi: 10.1530/REP-13-0386 |
42 |
SONG X , SHEN Q , FAN L , et al. Dehydroepiandrosterone-induced activation of mTORC1 and inhibition of autophagy contribute to skeletal muscle insulin resistance in a mouse model of polycystic ovary syndrome[J]. Oncotarget, 2018, 9 (15): 11905- 11921.
doi: 10.18632/oncotarget.24190 |
43 |
ZHANG C , HU J , WANG W , et al. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS[J]. FASEB J, 2020, 34 (7): 9563- 9574.
doi: 10.1096/fj.202000605RR |
44 |
QUAN H , GUO Y , LI S , et al. Phospholipid phosphatase 3 (PLPP3) induces oxidative stress to accelerate ovarian aging in pigs[J]. Cells, 2024, 13 (17): 1421.
doi: 10.3390/cells13171421 |
45 |
DUAN H , WANG F , WANG K , et al. Quercetin ameliorates oxidative stress-induced apoptosis of granulosa cells in dairy cow follicular cysts by activating autophagy via the SIRT1/ROS/AMPK signaling pathway[J]. J Anim Sci Biotechnol, 2024, 15 (1): 119.
doi: 10.1186/s40104-024-01078-5 |
46 |
SCUDIERI A , VALBONETTI L , PERIC T , et al. Autophagy is involved in granulosa cell death and follicular atresia in ewe ovaries[J]. Theriogenology, 2024, 226, 236- 242.
doi: 10.1016/j.theriogenology.2024.06.024 |
47 |
WANG Y , ZHAO Y , LING Z , et al. HD-sEVs in bovine follicular fluid regulate granulosa cell apoptosis and estradiol secretion through the autophagy pathway[J]. Theriogenology, 2023, 212, 91- 103.
doi: 10.1016/j.theriogenology.2023.09.005 |
48 |
HE H , LI D , TIAN Y , et al. miRNA sequencing analysis of healthy and atretic follicles of chickens revealed that miR-30a-5p inhibits granulosa cell death via targeting Beclin1[J]. J Anim Sci Biotechnol, 2022, 13 (1): 55.
doi: 10.1186/s40104-022-00697-0 |
49 |
HUANG Q , LI Y , CHEN Z , et al. Bushenhuoluo Decoction improves polycystic ovary syndrome by regulating exosomal miR-30a-5p/ SOCS3/mTOR/NLRP3 signaling-mediated autophagy and pyroptosis[J]. J Ovarian Res, 2024, 17 (1): 29.
doi: 10.1186/s13048-024-01355-x |
50 |
HU C , ZHAO X , CUI C , et al. miRNA-29-3p targets PTEN to regulate follicular development through the PI3K/Akt/mTOR signaling pathway[J]. Theriogenology, 2024, 214, 173- 181.
doi: 10.1016/j.theriogenology.2023.10.024 |
51 | MA L Z , TANG X R , GUO S , et al. miRNA-21-3p targeting of FGF2 suppresses autophagy of bovine ovarian granulosa cells through AKT/mTOR pathway[J]. Heriogenology, 2020, 157 (1): 226- 237. |
52 |
HAN X , PAN Y , FAN J , et al. LncRNA MEG3 regulates ASK1/JNK axis-mediated apoptosis and autophagy via sponging miR-23a in granulosa cells of yak tertiary follicles[J]. Cell Signal, 2023, 107, 110680.
doi: 10.1016/j.cellsig.2023.110680 |
53 |
HAN X H , WANG M , PAN Y Y , et al. Effect of follicle-stimulating hormone and luteinizing hormone on apoptosis, autophagy, and the release and reception of some steroid hormones in yak granulosa cells through miR-23a/ASK1 axis[J]. Cell Signal, 2024, 115, 111010.
doi: 10.1016/j.cellsig.2023.111010 |
54 |
XU Z , LIU Q , NING C , et al. miRNA profiling of chicken follicles during follicular development[J]. Sci Rep, 2024, 14 (1): 2212.
doi: 10.1038/s41598-024-52716-x |
55 |
ZHU M , YAN M , CHEN J , et al. MicroRNA-129-1-3p attenuates autophagy-dependent cell death by targeting MCU in granulosa cells of laying hens under H(2)O(2)-induced oxidative stress[J]. Poult Sci, 2023, 102 (10): 103006.
doi: 10.1016/j.psj.2023.103006 |
56 |
LIU S , BU Q , TONG J , et al. miR-486 responds to apoptosis and autophagy by repressing SRSF3 expression in ovarian granulosa cells of dairy goats[J]. Int J Mol Sci, 2023, 24 (10): 8751.
doi: 10.3390/ijms24108751 |
57 |
YING W , YUNQI Z , DEJI L , et al. Follicular fluid HD-sevs-mir-128-3p is a key molecule in regulating bovine granulosa cells autophagy[J]. Theriogenology, 2024, 226, 263- 276.
doi: 10.1016/j.theriogenology.2024.06.022 |
58 |
WU P , ZHU Y , LI J , et al. Guizhi Fuling Wan inhibits autophagy of granulosa cells in polycystic ovary syndrome mice via H19/miR-29b-3p[J]. Gynecol Endocrinol, 2023, 39 (1): 2210232.
doi: 10.1080/09513590.2023.2210232 |
59 |
XU C , LUO M , LIU X , et al. MicroRNA-1298-5p in granulosa cells facilitates cell autophagy in polycystic ovary syndrome by suppressing glutathione-disulfide reductase[J]. Cell Tissue Res, 2023, 392 (3): 763- 778.
doi: 10.1007/s00441-023-03747-9 |
60 |
LIU YX , KE Y , QIU P , et al. LncRNA NEAT1 inhibits apoptosis and autophagy of ovarian granulosa cells through miR-654/STC2-mediated MAPK signaling pathway[J]. Exp Cell Res, 2023, 424 (1): 113473.
doi: 10.1016/j.yexcr.2023.113473 |
61 |
HAN S , ZHAO X , ZHANG Y , et al. MiR-34a-5p promotes autophagy and apoptosis of ovarian granulosa cells via the Hippo-YAP signaling pathway by targeting LEF1 in chicken[J]. Poult Sci, 2023, 102 (2): 102374.
doi: 10.1016/j.psj.2022.102374 |
62 |
YAO Y , WANG Y , WANG F , et al. BMP15 modulates the H19/miR-26b/SMAD1 axis influences yak granulosa cell proliferation, autophagy, and apoptosis[J]. Reprod Sci, 2023, 30 (4): 1266- 1280.
doi: 10.1007/s43032-022-01051-5 |
63 |
WEI Q , XUE H , SUN C , et al. Gga-miR-146b-3p promotes apoptosis and attenuate autophagy by targeting AKT1 in chicken granulosa cells[J]. Theriogenology, 2022, 190, 52- 64.
doi: 10.1016/j.theriogenology.2022.07.019 |
64 |
LI Y , LIU Y D , ZHOU X Y , et al. Let-7e modulates the proliferation and the autophagy of human granulosa cells by suppressing p21 signaling pathway in polycystic ovary syndrome without hyperandrogenism[J]. Mol Cell Endocrinol, 2021, 535, 111392.
doi: 10.1016/j.mce.2021.111392 |
65 |
CHEN Q , LI Z , XU Z , et al. miR-378d is involved in the regulation of apoptosis and autophagy of and E2 secretion from cultured ovarian granular cells treated by sodium fluoride[J]. Biol Trace Elem Res, 2021, 199 (11): 4119- 4128.
doi: 10.1007/s12011-020-02524-x |
66 |
MA L , ZHENG Y , TANG X , et al. miR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling[J]. Reproduction, 2019, 158 (5): 441- 452.
doi: 10.1530/REP-19-0285 |
67 |
ZHOU J , YAO W , LIU K , et al. MicroRNA let-7g regulates mouse granulosa cell autophagy by targeting insulin-like growth factor 1 receptor[J]. Int J Biochem Cell Biol, 2016, 78, 130- 140.
doi: 10.1016/j.biocel.2016.07.008 |
[1] | LI Xiaowei, TIAN Wei, LIU Yuan, LI Huixia. Study on the Difference of m6A Methylation Modification in Ovarian Granulosa Cells of Hu Sheep under Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1712-1721. |
[2] | HOU Wanchen, XU Tong. Cannabidiol Antagonizes BPA-induced Apoptosis and Autophagy in Porcine Intestinal Epithelial Cells through the BRD4/AMPK/mTOR Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1919-1933. |
[3] | HE Yu, WANG Xiangyu, DI Ran, CHU Mingxing, LIANG Chen. BMP4/SMAD4 Downregulates GJA1 Gene Expression to Affect the Gap Junctional Intercellular Communication Activity in Sheep Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 679-688. |
[4] | WANG Yi, HOU Lulu, FANG Fei, GAO Linying, XIE Shumin, WANG Yu. Fluoride Induced Small Intestine Oxidative Damage in Broilers via Autophagy and Ferroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 442-454. |
[5] | Yuxin GAO, Qing LIU, Jilan CHEN, Hui MA. Research Advances in the Mechanism of Parasite-host Interaction Mediated by miRNAs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3812-3823. |
[6] | Xiangchen LI, Linnan WANG, Zhengqing YU, Li ZHANG, Chenchen YANG, Liangli SONG. Quercetin Inhibits Autophagy to Restore LTA-induced Tight Junction Function in Mammary Alveolar Cells-large T Antigen [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3887-3896. |
[7] | Yi WANG, Juan GAO, Yuemin HU, Yuefei YANG, Bojun FAN, Huiming JU. Effect of Transient Serum Starvation on Metabolism and Autophagy of Porcine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3408-3417. |
[8] | Xinyu CAO, Jiawei CAI, Zhiyuan BAO, Shuyu YAO, Yunpeng LI, Yang CHEN, Xinsheng WU, Bohao ZHAO. The Function Analysis of ATG14 Regulates the Autophagy Process in Rabbit Hair Follicle Dermal Papilla Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3472-3481. |
[9] | Jingyu LI, Jinming CHEN, Mingyi ZHANG, Shanshan ZHAO, Deliang TAO, Junke SONG, Xin YANG, Yingying FAN, Guanghui ZHAO. Identification and Analysis of miRNAs of Neospora caninum [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3085-3093. |
[10] | Yuanyuan LI, Tianyu WANG, Meng LI, Wenhui ZHANG, Yinghui WANG, Tianrui ZHAO, Haojie LI, Yangfei ZHAO, Jinming WANG. Selenomethionine, through PINK1/Parkin-mediated Mitochondrial Autophagy, Alleviates Fluoride-induced Depressive-like Behavior [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3213-3224. |
[11] | LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455. |
[12] | LIU Yangguang, ZHANG Huibin, WEN Haoyu, XIE Fan, ZHAO Shiming, DING Yueyun, ZHENG Xianrui, YIN Zongjun, ZHANG Xiaodong. SNP/Indel Screening Analysis of Porcine Ovarian Granulosa Cells Treated with Follicular Fluid Exosomes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 576-586. |
[13] | QIU Wenyue, SU Yiman, YE Jiali, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, XIE Zimao, ZHANG Hui, TANG Zhaoxin, SU Rongsheng. Study on Asiatic Acid Alleviates LPS-induced Acute Kidney Injury by Regulating Apoptosis and Autophagy of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 809-821. |
[14] | DUAN Xiangru, KANG Jia, YANG Ruochen, SHAN Xinyu, LI Taichun, ZHAO Wen, ZHANG Yingjie, LIU Yueqin. Effect of L-cysteine on Proliferation, Apoptosis and the Secretion of Steroid Hormone in Ovine Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 179-191. |
[15] | LIU Yueyang, LI Mengyuan, NIE Xueyi, MA Yabo, HOU Yuxin, MA Boli, YANG Yi, XU Jinrui. The Regulation of Calcium-binding Protein S100A4 on Autophagy in THP-1 Cells Infected with Bacillus Calmette-Guérin [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 311-322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||